Kentucky bluegrasses making comeback
 But I think there is a resurgence in
 positive traits, and added some
 grasses don't have the disease re

By Mark Leslie
There is a resurgence in Kentucky bluegrasses that are better able to handle drought, disease and low maintenance, according to the director of the National Turfgrass Evaluation Program.

Kevin Morris was reporting on the final reports of the five-year test of bluegrasses and four-year test of ryegrasses.

Speaking from the U.S. Department of Agriculture's Beltsville (Md.) Agricultural Research Center, Morris said, "Tall fescues and ryegrasses came on in the 1980s.
the bluegrasses."
In the 1980s, he said, golf course superintendents and others started using tall fescues because they had no disease problems and were able to survive low-maintenance situations and drought.
"It fit a big market niche. But through breeding, we have moved tall fescues away from that. We tried to take the old tall fescue and make it darker green, denser and lowergrowing. We have been able to do all that. We've moved it closer to Kentucky bluegrass, but it's not

Kentucky bluegrass. So we've moveditaway from some of itsmore
problems. It tends to be slower to establish and has a harder time getting through the first summer after establishment."
Morris saidEuropeans, who have worked with the bluegrasses a long time, are doing major breeding research.
"They are trying to open up their marketand arelooking atthe United States more closely and more aggressively than in the past. They don't have the disease problems we have overhere - on the East Coast, particularly. So generally their
sistance we need," he said.
"Butthey are working to improve that. In general, they've probably done a pretty good job."

Morris said European cultivars ofbluegrasstend to have morewear tolerance.
"They use the bluegrasses, ryegrasses, fine fescues and chewings fescues a lot on their athletic fields. They seem to be more refined about breeding for those (wear) traits than we are here."
Morris added that U.S. universities are conducting a national test

Kentucky bluegrass national field test tabulations
 Name BC1 CA2 CA3 CA4 DC1 GA1 IA1 ID1 ID2 IL1 II2 IN1 KS1 KS2 KY1 MB1 MD1MI1 MN1MO1NC2 NC4 NE1 NE2 NE3 NJ1 NJ2 NM2 OH1 OK1 OR1 PA1 PA2 RI1 SD1 UB1 VA1 VA2 VA3 WA1 WA3 WA4 MEAN

 *Midnight
*Princeton

* Asset
*Chateau
*- Lofts 1757
*Coventry
BA 73-540
BA 73-540
*America
${ }^{*}$ Ameripse
${ }^{*}$ Eclipse
${ }^{*}$ Aspen
*Glade
*Classic
WW AG 496
* Able 1
*Wabash
*A.34
BA $69-82$
BAR VB 534
"Cheri
- Bristol

Bluegrass test sites

The site descriptions and management practices for the $1986-90$ National Kentucky Bluegrass Test follow, with location listed
first, then soil texture; nitrogen (pounds per 1,000 square feet); mowing height in inches; and irrigation practiced:
BC1: Agassiz, British Columbia; loam; 2.1-3.0; 1.1-1.5; only during severe stress. CA2: Santa Ana, Calif; N/A. CA3: Riverside, Calif;; sandy loam; 2.13.0; 1.6-2.0; to prevent stress.

CA4: Ventura, Calif.; silty clay loam; 8.1+; 1.1-1.5; to prevent stress.

DC1: Washington Monument Grounds;
loam; 1.1-2.0; 2.1-2.5; loam; 1.1-2.0; 2.1-2.5; no irrigation. GA1: Experiment, Ga.; sandy clay loam; 3.1-4.0; 2.1-2.5; to prevent stress. IA1: Ames, Iowa; silty clay loam; 3.1-4.0;
1.6-2.0; no irrigation 1.6-2.0; no irrigation.

ID1: Moscow, Idaho; silty clay loam; N.A. ID2: Post Falls, Idaho; sandy loam; 2.13.0; $1.6-2.0$; to prevent stress.
IL1. Urbana III- silty clay

IL1: Urbana, Il.; silty clay and clay; 3.1 -
4.0: 1.6-2.0; to prevent stress 4.0; 1.6-2.0; to prevent stress. IL2: Carbondale, Ill.; silty clay and clay; $0.0-1.0 ; 2.1-2.5$; only during severe stress.
IN1: West Lafayette, Ind; sill loam and IN1: West Lafayette, Ind.; silt loam and
silt; 3.1-4.0; 21-2.5; to prevent stress. silt; 3.1-4.0; 2.1-2.5; to prevent stress. 3.1-4.0; 2.6-3.0; to prevent stress. 3.1-4.0; 2.6-3.0; to prevent stress.
KS2: Wichita, Kan.; sandy loam; 2.1-2.5; to prevent stress.

KY1: Lexington, Ky.; silt loam and silt; 2.1-3.0; 1.6-2.0; only during severe stress. MB1: Winnipeg, Manitoba, Canada; silty clay and clay;2.1-3.0;0.6-1.0; to preventstress. UB1: Beltsville, Md.; silt loam and silt; 2.1-3.0; 1.1-1.5; to prevent dormancy. MD1: Silver Spring, Md; sandy loam; 3.1 4.0; 2.1-2.5; to prevent dormancy. MI1: East Lansing, Mich.; sandy loam; 2.1-3.0; 1.6-2.0; to prevent stress. MN1: St. Paul, Minn.; silty clay loam; 3.1 4.0; $1.6-2.0$; to prevent stress.
MO1: Columbia, Mo silty MO1: Columbia, Mo.;silty loam and silt; 3.1-4.0; 2.1-2.5; to prevent stress.
NC2: Charlotte, N.C. silty clay NC2: Charlotte, N.C.; silty clay loam; 2.1
3.0; 1.1-1.5; only during severe 3.0; 1.1-1.5; only during severe stress. NC4: Goldsboro, N.C.; sandy loam; 2.1 $3.0 ; 1.1-1.5$; only during severe stress. NE1: Lincoln, Neb.; silty cl
4.0; 1.6-2.0; to prevent stress. 4.0; 1.6-2.0; to prevent stress. NE2: Lincoln, Neb.; silty clay loam; 3.1NE3: Mead, Neb.; silty clay NE3: Mead, Neb.; silty clay loam; 3.1-4.0; $0.6-1.0$; to prevent stress.

NJ1: North Brunswick, N.J.; sandy loam;
4.1-5.0; 1.6-2.0; to prevent dormancy. NJ2: Adelphia, NJ.; sandy loam; 5.1-6.0; 6-2.0; to prevent dormancy. NM2: Farmington, N.M.; loamy sand; 2.1.0; $2.6-3.0$; to prevent stress. OH : Columbus, Ohio; silty clay loam; 1.1-2.0; 2.1-2.5; to prevent stress.

OK1: Stillwater, Okla.; N/A.
OR1: Hubbard, Ore.; silt loam and sil
.5.0; 1.1-1.5; to prevent dormancy. PA1: University Park, Pa.; silty
PA2: University Park, Pa.; silt loam an
silt; 2.1-3.0; 1.1-1.5; to prevent stress.
RI1: Kingston, R.I.; silt loam and silt; 3.1-

4.0; 1.1-1.5; to prevent stress.

SD1: Brookings, S.D.; silty clay loam; N/ ;2.1-2.5; to prevent stress.
VA1: Blacksburg, Va.; sandy loam; 2.1. $3.0 ; 1.6-2.0$; to prevent dormancy.
VA2: Blackstone, Va.; sandy loam; 2
VA3: Remington, Va.; loam; 2.1-3.0; 2.1-
; only during severe stress
WA1: Pullman, Wash.; silt loam and silt; .1-3.0; 1.6-2.0; to prevent stress WA3: Puyallup, Wash.; sandy loam; 3.14.0; 1.1-1.5; to prevent stress.
WA4: Ritzville, Wash. (dense shade); silt loam and silt; $0.0-1.0 ; 2.1-2.5$; only during

while ryegrass improvements continue
 of them a lot."
 doesn't significantly impact the

for bluegrasses under low-maintenance situations in more than two dozen locations. "A lot of the bluegrasses look pretty good under these situations - in how quickly they establish and their looks," he reported.

RYEGRASS IMPROVEMENTS

Extraordinary advances are being made yearly in ryegrass breeding, Morris said.
"If you take the top cultivars in this (completed) test and compare them with the current test (planted in 1990), you will find there will

The progress made over the past four or five years in color, density, lower-growing growth habit - is amazing.
 - Kevin Morris

probably be 30 new varieties or so that are better
"The progress made over the past four or five years - in color, density, lower-growing growth habit - is amazing."
Morris said the supply of new varieties is probably limited. "But
you need to watch pretty closely because there will be a lot of varieties coming out on the market that are better than what's available now.
"I'mnotsureyetifwe'veimproved the stress and disease tolerance, butwe've improved the appearance

TESTS A STARTING POINT

Morris called the four- and fiveyear test results "a starting point ... a guideline" for superintendents on the lookout for a purchase.
"Within the 'mean' figure (for each cultivar in the test), there is a varying amount of data," he said. "Somelocationscollectedalotmore datathan others. Onelocationmight be able to collect data all year around, while another can only do it four months. It can be a little misleading but, in general, one location

Ryegrass national field test tabulations

Name	BC1	DC1	ID2	IL1	II2	IN1	KS1	KS2	KY1	MA1	MD1	MI1	MO1	NE1	NJ1	NJ2	NM1	NY1	NY2	OH 2	2 K 1	ORI	OR1	OR2	PA1	PA2	RI1	SD1	UB1	VAlV	VA7	WA	EAN
*Saturn	5.6	4.8	6.7	6.6	7.3	6.7	7.0	7.6	6.3	5.0	6.0	6.2	6.8	6.3	6.1	6.5	7.3	5.1	6.1	6.9	4.9	6.8	6.8	6.3	6.8	6.9	6.8	6.3	6.9	4.43	3.3	7.8	6.3
*SR 4000	5.4	3.5	6.4	6.2	7.1	6.5	6.9	7.0	6.1	5.0	6.4	6.0	6.6	6.0	6.8	6.6	7.5	5.5	5.9	6.8	5.0	6.2	6.2	6.4	6.4	6.4	6.6	6.8	6.9	4.83	3.1	8.2	6.2
*SR 4100	5.4	3.7	6.4	6.4	7.7	6.6	7.0	7.1	6.1	5.3	6.3	5.7	6.9	5.7	6.5	6.0	7.1	5.4	6.1	6.5	4.9	6.3	6.3	6.3	6.6	6.9	6.5	6.4	7.0	4.72	2.8	7.9	6.1
*Dimension	5.5	3.8	6.7	6.4	6.7	6.4	7.0	7.4	6.1	5.3	5.5	6.2	6.4	6.0	6.2	6.8	7.4	5.0	5.6	6.6	5.1	6.9	6.9	6.5	6.6	6.6	6.5	6.6	6.5	4.43	3.5	8.0	6.1
*PST-M2E	5.7	4.6	6.1	6.2	6.8	6.8	7.1	7.4	5.9	4.8	5.9	5.7	6.6	5.6	6.2	6.4	7.4	4.9	6.3	6.9	5.1	6.9	6.9	6.5	6.7	6.3	6.6	6.5	6.8	4.43	3.2	7.2	6.1
*Pennant	5.8	4.5	6.4	6.3	7.4	6.5	6.6	7.2	6.0	5.1	6.2	5.7	6.6	5.9	6.0	6.0	7.3	5.3	5.8	6.5	5.2	5.8	5.8	6.0	6.4	6.7	6.7	6.4	6.4	4.83	3.8	8.1	6.1
*Commander	5.5	5.0	6.0	6.3	7.2	6.6	6.8	7.1	6.3	5.0	5.8	5.4	6.4	5.9	5.8	6.4	7.2	5.3	6.1	6.6	4.3	6.4	6.4	6.4	6.9	6.5	6.4	6.8	6.5	4.73	3.2	7.9	6.1
*Fiesta 11	5.5	3.8	6.5	6.4	6.8	6.7	7.0	6.9	6.0	5.3	5.5	5.4	6.5	6.2	5.9	6.3	7.4	5.3	6.1	7.1	5.1	6.3	6.3	6.4	5.6	6.4	6.6	7.1	5.8	4.73	3.6	8.3	6.1
*Repell	5.9	5.4	6.0	5.9	7.1	6.6	6.8	6.7	6.3	5.0	6.0	5.7	6.2	5.9	5.6	5.8	7.3	5.1	6.3	6.9	4.6	6.0	6.0	6.3	6.2	6.7	6.8	6.7	6.8	4.3	3.3	7.6	6.1
*Riviera	5.9	3.8	6.3	6.4	7.4	6.4	6.8	7.3	6.2	5.0	5.6	5.8	6.6	5.9	6.2	6.2	7.2	5.2	6.0	6.9	4.5	6.2	6.2	6.3	5.9	6.6	6.7	6.9	6.0	4.62	2.9	7.7	6.0
* Palmer	6.0	6.0	6.4	6.5	6.9	6.6	6.7	6.9	5.8	5.0	6.1	5.6	6.2	5.7	5.6	5.8	7.4	4.8	5.8	6.6	3.9	6.2	6.2	6.1	5.9	6.7	6.4	6.5	6.0	4.93	3.9	8.0	6.0
*Blazer 11	5.6	5.1	6.8	6.2	6.8	6.6	7.2	6.5	6.0	5.3	5.5	5.8	6.5	6.1	6.1	6.5	7.0	5.1	6.0	7.1	4.4	6.5	6.5	6.4	5.6	5.9	6.0	6.7	5.2	4.5	3.1	8.0	6.0
*Omega 11	5.7	2.6	6.6	6.2	6.3	6.4	6.9	7.2	6.2	4.9	5.7	5.5	6.4	5.9	5.7	6.0	7.5	5.1	5.7	6.8	5.1	6.9	6.9	6.2	5.9	6.3	6.4	6.6	6.5	4.5	3.4	8.3	6.0
* Charger	5.4	3.5	6.6	6.2	7.4	6.6	6.9	7.5	5.8	4.9	6.2	5.9	6.4	5.8	5.4	6.4	7.1	5.0	5.8	6.5	4.1	6.6	6.6	6.3	5.7	6.1	6.4	6.9	6.2	4.73	3.2	8.1	6.0
${ }^{*}$ Competitor	5.4	4.6	5.9	5.8	6.7	6.4	6.8	7.1	5.8	5.3	5.4	5.4	6.4	5.9	5.9	6.3	7.3	5.0	6.1	6.8	4.5	6.6	6.6	6.5	6.4	5.9	6.1	6.9	6.2	4.42	2.7	8.5	6.0
*Manhattan 11	5.8	4.3	6.3	6.3	6.6	6.4	6.7	7.3	5.6	4.8	5.8	5.8	5.9	5.8	5.6	6.1	7.3	4.9	5.9	6.9	4.5	6.5	6.5	6.5	5.9	6.2	6.2	6.4	6.1	4.73	3.1	8.1	6.0
*Dasher 11	5.5	2.9	5.9	5.8	6.5	6.5	7.0	7.4	6.1	4.9	5.8	5.6	6.5	"5,8"	6.2	6.1	7.2	5.2	5.7	6.6	4.8	6.2	6.2	6.4	6.2	6.5	6.6	6.5	6.5	4.72	2.8	7.2	5.9
*Edge	5.5	3.3	6.0	6.2	6.2	6.5	6.8	7.0	6.0	5.0	6.3	5.3	6.7	5.7	6.4	6.1	7.0	5.0	5.8	6.7	4.3	6.1	6.1	6.0	6.2	6.2	6.2	6.6	6.8	4.5	2.9	8.1	5.9
PST-2DD	5.5	3.1	7.1	5.6	6.9	6.4	6.7	6.2	5.8	4.9	5.1	5.4	5.5	6.1	5.5	6.4	7.4	5.0	x	6.9	5.2	7.1	7.1	6.5	x	6.6	6.3	6.9	6.5	4.1	3.0	7.7	5.9
*Citation 11	5.8	2.2	5.8	6.2	6.9	6.4	6.8	7.3	6.1	5.0	6.3	5.6	6.4	5.5	5.5	6.1	7.5	4.8	5.6	6.3	5.5	6.4	6.4	6.2	5.7	6.2	6.3	6.4	6.8	4.52	2.9	7.8	5.9
- Prelude	5.7	5.1	6.1	6.0	6.9	6.4	6.8	7.3	5.6	5.1	6.1	5.4	6.1	5.5	5.4	5.7	7.1	4.7	6.2	6.5	4.3	6.1	6.1	6.1	5.7	6.4	6.5	6.7	5.6	4.63	3.5	7.7	5.9
*Allaire	5.6	4.9	6.1	6.0	6.3	6.5	7.0	6.5	5.7	4.9	5.9	5.8	6.1	6.0	5.7	6.4	7.1	5.0	5.9	6.5	5.3	6.0	6.0	6.3	6.2	5.8	6.1	6.3	5.3	4.03	3.2	8.2	5.9
-Gator	5.6	4.9	6.1	6.1	6.2	6.4	6.8	6.7	5.9	4.9	5.6	5.4	6.1	5.9	5.4	5.9	7.4	5.0	5.8	6.8	4.5	6.0	6.0	6.3	6.0	6.4	6.5	6.6	5.1	4.8	3.2	8.1	5.9
*Lindsay	5.7	4.1	6.1	5.9	6.6	6.3	6.8	6.8	5.7	5.0	6.0	5.7	6.0	5.9	5.3	5.8	7.0	5.0	5.6	6.6	5.1	6.0	6.0	6.4	5.9	6.1	6.4	6.8	5.6	4.8	3.3	7.6	5.9
-Aquarius	5.4	2.8	6.9	5.5	6.1	6.2	7.2	6.7	5.3	5.0	5.1	5.5	6.0	5.8	6.3	6.5	7.2	4.6	6.3	7.0	5.0	6.5	6.5	6.7	5.8	5.9	6.0	7.3	5.4	4.02	2.9	8.3	5.8
*Tara	5.8	3.6	6.6	6.2	6.7	6.4	6.9	6.6	5.9	5.0	5.8	5.7	5.8	5.7	5.4	6.0	7.0	4.8	5.9	7.0	4.3	6.5	6.5	6.4	5.6	6.2	6.5	6.6	4.9	4.33	3.3	7.7	5.8
*Goalie	5.6	4.5	6.3	5.9	7.6	6.4	6.7	7.0	5.7	5.1	6.2	5.4	6.3	5.3	5.4	5.3	7.1	4.8	5.9	6.5	4.3	5.3	5.3	5.7	5.8	5.9	6.5	6.8	5.7	4.8	3.4	7.3	5.8
PSU-333	5.6	4.7	5.8	5.8	7.2	6.5	6.7	6.9	5.7	5.2	5.8	5.5	5.9	5.8	5.0	5.5	7.3	5.1	5.6	6.6	4.7	5.4	5.4	6.0	6.2	6.1	6.5	6.5	5.4	4.5	3.1	7.3	5.8
*Patriot	5.6	4.2	5.8	5.8	7.0	6.3	6.6	7.4	5.6	4.9	5.2	5.1	6.4	5.9	5.2	5.4	7.4	5.0	6.2	6.8	4.7	5.6	5.6	6.2	6.2	5.8	6.5	6.7	5.5	4.5	3.1	7.0	5.8
*Rodeo	6.0	4.5	6.5	5.8	6.1	6.4	6.8	6.1	5.5	5.1	5.1	5.5	6.0	5.9	5.7	5.7	7.0	4.8	5.9	6.6	5.0	5.9	5.9	6.2	6.2	6.3	6.3	6.3	4.8	3.93	3.1	7.9	5.8
*Birdie II	5.4	3.9	6.0	6.1	7.0	6.3	6.6	7.0	5.8	4.9	6.0	5.3	6.3	5.7	4.7	5.2	7.5	4.9	5.7	6.1	4.3	6.1	6.1	6.1	5.9	6.4	6.3	6.1	6.4	4.62	2.6	7.6	5.8

The BT100 Lightweight 5-Gang Fairway Mower is lighter than other 5-Gangs, so it lessens compaction and produces a healthier, better-looking fairway.

Despite its modest weight, this mower is loaded with features: independent full-floating and pivoting reels for quality cutting on all terrains; all-wheel drive and power assist for increased maneuverability; a 100 "cutting width for quicker work of larger cutting areas; and much more.

If fairway mowers were golfers, then our BT100 Lightweight 5-Gang Fairway Mower would be the leading money winner on the tour. Why don't you put it to a test? For more information, contact your Bunton representative. While you're at it, askabout our expanded line of golf course maintenance equipment.
mean.
"You'retrying to determine ifthere are some cultivars that really won't grow in an area, or that really stand out. Usually you have a group in the middle that are hard to separate out."

New cultivars of bluegrasses and ryegrasses were planted in 1990, and the firstresultsfromthose plots will be made available this spring, Morris said.
In those tests, one-third to onehalf of the cultivars were included in the last tests as well. The rest are new varieties.

Descriptions
 of sites for ryegrass tests

The site descriptions and management practices for the 1987-90 National Perennial Ryegrass Test follow, with location listed first, then soil texture; nitrogen (pounds per 1,000 square feet);mowing height in inches and irrigation practiced
BC1: Agassiz, British Columbia; loam; 2.1-3.0; 1.6-2.0; only during severe stress. DC1: Washington Monument Grounds; loam; 1.1-2.0; 2.1-2.5; no irrigation.
ID2: Post Falls, Idaho; silt loam and silt; 2.1-3.0; 1.1-1.5; to prevent stress.

IL1: Urbana, Ill.; silt loam and silt; 3.1-4.0; 2.1-2.5; to prevent stress.

IL2: Carbondale, III.; silty clay and clay; 4.1-5.0; 2.1-2.5; to prevent stress

IN1: West Lafayette, Ind.; silt loam and silt; 3.1-4.0; 2.1-2.5; to prevent stress.
KS1: Manhattan, Kan.; silty clay loam
3.1-4.0; 2.6-3.0; to prevent stress

KS2: Wichita, Kan.; sandy loam; 3.1-4.0;

1-2.5; to prevent stress.

KY1: Lexington, Ky.; silt loam and silt; 2.1-3.0; 1.6-2.0; only during severe stress. UB1: Beltsville, Md.; silt loam and silt; 2.1-3.0; 1.1-1.5; to prevent stress.

MA1: Amherst, Mass.; silt loam and silt;
2.1-3.0; 1.6-2.0; to prevent stress.

MD1: Silver Spring, Md; sandy loam;3.1 4.0; 2.1-2.5; to prevent stress.

MI1: East Lansing, Mich.; sandy loam; 2.1-3.0; 1.6-2.0; to prevent stress.

MO1: Columbia, Mo.; sandy clay loam;
3.1-4.0; 2.1-2.5; to prevent stress.

NE1: Lincoln, Neb.; silty clay loam; 3.14.0; 1.6-2.0; to prevent stress.

NJ1: North Brunswick, NJ.; loam; 4.1-
5.0; 1.1-1.5; to prevent stress.

NJ 2 : Adelphia, NJ .; sandy loam; 5.1-6.0; 1.6-2.0; to prevent dormancy.

NM1: Los Lunas, N.M.; sandy clay loam
2.1-3.0; 1.6-2.0; to prevent stress.

NY1: Ithaca, N.Y.; sandy loam; 2.1-3.0;
1.1-1.5; to prevent stress.

NY2: Riverhead, LL.; sandy loam; 2.1-3.0; 1.1-1.5; to prevent stress.

OH 2 : Marysville, Ohio; silty clay and clay;
3.1-4.0; 1.6-2.0; only during severe stress.

OK1: Stillwater, Okla.; N/A.
OR1: Hubbard, Ore.; silt loam and silt;
4.1-5.0; 1.1-1.5; to prevent stress.

OR2: Corvallis, Ore.; sandy clay loam; N/

A, 2.1-2.5; to prevent stress.

PA1: University Park, Pa.; silt loam and silt; 2.1-3.0; 0.0-0.5; to prevent stress.
PA2: University Park, Pa.; silt loam and silt; 2.1-3.0; 1.1-1.5; to prevent stress.

RI1: Kingston, R.L.; silt loam and silt; 3.1
4.0; 1.1-1.5; to prevent stress.

SD1: Brookings, S.D.; silty clay loam; N/
A; 2.1-2.5; to prevent stress.
VA1: Blacksburg, Va.; loam; 3.1-4.0; 1.6-
2.0 ; only during severe stress.

VA7: Lynchburg, Va.; sandy loam; 2.1 3.0; 2.1-2.5; no irrigation.

WA3: Puyallup, Wash.; sandy loam; 4.1$5.0 ; 0.0-0.5$; to prevent stress.

