syngenta

Products worth talking about.

The word is out. The Syngenta portfolio of products has become one of the most comprehensive in the industry. We're committed to knowing more about the crops, the diseases, and the everyday needs of you, our customer.

For more information on these products, please contact Brian Winkel at (630) 391-2170.

www.syngentaprofessionalproducts.com

©2008 Syngenta. Syngenta Professional Products, Greensboro, NC 27419. Important: Always read and follow label instructions before buying or using these products. Scimitar GC is a Restricted Use Pesticide. Tenacity" is not currently registered for use in all states. Please check with your state or local extension service prior to buying or using this product. Award®, Banner MAXX®, Barricade®, Concert®, Daconil®, Fusilade®, Headway", Heritage®, Instrata®, Medallion®, Merdian®, Monument®, Pennant MAGNUM®, Primo MAXX®, Prince®® Liquid, Reward®, Scimitar®, Subdue MAXX®, SuperWeatherStik®, Tenacity", Touchdown PRO®, Trimmit®, ULTREX®, Weather Stik®, and the Syngenta logo are trademarks of a Synapsta Group Company.

2010 Board of Directors

PRESIDENT

Scott Witte, CGCS, Cantigny G.C.

VICE PRESIDENT

Dan Sterr, Stonebridge C.C.

SECRETARY / TREASURER

Bob Kohlstedt, Fox Bend G.C.

EXECUTIVE DIRECTOR

Luke Cella

BOARD

Dan Charlton, Evanston G.C.

Dave Groelle, CGCS, Royal Melbourne C.C.

James Keith, CGCS, St. Charles C.C.

Michael Mumper, Arrowhead Golf Course

Michael Siefken, Sportsman's C.C.

Mark Thibault, Links at Carillon

PRESIDENT EMERITUS Tony Kalina, Prairie Landing G.C.

COMMERCIAL REPRESENTATIVE

Nick Baker, Chicagoland Turf

CLASS 'C' REPRESENTATIVE

Josh Therrein, St. Charles C.C.

TURFGRASS ADVISOR

Dr. Derek Settle

EDITORIAL CHAIRMAN

Robert Kohlstedt

ASSOCIATE EDITORS

John Gurke, CGCS

Chuck Anfield, CGCS

GRAPHIC ARTIST

Mark Karczewski

This publication is not copyrighted. We would like to share our articles with any who would like to use them, but please give the author and *On Course* credit.

Table Of Contents www.magcs.org

NOVEMBER 2010 Volume 64 No.7

Mike Nielsen congratulates MAGCS Champion Dave Kohley after their round at Cantigny as they walk off the green with Chuck Anfield.

FRONT COVER

A last look at a tee on a crisp fall morning as benches, ball washers, waste receptacles are brought in from the course for winter maintenance. *Photo credit: Luke Cella*

ON COURSE WITH THE PRESIDENT

3 A Quotable Season Comes to an End Scott Witte

FEATURES

5 HDPE vs PVC, What's the Difference? Larry Collins

7 Chicago's Most Recognizable Meteorologist Steve Partyka

DEPARTMENTS

- 11 Midwest Breezes Charles Anfield
- 12 the Bull Sheet John Gurke
- 22 Assisted by the Class C Joe Schneider

The Midwest Association of Golf Course Superintendents (MAGCS), founded December 24, 1926, is a professional organization whose goals include preservation and dissemination of scientific and practical knowledge pertaining to golf turf maintenance. We endeavor to increase efficiency and economic performance while improving and enhancing the individual and collective prestige of the members.

The MAGCS member is also an environmental steward. We strive to uphold and enhance our surroundings by promoting flora and fauna in every facet in a manner that is beneficial to the general public now and in the future.

All editorial and advertisement inquiries should be directed to Luke Cella, Publisher, *On Course*. 11855 Archer Avenue, Lemont, IL, 60439. (630) 243-7900 or visit www.magcs.org for rates and requirements Statements of fact and opinion are the responsibility of the authors alone and do not imply an opinion on the part of the officers or members.

We Make Sure the Grass is Always Greener on *Your* Side.

We combine the world's leading professional turf maintenance brands with a team of local experts to deliver the best overall turf solutions to our customers. From creating customized solutions designed to tackle site-specific issues to building customer specific application programs that achieve maximum results, our customer-driven, expert staff is dedicated to the overall success of each and every customer.

Ph: 630.268.8871 Fx: 630.268.1357 www.chicagolandturf.com

ON COURSE WITH THE PRESIDENT Scott Witte, CGCS, Cantigny Golf Course

A Quotable Season Comes to an End

As your president, I feel obligated to try and offer a bit of inspiration in my column. So, as I look back on 2010, I can't help but think of the German philosopher, Friedrich Nietzsche, who said: "That which does not kill us makes us stronger." Many of you have endured nightmarish seasons due to flooding, heat, humidity, and turf diseases. There were probably moments where you scratched your heads and wondered, "What's next!"

Another guote from Nietzsche says: "A good writer possesses not only his own spirit, but also the spirit of his friends." As I attended the Midwest monthly meetings, I sensed that the "spirit of my friends" is still in recovery mode after a long, difficult growing season. Fortunately the cool fall breezes have the same rejuvenating effect on superintendents that they have on cool season grasses. Over the course of the summer I benefited greatly from the fellowship of my friends and fellow members of the Midwest. I never underestimate the power of friendship, especially when times get tough.

One of the most important things is that we take what we learned this year and allow it to make us better. If you've made as many mental notes as I have this year, you've gained some great experience in dealing with some of nature's toughest conditions. 2010 will definitely go down as a character building year.

When it comes to character. Nietzsche also said: "Character is determined more by the lack of certain experiences than by those one has had." Obviously it wasn't our first choice to have a long, obnoxious, hot and wet summer, but we have no control over that. Our job is to weather the storm and grind out a good product for our patrons regardless of the conditions. I applaud your efforts and I pray that you'll ultimately reap the long term benefit of the experience you gained in 2010. Granted, some of those experiences really seem to suck at the time, but in the long run, we may benefit from them.

I don't know if I've succeeded in offering some inspirational thought or not, but I've enjoyed the process. Thank you for allowing me the opportunity to serve as your president in 2010. I look forward to serving as Past President in 2011, as Dan Sterr takes the reins.

Lastly, I'd like to offer my own inspirational one-liner to the members of the Midwest.

"Regardless of difficulty, may every growing season... be a season of growth."

Scott A. Witte, CGCS President MAGCS 2010 -OC

GRUENMANN TURF Quality Pre-Owned Equipment. Inspected. Tested. Warrantied.

Think news

view our current inventory gruenmannusa.com

Dear MAGCS Members

Thank you, MAGCS Members!

- We genuinely appreciate your relationships and your business.
- Contact us for assistance in planning your bulk material needs for 2011.

Δ

715-258-8566

www.WaupacaSand.com

HOLLEMBEAK CONSTRUCTION INC.

Golf Course Construction • Renovations • Bunkers Clearing • Feature Grading • Shaping • Drainage Tee and Green Construction • Cart Paths • Grassing Shoreline Stabilization • Pond Construction and Dredging Laser Tee Leveling • GPS Golf Course Mapping

P.O. BOX 103 • BIG ROCK, IL 60511 • 630-556-3891

FEATURE | Larry Collins, EC Design Group, LTD

HDPE vs PVC, What's the Difference?

Over the years there have been many "latest and greatest" ideas in the irrigation business that have not really worked out. They sounded like the thing to do at the time, but they turned out to be a liability down the road. Anyone that has epoxy coated steel fittings knows what I mean.

One of the "latest and greatest" things people keep asking us about is High-Density Polyethylene (HDPE) pipe. The truth is, it's not new; it's just becoming more popular in golf course irrigation systems. It has many attributes that Polyvinyl Chloride (PVC) does not. So, how do you determine if it's right for your golf course?

HDPE – What Is It?

High-density polyethylene is a ductile, durable, virtually inert thermoplastic composed of ethylene polymers. It begins as a translucent, tough solid. In pipe-grade resins, ethylenehexene copolymers are usually specified with carbon black pigment for weather resistance.

HDPE can bend and curve, without fittings, at angles that would exceed manufacturer specifications and cause PVC pipe to break. Furthermore, HDPE has a much higher impact resistance then PVC. This is helpful both in new construction and in exposed crossings.

In theory, there are virtually no joints in an HDPE-piping network. The change-of-direction sections are fused to the pipe either by butt fusion or electrofusion. The system is monolithic once the fusion process is complete.

HDPE pipe can tolerate freezing much better than rigid pipe, an important consideration in northern climes. PVC pipe has a crystalline temperature of 32°F, at which point it becomes brittle. HDPE pipe has a crystalline temperature of -180°F, which means less potential for failure. In fact, water can freeze and thaw repeatedly inside of HDPE pipe without causing permanent damage to the pipe. HDPE is more durable and forgiving in most applications than PVC. With proper fusion, HDPE does not have joints that fail. Polyethylene pipe is more flexible and has greater impact resistance than PVC. For example, a scratch as deep as 10% of the wall thickness doesn't reduce the pressure rating of HDPE pipe. PVC is notch-sensitive, meaning it has a greater tendency to fracture because of the presence of a notch, crack, or scratch.

Moreover, HDPE piping systems are more surge tolerant than PVC, which means fewer repairs caused by pressure surges. If an HDPE piping system is in need of repair, electrofusion couplings are the simplest way to facilitate repairs. The days of thrust blocks and joint restraints are gone, because everything is fused together.

From an environmental stand point, if you are using fertigation, HDPE is inert and will not readily react with other chemicals. Furthermore, the production of HDPE is far less destructive to the environment than the manufacture of PVC. The disposal of chemicals used in PVC, including chlorine, has become an environmental issue.

HDPE pipe has been used in water-works for more than 50 years, so it has a proven track record of reliability.

Types of Fusion – Butt Fusion

Butt fusion – the most common type of fusion – is used to connect lengths of pipe and to connect fittings to pipe. When two pieces of pipe are to be joined, a fusion machine holds them stationary. The edges of both pieces of pipe are shaved to ensure they are clean and straight. A heating element is lowered between the two pieces of pipe and left there for a pre-determined period of time, based on pipe size and wall thickness. After the ends are adequately heated, the heating element is removed and the two pieces of pipe are pushed together. Once the pipe has cooled, the fused joint becomes as strong as the pipe itself.

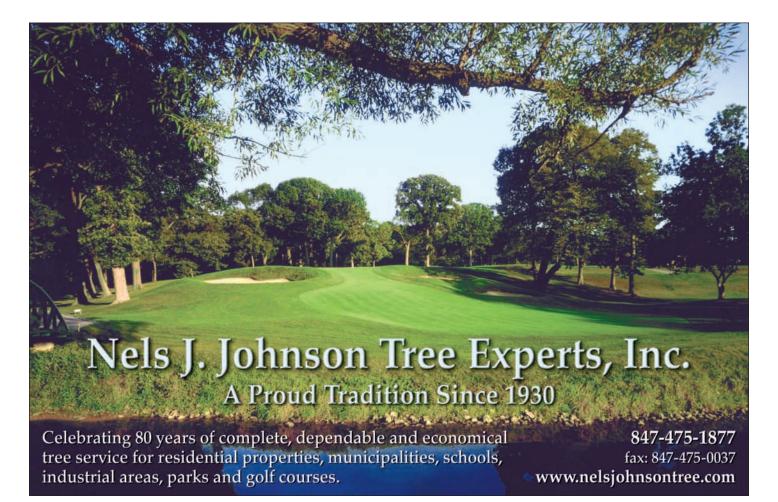
(continued on page 6)

. . . and Electrofusion

Electrofusion is a simple method that works well for repairs or in locations where a fusion machine won't work. The fitting is placed on the pipe and a machine is hooked to electrodes on the fitting. When the machine is turned on, the fitting is fused to the pipe by energy passing through the electrodes.

Applications for HDPE

In the past, HDPE was used primarily in bridge crossings, or for bores under creeks, lakes or roads. The fact that it was monolithic and flexible made it the perfect fit for these applications.


Cost prevented people from using HDPE for their entire system. Pipe, fittings, labor and the unknown all contributed to what used to be exponentially higher installation costs. As time has passed, and contractors have become more familiar with the pipe, the costs have come way down. Some contractors now prefer an HDPE installation over PVC. The gap between an HDPE install price and a PVC install price is minimal these days.

So who should put in an HDPE system? Several factors should be considered. What are your soil conditions? Are they rocky, sandy, shifting, built on a landfill? If you answered yes, these are conditions where the flexibility and strength of HDPE pipe would make it a great choice.

In rocky soils, the scratches that pipe can sustain are less likely to cause problems. Because the piping network has no joints there's less opportunity for pieces to pull free in shifting soils. HDPE is still the best alternative for a bridge crossing, where a pipe will be exposed to the sun and freezing temperatures. The carbon-black injected into the pipe protects it from harmful UV rays. Boring under roads, cart paths, parking lots, and lakes has become much more affordable and causes very little disruption. These days contractors would prefer to bore with HDPE – they know there will never be a need to repair that pipe.

With all of its good qualities, HDPE still comes at a premium price on installation. Not everyone needs HDPE for their system. PVC systems have been around for a long time. As long as quality fittings, thrust blocks and/or restraints are used – and a good contractor installs it – PVC should last 25 plus years. Superintendents who have endured the nightmare of frequent fitting failure because of a bad installation or the use of epoxy-coated steel fittings will have a harder time being talked into using anything other than HDPE.

As a result HDPE systems are being installed more frequently now than ever before. If you are thinking about a new system and your golf course has the conditions previously described, it might be something to consider. If it doesn't make sense to spend the extra money, and you are not worried about any of the conditions mentioned earlier, PVC has been and will continue to be a perfectly suitable product. The majority of courses are installing PVC systems, and they will last a very long time. But there's another option out there, and this "latest and greatest" is truly a viable option. **-OC**

FEATURE || Steve Partyka, *White Pines Golf Course*

Chicago's Most Recognizable Meteorologist

There are two people in my life that I have always wanted to meet. The first is Buffy the Vampire Slayer (Sarah Michelle Gellar), and the second is Tom Skilling. I'm still working on meeting Buffy (short of being arrested for stalking). This past summer my wife and I had got the opportunity to meet Tom Skilling. Being a Greens Superintendent I, like many of you, am a weather junkie. I'm always watching the weather, preferably Tom Skilling at 12:30 p.m., 5:30 p.m., and 9:30 p.m.

Tom is as approachable a guy as you're ever going to meet. I had so many questions I wanted to ask. Tom was more than happy to talk at length about Door County and Alaska before getting down to business with this weather junkie's important questions. He was good enough to take us on a tour of The WGN Weather Center, showing us the computer models and websites that he uses to prepare each day's weather. After the tour we got a chance to ask the following questions:

weather at a given spot, it's necessary to know the state of the atmosphere over the entire planet. This is because what's happening at one location is inextricably linked to the large-scale pattern. There can still be huge variations in predictions of the large-scale pattern, because there are a dozen or more global computer models that forecasters use. Being able to look at ALL of these models can provide clues about which models are going off on an inaccurate forecasting tangent. Having said all of that, here's the

1. What is the percentage or number of days you can predict the weather?

In general, day to day details of the weather are predictable out to seven days. General features of the evolving weather pattern can be identified out to two weeks. Clearly, certain patterns and weather features are more accurately predicted than others. For instance, precipitation – because of HUGE variations in its distribution – provides the greatest challenge. Temperature, pressure and wind are most accurately predicted. This is particularly true of higher altitude winds, like the jet stream, which operate in a region of the atmosphere less affected by factors like frictional drag from the ground or feedbacks from snow and ice cover and bodies of water. Great progress has been made in weather forecasting with the advent of high speed computing. There have also been vast improvements in remote sensing - the term applied to inferring weather conditions by using readings from satellites, microwave sensors, in-flight transponders on aircraft, and Doppler radar inferred winds and precipitation. To predict the

bottom line. Predictions of temperature for the next two days are correct to within five degrees more than 90% of the time. Forecasts at a range of seven days are as accurate as two-day predictions were in the late 1960s. In the past ten years, weather predictions have increased in accuracy by more than a day and a half. Progress continues as modeling gets us down to the scale of individual thunderstorm clusters. Individual thunderstorms are still the feature that causes weather forecasters the most grief. Cool air gushing out of thunderstorms - their socalled outflow boundaries – can and does displace heavy rains and alter temperature in ways which at times prove difficult to predict. When there are errors in weather forecasts these days. it's often thunderstorm outflows that have, in one way or another, interfered with the predicted evolution of our weather. At more distant time ranges, forecasters can offer a general sense of when and where precipitation may occur, but the details of scattered rains, snows, or thunderstorms become increasingly difficult to pinpoint in ranges of time greater than several days. Studies show weather forecasts have achieved a

(continued on next page)

7

60-percent skill score at seven days out, which is why day-to-day predictions are made for a seven-day period. Forecasts of day-to-day weather beyond that period of time exist, but they exhibit limited skill.

2. How do you predict the weather?

That's a broad question which I'll boil down to basics. The process is complex and time-consuming if done properly. A forecaster today has so much computer forecast information available, he or she could literally report to work and produce a forecast by associating words with the numbers which come off the computer models. But it's always been my view that forecasting involves a man-machine mix. The human forecaster will always be in a position to add value to a computer model, or so-called 'machine' forecasts, and ought to strive to do so. This has never been more possible than in the spectacular world in which the weather forecaster operates today. Several decades ago, forecasters had one short range and one longer range

3. Why does a system look promising coming across the Mississippi River and then dissipate when it reaches the Chicagoland area, only to reform over the lake?

There can be many reasons. I'm convinced that one major variable in certain weather situations can be the state of soil moisture. I've watched squall lines dry up after barreling across the Mississippi when they've encountered the dry soil between here and there. The atmospheric conditions that create the "lift," which cools and saturates air to produce precipitation, can abate as the system heads this way. The dome of cool air that hovers over the lake can, and sometimes does, introduce a means to lift air as a dissipating system approaches, reinvigorating its ability to produce precipitation.

4. If a system needs heat from the day to form a system, then how can a system form at night, when there is no heat from the day?

Great question.

One way involves the

called a "nocturnal" or

nighttime low-level jet

stream. Once the sun

sets in this type of

situation, humid air streaming north from

the Gulf of Mexico

holds onto a good

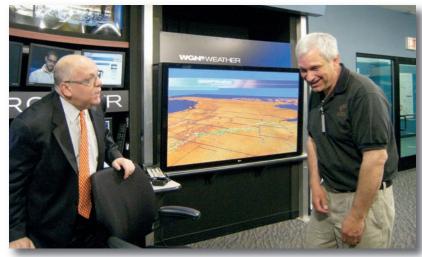
often to the west,

warmth while dry air,

begins cooling quickly

because of the lack

of sunlight. A huge


temperature variation

can develop between

deal of daytime

formation of what's

model to analyze. Today's forecasters have access to the global forecast models run by the major weather processing centers of the world. They can combine the best of all of them, while fairly intelligently eliminating the "bad" forecasts. On a daily basis, I download temperature and precipitation projections from 33 runs of 10 different computer models. This includes models run by the National Weather Service, the Canadian Meteorological Agency, the European Center for Medium Range Forecasting, the U.S. Navy, the UK Met

Tom Skilling is serious about the weather and likes to share his knowledge with his fans.

Office, a number of universities, and a proprietary set of comparatively high resolution forecast models run by our data provider, WSI. When I've finished with my daily analysis of these models, I have gathered 1,200 individual temperatures readings at 5,000 feet for as much as 16 days into the future. These temperatures are averaged—or "ensembled" as we say today. Then I "warm" these readings down to the surface, correcting for cloud cover, wind direction and speed, "fetch" or distance over water if these winds are interacting with the Great Lakes, and snow cover if that's necessary. It is through this process that I generate my seven-day temperature forecast and estimates of general temperatures projected out to two weeks. I also analyze moisture content of the air and the means, if any exists, to lift and cool this moisture in order to produce precipitation. I determine when this "cooling" is to occur, in order to predict precipitation timing and intensity. By analyzing a whole set of models rather than one or two, a better, often more accurate, forecast emerges. This process is time consuming. It depends on wisdom derived from 40+ years of predicting the weather. It's the basis on which I can, as knowledgeably as possible, correct a number of errors or misdiagnoses that can come from a raw computer forecast.

the dry and humid air. A wind, sometimes as strong as 70 mph several thousand feet above the ground, can blow all the way from the Gulf into the Midwest. This wind field is referred to as a "low-level jet." The fast erupting thunderstorm clusters which develop on the northernmost nose of this jet – so-called MCSs, for "mesoscale convective systems" – often produce deluges and spectacular lightning, features which have produced some of the country's most devastating floods.

5. Is it better to fly in the summer or winter, which has less turbulence?

Low level turbulence decreases in the cold of winter. Thermals, comparatively small columns of rising air, don't form as frequently in winter as they do in summer. That cuts down on the turbulence of flying at lower altitudes. On the other hand, winter jet streams, up in the 18,000 to 45,000 ft. range, are capable of producing larger scale turbulence. They grow very strong in the cold season because of the huge north to south temperature differences across the mid-latitudes. This can actually increase higher altitude turbulence in winter. In general, however, the winter environment, because it is colder and denser than the one encountered in summer, provides smoother overall flight conditions.

6. Do you believe in the Farmers' Almanac?

Oh, my! It's absolutely a fun read. But I have as much faith in the Farmers' Almanac as I do in the ground hog. I'm distrustful of any prediction derived through "secret" techniques that aren't subject to analysis and review.

7. How come every weatherperson, including the Weather Channel has different predications for the weather?

Another great question. It's not at all unusual for the computer models we look at everyday to provide varied forecasts. It happens all the time! That's the big challenge facing forecasters in this day and age. In short, how do we reconcile differences, and sometimes HUGE ones, in the computer projections we all look at? As a forecaster, you have a set of global weather observations that go into the full range of computer

models that are run today on the fastest computers in the world. Because we don't measure this vast global atmosphere of ours perfectly, you can make a whole set of varying assumptions on how we are going to describe the starting structure of the atmosphere in comparatively "data void" areas of the planet. When you run supercomputer models with each different description of the initial set-up of the atmosphere, you arrive at scores of different forecast outcomes. In fact, given the speed with which we can run supercomputers today (the Weather Service's IBM supercomputers are up to 17.9 trillion mathematical operations per second and growing faster all the time) that's exactly what the major weather computing centers are doing. They are running what are called "ensembles," entire sets of forecasts from the same model by entering different interpretations of the atmosphere's starting state - each completely and scientifically valid and looking for common themes in the resulting forecasts. These sets of forecasts

are being averaged into what's called an "ensemble forecast," which is far more accurate than a single forecast from the model would be. So when even machines arrive at vastly different forecasts from a single set of initial weather observations, it's not surprising that human forecasters, who also bring different levels of experience and training to the table, do the same.

8. Why do people who work outside versus inside get more tired?

I haven't a good answer to this. I've got to be honest in saying this is a bit outside my area of expertise.

9. What is thunder snow?

Thunder snow is the result of embedded thunderstorms produced by strong, upward, vertical motions generated in some winter storms. Summer thunderstorms depend heavily on warm season heating. But other features can produce upward vertical motion that is strong enough to induce thunderstorm development. In winter, this often involves vertical motions produced in and around strong pockets of wind in the jet stream known as "jet streaks." It's interesting to note that the lightning produced in winter snowstorms is often the higher amperage, more powerful, and potentially injurious "positively charged" lightning. On average, only 10% of the cloud-to-ground lightning discharges in summer storms are this positively-charged type.

10. Can it be possible to have a thunderstorm/ tornado at 40°F? If so, how?

Absolutely! I remember a day when I was working in Milwaukee that hovered at 39° with rain and fog off the lake. All of a sudden, a tornado emerged and destroyed 16 homes in Brookfield, Wisconsin, which is located in Milwaukee's western suburbs. This happened as humid 70+-degree-air just south of a warm front interacted with the front and the jet stream to produce severe thunderstorms.

Next on Steve's list... Buffy the Vampire Slayer, Sarah Michelle Gellar.

11. Can you advise again, what is used to take the temperature reading. You talked about the weather balloons, but you were also talking about in-flight data. Can you advise me more on this?

Atmospheric temperatures can be measured directly by thermometers or sensors, such as "thermistors" employed in the payload (instrument) packages of weather balloons or they can be inferred by using radiation measurements both from infrared and microwave sensors on satellites.

12. You used to have a computer model 1 & 2 to check for rain, is there any way you can get this back? I miss it.

Actually, we've moved beyond that. I think the product we now offer is more accurate in its precipitation predictions because of a much larger set of even more sophisticated model forecasts. Now we look

at eight or twelve model precip projections. What we do now is even more useful. We offer a range of predictions from these eight or twelve models, plus an average of all of them. This is better than looking at just two models, and it shows how much more information is available to us these days.

13. How many years have you been doing this, and what schools did you attend.

I've been a broadcast meteorologist for 41 years, 31 of them at WGN. I attended the University of Wisconsin-Madison, but when you're a weather forecaster, you go to school every day. With the pace at which new research and forecast techniques emerge today, you are always updating your training through scientific papers and training sessions, many of which are online these days.

(continued on next page)

14. You spoke about Alaska, is that were you want to retire?

That's my dream! Alaska is a special place for anyone who visits, but I think it has a special lure among those who do what I do for a living. There are few places on earth in which the atmosphere and surrounding terrain are interacting in such interesting ways!

15. How many pets do you have?

I have one cat, Vorticity, who is 17 years old and going strong, I'm happy to say. Sadly, I lost my second cat Hercules two years ago to kidney disease. Hercules was 18 years old at the time of his passing.

16. What is your favorite restaurant and food?

I've been on a salad routine the past few months and probably will be from now on. These salads are real culinary productions with everything but the kitchen sink in them. But I have preparing them down to a bit of a science to save time as I get them ready to bring to work with me.

17. Who is your favorite weatherperson?

I love all who do what I do. Mike Hamernik of our CLTV operation is among my favorites. I like and respect his analyses of developing weather situations and the fact that he thinks outside the box, using computer models as I hope I do, as tools for producing forecasts, but with a very healthy dose of intelligent interpretation. He doesn't merely word associate with computer-produced forecast numbers. I like that very much. He's also one heck of a severe weather analyst!

18. When you are on vacation do you have any input with the Tribune column?

I am blessed to work with such a talented group of colleagues, including people like Steve Kahn, Richard Koeneman, Paul Dailey, Frank Wachowski and my producer Bill Snyder, as well as our Tribune weather page artists Tom Valle and Nelson Turac, that I truly am able to break away from our operation during vacations. I've found, too, that my getaways usually happen at about the right time, when my brain is close to being erased by the day-to-day mix of radio, television, Internet, and newspaper duties. I do love and feel blessed to be able to pursue all of these. I wouldn't trade my job for anything in the world. It has been and continues to be a joy!!! I will tell you, though, that I keep in touch with our team while away and love following the work produced by my talented colleagues!

19. Who are your favorite actor and actress?

Having worked as an advisor on "The Weatherman," Nicolas Cage is definitely a favorite. But, I admire and respect many actors and actresses and know how hard so many of them work at their craft. Their work brings us such joy – and also makes us think.

As an added bonus, Tom asked if we would to stay and watch the 11:30 a.m. newscast, which we did. In our experience, everyone at the station was exceptionally nice, from the security guard to the producer. We especially want to thank Tom Skilling for taking the time out of his busy schedule to meet with us. Regrettably he doesn't know Buffy, so I'm still on my own for meeting her. **-OC**

