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INTRODUCTION

Mars, as revealed by observations from spacecraft, has had a unique geologic history
with many intriguing parallels to that of the Earth. Imaging results from the Mariner 4, 6,
and 7 flyby missions in the 1960s were misleading, giving an impression of a lunar-like
surface because they returned images of only the ancient, heavily cratered southern
highlands. Global mapping by the Mariner 9 orbiter in 1971 revealed the full surface of
Mars, which includes vast, younger volcanic plains and huge volcanic constructs in the
northern hemisphere, a yawning canyon system, seasonally changing polar caps, and
geomorphic evidence of drainage and catastrophic flooding by water early in the planet's
history. Viking orbiters and landers in 1976 and the Mars Pathfinder lander in 1997
provided much rich detail about martian geology, and the Mars Globa Surveyor mission
promises more insights. Comprehensive summaries of martian geophysics, geology,
s&ljgrgf)g():e properties, and atmosphere have been published previously in Mars (Kieffer et al.

The dozen presently recognized SNC (shergottite-nakhlite-chassignite) meteorites are
generally accepted to be martian igneous rocks. These basaltic and ultramafic rocks define a
common oxygen isotope mass fractionation line (Clayton and Mayeda 1996) distinct from
those of other solar system bodies and share other geochemical characteristics (McSween
1994) that indicate their formation by partial melting of evolved source regions with
broadly similar compositions and redox states (Longhi et a. 1992, Bertka and Fei 1997).
Because the assortment of meteorite lithologies has now expanded beyond the bounds of
the original SNC classification and is likely to become even broader as more martian
meteorites are discovered, the meteoritic (SNC) nomenclature has become somewhat
archaic. To minimize confusion, we will describe these meteorites using both the traditional
meteorite nomenclature and petrologic classifications in the ruGS-approved terminology
for igneous rocks.

These meteorites provide critical constraints on the geochemical and geophysical
properties of the martian core and mantle (Dreibus and Wanke 1985, Treiman et a. 1986,
Longhi et al. 1992, Collinson 1997, Gaetani and Grove, 1997), the chronology of
planetary differentiation, magmatism, and bombardment (Shih et al. 1982, Chen and
Wasserburg -1986a, Jagoutz 1991, Ash et a. 1996, Lee and Halliday, 1997), the global
volatile inventory and outgassing history (Carr and Wanke 1992, McSween and Harvey
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1993), interactions between the atmosphere, hydrosphere, and lithosphere (Wright et al.
1990, Karlsson et al. 1992, Watson et al. 1994), and near-surface weathering processes
(Gooding 1992). One meteorite has also been suggested to provide evidence for possible
biologic activity on Mars (McKay et al. 1996), a proposal that has sparked great interest
and debate.

This review focuses specifically on the mineralogy and petrology of martian
meteorites, which relate directly to the planet's magmatism, impact history, and
weathering. Although this work touches on some of the implications of these samples for
understanding other aspects of martian geology (and possibly biology?), it does not attempt
to duplicate other reviews which address that broader subject (e.g. McSween 1985 1994
1997). We will, however, reiterate the evidence that links these meteorites to Mars, as well
as describe their removal from Mars and delivery to Earth. We will also compare the
mineralogy of these meteorites to that inferred for martian rocks and soils based on
interpretations of remote-sensing spectral and chemical data. This paper does not include a
discussion of CI carbonaceous chondrites as possible martian sedimentary rocks
(Brandenburg 1996), as we consider that hypothesis to be unsubstantiated and implausible
(Treiman 1996a). Further information on the SNC meteorites, including sample availability
as well as a listing of the minerals occurring in them, can be found in the Mars Meteorite
Compendium (Meyer 1996). Representative compositions of minerals in SNC meteorites
are tabulated in an appendix at the end of this chapter.

SOURCE AND DELIVERY OF SNC METEORITES
Evidence for a Martian origin

Shoemaker et al. (1963) were prescient in suggesting the possibility that impact ejecta
might be liberated from Mars and ultimately collide with the Earth, and they wondered
whether such materials could ever be recognized. The first suggestions that SNC meteorites
were from Mars (McSween et al. 1979a, Walker et al. 1979, Wasson and Wetherill 1979)
were based on the relatively young crystallization ages (<1.3 Ga) of the few meteorites then
available. The duration of igneous (volcanic) activity on a body is directly related to its size
(Fig. 1) because large bodies have low surface-to-volume ratios and so lose internal heat
more slowly than small bodies. Bodies of asteroidal size, like 4 Vesta and other achondrite
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parent bodies (see Chapter IV), experienced melting very early in solar system history but
have not apparently produced magmas since ~4.4-4.5 Ga. The ages of currently known
martian meteorites extend from ~4.5 Ga to at least 330 Ma, and possibly to 180 Ma
(discussed below). Igneous activity on the SNC parent body ranging over most, if not all,
of geologic history demands that these meteorites were derived from a large planetary body
(Fig. 1), or one like Io with an extrinsic heat source. Although this argument does not link
these meteorites specifically to Mars, that planet is an attractive option because of its modest
size and proximity to Earth. Another observation made at the time was that chemical
analyses of martian duracrust-free soil by Viking landers were remarkably similar to those
of shergottites (Walker et al. 1979).

The idea that meteorites could come from Mars remained alive (e.g. Wood and Ashwal
1981, Vickery and Melosh 1983) but highly disputed until Bogard and Johnson (1983)
discovered Ar trapped within impact-melted glass in shergottite EETA79001. The isotopic
compositions and relative abundances of Ar and other noble gases, N,, and CO, (Becker
and Pepin 1984, Swindle et al. 1986), are a remarkable match for martian atmospheric
abundances (Fig. 2). The composition of the atmosphere of Mars is unique, so far as we
know, and serves as a geochemical fingerprint linking EETA79001 to its parent planet.
Moreover, shock experiments have demonstrated that noble gases implanted during impact
melting are not isotopically fractionated (Weins and Pepin 1988). Similar trapped gases
have now been found in other highly shocked SNC meteorites (e.g. Marti et al. 1995,
Turner et al. 1997), convincing most skeptics that these meteorites are from Mars.
Although comparison of shock-implanted gases with the modern martian atmosphere may
be criticized, the gas-implanting shock events are thought to have occurred recently,
perhaps as the meteorites were ejected from the planet's surface.
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Other arguments for a martian origin of the SNC meteorites fall into the category of
plausibility tests. For example, the low remanent magnetization recorded in the shergottites
(Collison 1986), thought to have formed 330 to 180 Ma ago, is consistent with what is
known about the present-day magnetic field of Mars. The highly fractionated rare earth
element (REE) patterns of SNC meteorites appear to require garnet in the source region
(Nakamura et al. 1982, Longhi 1991), which implies a planet with substantial internal
pressures. Also, the presence of pre-terrestrial hydrous minerals and salts in these
meteorites (Gooding 1992) is consistent with photogeologic evidence for abundant water
on Mars in its distant past.
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Removal from Mars and delivery to Earth

A mgjor difficulty initially encountered by the hypothesis that SNC meteorites are from
Mars was that no known mechanism could remove rocks from the surface of a planet
without totally melting or vaporizing them (Wetherill 1976). This difficulty was
underscored by the apparent absence of meteorites from the Moon-if there were no
meteorites from the nearest, relatively modest-sized body, how could one expect to find
meteorites from a larger, more distant planet? The discovery in Antactica of a lunar
highlands breccia, first reported in 1983, demonstrated that meteorites could be g ected
from large bodies and opened the way for serious consideration of martian meteorites.

The only plausible event with sufficient energy to launch rocks a martian escape
velocity (-5 kmlsec) is a large meteor impact. After a number of inventive attempts to
model the gection of modest-sized rocks without completely destroying them (e.g. Wasson
and Wetherill 1979, Nyquist 1983), an explanation by Melosh (1984) gained favor. In this
model, shock waves from large impacts accelerate fragments at or near the surface to the
required velocity. Given the violent process for extracting meteorites from Mars, it is not
surprising that some of them have experienced severe shock metamorphism and, in some
cases, shock melting. In fact, it is astonishing that a few of them exhibit little or no
discemable shock effects.

The fate of rocks escaping Mars orbit has been explored by numerical integration of
their orbital histories (Wetherill 1984, Gladman et al. 1996). The efficiency of the delivery
of martian ejecta to Earth may be as high as -7.5%, with about a third of terrestrial
encounters occurring within 10 Ma. These results are consistent with the measured cosmic-
ray exposure ages for SNC meteorites, which vary from 3 to 16 Ma (Eugster et a. 1997).
The exposure ages cluster into groups that are consistent with petrology and other
characteristics (Treiman 19953a), implying that cosmic-ray exposure was initiated at launch
and that the gjected rocks were meter-sized or smaller.

BASALTIC SHERGOTITES (BASALTYS)

The basdltic shergottites are named for Shergotty, a-5 kg meteorite which fell in the
Bihar State of India in 1865 (originally described by Tschermak, 1872). The Zagarni
meteorite (-18 kg) fell in Katsina Province, Nigeria, in 1962. Other basdtic shergottites
were recovered in Antarcticaz. EETA79001 (7.9 kg found at Elephant Moraine in 1979), and
QUE94201 (12 g found in the Queen Alexandria Range in 1994). EETA7900.1 actually
consists of two lithologies, termed A and B, that appear to represent distinct magmas.
Lithology A also contains minera and rock fragments (xenocrysts and xenoliths)
representing athird lithology (lherzolite).

Mineralogy

Igneous minerals. Mineralogical descriptions of basaltic shergottites can be found
in the following references: Binns (1967), Duke (1968), Smith and Hervig (1979), Stolper
and McSween (1979), Steele and Smith (1982), McSween and Jarosewich (1983), Smith
et a. (1983), Treiman (1985), Stoffler et al. (1986), McCoy et al. (1992), Treiman and
Sutton.(1992), and McSween et al. (1996).

Clinopyroxenes, both pigeonite and augite, are the dominant minerals in these basalts.
Both pyroxene phases are strongly zoned, and in thin section the brown pyroxenes have
yellowish-brown rims, reflecting Fe-enrichment at grain margins. Different meteorites
exhibit distinct pyroxene zoning patterns. In Shergotty and Zagami, pigeonite and augite
tend to have homogeneous magnesian cores and iron-rich rims, athough some pyroxene
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Figure 3. Pyroxenes in Shergotty consist of relatively homogeneous magnesian cores of pigeonite and
augite with Fe-rich rims (analyses by Stoffler et al. 1986). The accompanying FeKo. map of Shergotty
clearly shows the magnesian cores, interpreted to be cumulus crystals.

grains exhibit more irregular zoning. Typical core and rim compositions are given in Table
Al, and zoning trends in Shergotty are illustrated in Figure 3. The homogenous magnesian
cores of pigeonite (Eng;.0Wo;,) and augite (EnygWos3,) have been interpreted as cumulus
crystals (Stolper and McSween 1979, McCoy et al. 1992, Treiman and Sutton 1992),
possibly representing phenocrysts crystallized at depth and physically concentrated in the
magma. In contrast, pyroxenes in QUE94201 and EETA79001 lithology B display
complex zoning patterns that are similar to those formed by continuous crystallization of
lunar basaltic melts (McSween et al. 1996, Mikouchi et al. 1997). Pyroxene cores have
nuclei of magnesian pigeonite mantled by augite, in turn rimmed by strongly zoned ferroan
pigeonite and pyroxferroite (Table Al and Fig. 4). Mantling of pigeonite by augite reflects
increasing Ca concentration in residual liquids due to suppression of plagioclase
crystallization, and the subsequent replacement of augite by ferroan pigeonite is correlated
with the onset of plagioclase crystallization. Thus EETA79001 lithology B and QUE94201
may represent liquid compositions without cumulus pyroxenes. Some portions of the
Zagami meteorite, termed the dark mottled lithology by McCoy et al. (1995), may be
similar to QUE94201.
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Figure 4. Pyroxenes in the QUE94201 basaltic shergottite show complex zoning, consisting of
magnesian pigeonite cores mantled by augite, in turn mantled by ferroan pigeonite and pyroxferroite (after
McSween et al. 1996). The accompanying Ca Ko map of QUE94201 clearly illustrates the augite mantles.
The observed trend mimics that of pyroxenes in lunar basalt 15058 and in continuous crystallization
experiments on the same lunar basalt composition.

The Mn/Fe ratios of shergottite pyroxenes (and other SNC pyroxenes) are slightly
higher than those in HED achondrites and considerably higher than those in lunar
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pyroxenes (Stolper and McSween 1979, McSween et a. 1996). This abundance ratio is
useful in distinguishing martian meteorites from other samples. Both Fe and Mn have
similar volatilities, so it is thought that various bodies accreted with essentially the same
(i.e. chondritic) Fe/Mn ratio. These elements aso fractionate similarly during melting, so
the Fe/Mn ratio of abasalt isnearly identical to that of its source mantle. However, during
core separation Fe is fractionated from Mn, so core formation imprints a characteristic
Fe/Mn ratio on the complementary silicate portion of the planet. That ratio is readily
determined from pyroxenes in basalts.
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Minor and trace element zoning patterns in pyroxenes (Stolper and McSween 1979,
Treiman and Sutton 1992, Wadhwa et al. 1994, McSween et al. 1996) are consistent with
their inferred crystallization histories. An increase, and then decrease, in Al relative to Ti
(Fig. 5) reflects delayed crystallization of plagioclase, followed by its onset, in al the
basaltic shergottites. lon microprobe analyses indicate that incompatible elements like Y,
Zr, and Ti covary with Fe/(FetMg), whereas Cr concentrations are anticorrelated with Ti
and Fe/(FetMg). Sc, which in most terrestrial basalts behaves compatibly in low-Ca
pyroxenes, isincompatible in shergottite pigeonites. A few synchrotron X-ray microprobe
analyses of Ni, Cu, Zn, and Ga in pyroxenes are also available (Treiman and Sutton -1992).
lon probe measurements of rare earth element abundances in pyroxenes (Lundberg et al.
1988, Wadhwa et al. 1994, McSween et al. 1996) indicate LREE-depleted patterns that are
paralel to the whole-rock patterns, suggesting closed-system fractional crystallization. REE
abundances in pigeonites are lower than in coexisting augites, and most grains show small
negative Eu anomalies (Fig. 6).

The only TEM and electron diffraction studies of shergottite pyroxenes, in Shergotty
and Zagami (Brearley 1991, MUIler 1993), reported complex exsolution microstructures as
well as localized shock effects. Two generations of augite lamellae have exsolved from
pigeonite in both the magnesian cores and iron-rich rims. The thicker set, exsolved parallel
to (001), generdly ranges from 250 to 100 nm in thickness, whereas a thinner set,
exsolved parallel to (100), crosscuts the thicker lamellae. The compositions of coexisting
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pigeonite and augite lamellae in both cores and rims record equilibration temperatures of
~950°C. Based on comparison with microstructural studies of pigeonites in lunar and
terrestrial basalts, the thicknesses of exsolution lamellae in pigeonites suggest cooling rates
of 0.05 to 0.5°C/day. The faster rate is similar to that inferred for QUE94201 based on
calculation of the rate necessary to prevent diffusive modification of Mg-Fe zoning in
pigeonite rims (Mikouchi et al. 1996).

Plagioclase in the basaltic shergottites has been converted to maskelynite. Most grains
retain their original morphologies and normal zoning patterns, generally ranging from cores
of Angy_g in the cores to Ans, 43 in the rims (Table A2). Maskelynites also contain small
amounts of K, Fe, and Mg, with Fe/(Fe+Mg) increasing with albite content.

Magnesian olivine and orthopyroxene occur only in EETA79001, lithology A. These
phases are xenocrysts similar to the major minerals in lherzolitic shergottites, so they will
be described in that section. Fayalitic olivine (Fagg_qg) occurs as an accessory mineral in the
late-stage mesostasis of Shergotty and Zagami (Smith and Hervig 1979, Stolper and
McSween 1979, McCoy et al. 1993) and QUE94201 (McSween et al. 1996). Olivine was
noted in the Mossbauer spectra of Zagami by Vistisen et al. (1992).

The oxide minerals in basaltic shergottites are normally ilmenite (IlmgsHms) and
titanomagnetite (Mt3;Uspg;). Ilmenite occurs both as anhedral grains intergrown with
titanomagnetite and as thin lamellae within titanomagnetite. The oxide compositions (Table
A4) define a temperature of 860°C and an fO, of 10-14, corresponding approximately to the
quartz-fayalite-magnetite buffer assemblage (Stolper and McSween 1979). However,
QUE94201 contains virtually hematite-free ilmenite and and magnetite-free ulvospinel
(Table A4), indicating more reducing conditions near the iron-wiistite buffer (McSween et
al. 1996). The primary ulvdspinel grains in QUE94201 now consist of mosaic inter-
growths of titanomagnetite and ilmenite, resulting from subsolidus oxidation-exsolution.
Lithology A of EETA79001 also contains chromite xenocrysts (described later).

Sulfide minerals are primarily pyrrhotite (Feg 9;.0.94S) containing minor Ni and Cu
(Smith and Hervig 1979). Small grains of pure magnetite associated with pyrrhotite in
QUE94201 allow the possibility that the primary sulfide in this meteorite may have been
troilite, which underwent secondary oxidation or weathering (McSween et al. 1996). The
sulfur isotopic compositions (834S = -1.9 to +0.8%o) of pyrrhotites in basaltic shergottites
are unfractionated from the chondritic ratio (Greenwood et al. 1997). Pentlandite was also
noted in EETA79001 (McSween and Jarosewich 1983).
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Phosphates include both merrillite and chlorapatite, but merrillite is by far the
dominant phosphate phase. (The term “whitlockite” is often used interchangeably with
“merrillite” in describing meteortic phosphate, and “whitlockite” has been used almost
exclusively in literature on martian meteorites, However, Rubin (1997b) noted that
structural differences between these phases indicate that “merrillite” is the appropriate
name.) REE abundances in phosphates were analyzed by Wadhwa et al. (1994) and
McSween et al. (1996). Merrillite is the primary carrier of REE, and mass balance
calculations indicate that bulk-rock REE concentrations can be accurately accounted for
with 0.5 to 1.5 wt % merrillite, the approximate modal abundance of this phase. Apatite in
Zagami has a very high D/H ratio (8D = +3000 to +4300%o0) approaching that of the
martian atmosphere (Watson et al. 1994).

Glassy mesostasis in the basaltic shergottites commonly contains silica in addition to
fayalite. Stoffler et al. (1986) described a 200 pm grain of o-quartz in Shergotty.
Baddeleyite has been described in Shergotty (Smith and Hervig 1979) and QUE94201
(McSween et al. 1996).

Figure 7. Magmatic inclusion (~0.16
mm across) in the core of a Shergotty
pyroxene, viewed in plain light.
Hercynitic spinel with magnetite cores
(opaque cubes at bottom), kaersutite
(dark grain at center), and sulfide (opaque
grain at top) are set in glass.

Trapped magmatic inclusions in the cores of pyroxenes in Shergotty, Zagami, and
EETA79001 (Fig. 7) commonly contain glass, amphibole, and hercynitic spinel (Treiman
1985 1997). The amphibole is ferro-kaersutite or titano-alumino-ferro-tschermakite
(terminology of Leake et al. 1997), with high concentrations of Ti and Al, very low OH
(~1710 of that expected), and 8D = +500 to+1670%. (Watson et al. 1994). The spinel is
approximately FeAl,O,4 and has a distinctive green color. Treiman (1985) suggested that
the crystallization of these minerals in trapped melt inclusions required pressures of at least
0.1 GPa, but more recent studies (Popp et al 1995a 1995b) imply that low-OH kaersutite
may be stable at lower pressures.

Shock metamorphic minerals and effects. Shergotty is the type specimen for
maskelynite (Tschermak, 1872), a diaplectic glass formed from plagioclase. The
maskelynite generally lacks crystal structure, as indicated by its isotropism. However,
powder diffraction of maskelynite separates reveals small amounts of coherently diffracting
plagioclase (Horz et al. 1986), and thermoluminescence studies of Shergotty and Zagami
likewise indicate small quantities of crystalline material in maskelynite (Hasan et al. 1986).
El Goresy et al. (1997) described two kinds of “maskelynite” in Shergotty: Type 1 grains
are smooth and anhedral with no detectable chemical zoning, whereas Type 2 grains have
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remnant birefringence and twinning and exhibit fractures and zoning. They interpreted the
Type 1 grains to be shock melts rather than diaplectic glasses.

The shock pressures required to form maskelynite vary with plagioclase composition.
Shergotty and Zagami have experienced equilibrium shock pressures of ~29 GPa, as
determined from index of refraction measurements of maskelynite calibrated to shock
pressure (Stoffler et al. 1986, Langenhorst et al. 1991), although small pockets and veins
of impact melt suggest higher local pressures of 60-80 GPa. EETA79001 experienced a
slightly higher equilibrium shock pressure of ~34 GPa (Stoffler et al. 1986), and some
maskelynite grains show evidence of flow structures suggesting melting (McSween and
Jarosewich 1983). Shock melt pockets and veins are also more prominent in this meteorite.
The shock melts consist of brown vesicular glass containing relict crystals and secondary
skeletal olivine and pyroxene crystals. The compositions of shock-melted glasses are
similar to the bulk composition of the host lithology, but are slightly enriched in the
plagioclase component (McSween and Jarosewich 1983). Shock melt has also been
reported in QUE94201 (Mikouchi et al. 1996).

Ringwoodite and majorite, the high-pressure polymorphs of olivine and pyroxene,
respectively, were tentatively reported within shock veins in EETA79001 (Steele and Smith
1982). Stoffler et al. (1986) also reported a possible grain of stishovite in Shergotty. Other
shock effects in all basaltic shergottites include mosaicism, polysynthetic twinning, and
planar features developed in pyroxenes, mechanical twinning in ilmenite, and mosacism
and strongly reduced birefringence in quartz (Stéffler et al. 1986, Miiller 1993).

Alteration minerals. Small quantities of secondary alteration minerals in SNC
meteorites formed by reaction with aqueous fluids, either within the shallow crust or as
weathering products on the surface of Mars. Small platy grains of an Fe-rich, Al-poor illite-
like clay occur in EETA79001, and sulfur pyrolysis experiments suggest the presence of S-
and Cl-rich aluminosilicate mineraloids (Gooding and Muenow 1986). Tiny veins and
disseminated grains of granular calcite (Fig. 8), sometimes associated with laths of gypsum

Figure 8. Secondary alteration phases in EETA79001 shergottite glass include carbonate and Ca-sulfate.
This SEM photomicrograph was taken by Gooding et al. (1988).
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and Mg-phosphate, occur within impact-melted glass (Gooding et al. 1988). A portion of
the water extracted from basaltic shergottites has O isotopic compositions that are distinct
from those of the igneous silicates (Karlsson et al. 1992), implying that the alteration fluid
was not in equilibrium with the lithosphere. The isotopic compositions of C and O
extracted from the calcite are distinct from terrestrial carbonates (Wright et al. 1988),
supporting an extraterrestrial origin. Sulfates, aluminosilicate clays, and secondary silica
have been found in QUE94201 (Wentworth and Gooding 1996), but it has not yet been
established that these phases are extraterrestrial.

Most of the secondary minerals in shergottites occur as isolated grains either along
fractures or partially included in impact glasses. A few vesicles in EETA79001 contain
fluffy white deposits of Ca carbonate, Ca sulfate, and unidentified phosphates, the so-
called “white druse” (Martinez and Gooding 1986, Gooding et al. 1988, Gooding and
Wentworth 1991). The origin of this material is unclear; its O isotopes appear to be martian
(Clayton and Mayeda 1988, Wright et al. 1988), but it contains sufficient 14C to suggest a
terrestrial origin (Jull et al. 1992).

Figure 9. Backscattered electron image of QUE94201, showing
preferred  orientation of pyroxene grains with interstitial
maskelynite and other phases.

Petrology, geochemistry, and geochronology

Petrology. The basaltic shergottites exhibit foliated textures produced by the partial
alignment of pyroxene prisms (Fig. 9), with interstitial maskelynite and other phases. This
fabric was initially attributed to crystal accumulation in a shallow intrusion or thick flow
(Duke 1968, Stolper and McSween 1979), a conclusion supported by phase equilibrium
experiments demonstrating that Shergotty and Zagami are not multiply saturated with
pyroxenes and feldspar at low pressure (Stolper and McSween 1979). Although most
workers accept a crystal accumulation model for these meteorites, the foliation is now
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commonly attributed to flow alignment in extruded lavas (e.g. McSween 1994). The
confinement of melt inclusions containing amphibole and spinel to the magnesian cores of
pyroxene crystals in Shergotty and Zagami supports the idea that the cores are cumulus and
crystallized under differing conditions (McCoy et al. 1992), but there is now doubt that the
presence of amphibole requires a high confining pressure. Petrographic and experimental
estimates of the proportion of cumulus pyroxene cores in these meteorites give conflicting
results (Stolper and McSween 1979, McCoy et al. 1992, Treiman and Sutton 1992,
McCoy and Lofgren 1996, Hale et al. 1997). As already noted, QUE94201 and
EETA79001 lithology B may not contain cumulus pyroxenes.

EETA79001 contains two igneous lithologies joined along a diffuse, planar contact
(Fig. 10). McSween and Jarosewich (1983) interpreted these lithologies as flows, but
Mittlefehldt et al. (1997) suggested that lithology A might be an impact melt. This scenario
is consistent with the partially resorbed clasts (occuring mostly as xenocrysts) of ultramafic
lherzolite in this basalt, which are difficult to explain on thermal grounds (Wadhwa et al.
1994). However, it seems unlikely that igneous activity and impact would occur so closely
in time that both lithologies would have the same crystallization ages (Wooden et al. 1982).

Zagami contains pockets (up to cm-size) of a distinct, “dark mottled lithology,” rich in
fayalite, oxides, phosphate, and mesostasis (Vistisen et al. 1992, McCoy et al. 1993). This
material represents the last dregs of melt during the fractional crystallization of this magma.
This unusual differentiate has not been found as pockets in other basaltic shergottites, but it
is petrographically similar to the small QUE94201 shergottite (McSween et al. 1996).

Geochemistry. Complete elemental analyses of all basaltic shergottites except
QUE94201 were tabulated by Treiman et al. (1986); an analysis of QUE9%4201 was
published by Warren and Kallemeyn (1997), and analyses from other sources are available
in abstract form (see Meyer 1996). All these basalts are Fe-rich and Al-poor compared to
terrestrial basaltic counterparts, and their compositions are thought to reflect the
composition and redox state of the martian mantle (Longhi et al. 1992). Samples tend to be
heterogeneous in trace element abundances, because these elements are distributed among a
few rare phases. The abundances of chalcophile elements in shergottites and those inferred
for the martian mantle are low, reflecting segregation of sulfide into the core (Treiman et al.
1986). Conversely, moderately volatile element abundances are fairly high (Laul et al.
1986), implying that Mars accreted abundant volatiles. Certain element ratios appear to be
uniform in these meteorites, or nearly so, and may serve as geochemical fingerprints to
identify members of this group: Fe/Mn and K/U (McSween et al. 1979a); K/La, Al/Tj, and
Na/Ti (Treiman et al. 1986); and Ga/Al (Warren and Kallemeyn 1997).

It is difficult to relate Shergotty and Zagami to the Antarctic shergottites based on trace
element and radiogenic isotope systematics. The initial Sr, Nd, and Pb isotopic
compositions for Shergotty and Zagami are different enough from those of EETA79001 to
require that they formed from separate magmas (Jones 1989). Assimilation of an
isotopically distinct crustal component rich in incompatible elements by the parent magma
of Shergotty and Zagami provides a possible explanation for these differences (Shih et al.
1982, Longhi and Pan 1989). Rare earth element patterns for all basaltic shergottites are
LREE-depleted and lack Eu anomalies (e.g. Smith et al. 1984). The LREE depletion in
QUE94201 is more extreme than for other basaltic shergottites (McSween et al. 1996), and
its initial Nd isotope ratio of € 143Nd = +48 (Borg et al. 1997) implies that the extreme
LREE depletion occurred early in Mars' history.

Geochronology. The crystallization ages of most basaltic shergottites have been
difficult to interpret. Whole-rock Rb-Sr and U-Th-Pb “isochrons” of ~4.5 Ga and Sm-Nd
“isochrons” of ~1.3 Ga are commonly interpreted as mixing lines between different



McSween & Treiman: Martian Meteorites 6-13

Figure 10. A slab of the EETA79001 meteorite contains two lithologies, labelled A and B, joined along
a diffuse, planar contact. The sketch illustrates the location of a thin section bridging the contact; a
photomicrograph of the thin section is shown below (from McSween 1985). Lithology A has a finer-
grained groundmass and contains xenocrysts of olivine, orthopyroxene, and chromite. Lithology B is more
typical of a basaltic shergottite.
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reservoirs (e.g. Jones 1986), although that is not universally accepted. Rb-Sr and U-Th-Pb
mineral isochrons for Shergotty, Zagami, and EETA79001 give virtually identical ages of
180 £ 20 Ma (Shih et al. 1982) and 190 + 30 Ma (Chen and Wasserburg 1986), which are
usually interpreted to indicate the time of crystallization. Various controversies related to
attempts to disentangle crystallization and shock ages for these meteorites were summarized
by WaSwazen \\¥¥4). On ‘e viner 'nand, YUEYEAL y1€lds 1denfical Rb-Sr and Sm-Nd
crystallization ages of 327 + 12 Ma and 327 + 19 Ma respectively (Borg et al. 1997).

LHERZOLITIC SHERGOTTITES (LHERZOLITES)

All known lherzolitic shergottites were recovered in Antarctica. The group consists of
ALHAT77005 (a 482 g sample found in the Allan Hills in 1977), Y793605 (a 16 g meteorite
found in the Yamato Mountains in 1979), and LEW88516 (a 13 g specimen recovered at
Lewis Cliff in 1988). Xenocrysts and largely disaggregated xenoliths of lherzolite also
occur within lithology A of the EETA79001 basaltic shergottite.

Mineralogy

Igneous minerals. Mineralogical descriptions of the lherzolitic shergottites can be
found in McSween et al. (1979b), Smith and Steele (1984), Harvey et al. (1993), Ikeda
(1994 1997), Treiman et al. (1994), Mikouchi and Miyamoto (1996 1997), and Gleason et
al. (1997).

Olivine varies in composition from Fo;_¢, (Table A3) within the meteorites of this
group, although different meteorites show different mean values. Olivines poikilitically
enclosed by pyroxenes are rounded and slightly more magnesian than the euhedral to
subhedral grains in non-poikilitic areas (Fig. 11a,b). Most grains contain minor Mn, Ca,
and Ni. The olivines in all three lherzolites have a distinctive brown color, apparently
caused by oxidation (~4.5% of the total Fe in ALHA77005 olivine is trivalent , and charge
transfer produces an absorption band that results in the color—Ostertag et al. 1984). In all
three meteorites, the olivines are too Fe-rich to be in equilibrium with coexisting
pyroxenes, apparently because subsolidus reequilibration of olivine is faster than pyroxene
(Harvey et al. 1993). :

Figure 12. A portion of the pyroxene quadrilateral,

showing pyroxene analyses for LEW88516 (crosses)

and ALHA77005 (filled squares). Pyroxenes in

En —e FS LEW88516 span a greater range in Wo and En
contents. From Treiman et al. (1994).

A variety of pyroxenes occur in the lherzolites. Magnesian low-Ca pyroxene, possibly
orthopyroxene (although its structural state is unknown), mostly forms large oikocrysts
(Fig. 11a). These crystals are monotonically zoned from En;gWo, to EngsWo,5 (Fig. 12).
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Magnesian pigeonite forms a broad scatter of compositions at the end of this trend (Fig.
12). The pigeonite grains occur as smaller grains in interstitial areas. Augite forms
exsolution lamellae in low-Ca pyroxenes, aswell as small interstitial grains. The augites are
apparently zoned from En45WO04oto lower Ca contents (Fig. 12), athough this trend may
represent overlap of the electron beam on exsolved phases. Representative pyroxene
analyses are given in Table A 1. Application of two- and three-pyroxene geothermometry to
all three meteorites gives equilibration temperatures of -11SOOC (Ishii et al. 1979, Harvey
et a. 1993, Mikouchi and Miyamoto 1996). Pyroxene compositions in LEW88516 are
dightly more Ferich than those in ALHA77005 and Y953605 (Harvey et a. 1993,
Treiman et al. 1994, Mikouchi and Miyamoto 1996).

Minor and trace elements in pyroxenes were analyzed by Lundberg et a. (1990),
Harvey et a. (1993), and Wadhwa et a. (1994 1997). Poikilitic low- and high-Ca
pyroxenes show increases in Ti, Al, Sc, Y, Zr, Cr, and V and decreases in Cr with
increasing Fe/(Fe+tMg), and their REE patterns are LREE-depleted with small, negative Eu
anomalies. REE abundances in low-Ca pyroxenes are consistently lower than in augites,
and the slopes of their patterns are generally steeper (Fig. 13). Trace element zoning in
low- and high-Ca pyroxenes within interstitial areas is less systematic, athough REE
patterns are similar to those for poikilitic pyroxenes. A few pyroxenes in Antarctic
meteorites have Ce anomalies, probably as aresult of terrestrial alteration (Wadhwa et al.
1994).

Maskelynite in the lherzolites is normaly or irregularly zoned and ranges between
An45 and An60 (Table A2), with a few more sodic outliers (Harvey et a. 1993). K
increases with abite content, and grains contain minor Fe and Mg. REE patterns for
maskelynite in these meteorites exhibit slight LREE enrichment with large postive Eu
anomalies (Wadhwa et a. 1994).

Oxides include chromite and ilmenite. Euhedral chromite grains are zoned (Table A4),
with cores of Chm81SP14UsP2Mt3 and rims enriched in Ti towards ulvospinel
compositions where they abut maskelynite, and enriched in Al where they are in contact
with pyroxene and olivine (Fig. 14) (McSween et a. 1979b, lkeda 1994). Some grains
appear to be fairly homogeneous ulvospinel, probably as a result of failure to section
through the core. As much as-10 wt % of the Fe in chromites may be Fe203' ilmenite is
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virtually hematite-free (Table A4) but contains signficant Mg and minor Mn and Cr (Ikeda
1994).

Other phases include merrillite and sulfides, both pyrrhotite and pentlandite. Pyrrhotite
contains minor Ni, Co, Cu, and Zn (Ikeda 1994). Merrillite is the major REE carrier in
lherzolites, as it is in basaltic shergottites. The REE patterns for merrillites are LREE-
depleted with small negative Eu anomalies (Wadhwa et al. 1994). Pyrrhotite in LEW88516
contains S with similar isotopic composition (834S = -1.9%o) to that in basaltic shergottites
(Greenwood et al. 1997).

Magmatic inclusions in the centers of olivine grains contain glass and augite rich in Al,
Ti, and Ca compared to other augites in lherzolites. Other accessory minerals in the
inclusions are chromite, spinel, low-Ca pyroxene, sulfide, ilmenite, and phosphate, but
amphibole has not been reported (Harvey et al. 1993). The inclusions have been analyzed
by INAA for trace element abundances (Lindstrom et al. 1993).

Shock metamorphic minerals and effects. Plagioclase has been converted to
maskelynite in all the lherzolitic shergottites. In ALHA77005, Ikeda (1994) described some
grains of feldspathic glass with thin plagioclase rims, which he attributed to shock melting
and subsequent crystallization of plagioclase. Thermoluminescence measurements on this
meteorite (Hasan et al. 1986) support the identification of small quantities of plagioclase.
Some maskelynite grains show flow lines and vesicles (Treiman et al. 1994).
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Olivine shows closely spaced planar elements, and pyroxenes exhibit twinning and
mosaicism (Treiman et a. 1994). Oxidation of Fe in olivine to produce its distinctive
brown color has also been attributed to impact (Ostertag et al. 1984), as shock experiments
in oxidizing atmospheres produce this effect. Deformation twinning in ilmenite also results
from shock (Treiman et al. 1994).

The Iherzolites contain pockets of impact-melted glass with skeletal and hollow
crystallites of olivine (Fig. Ilc) and tiny dendritic or clustered chromites (Fig. |1d, €). The
olivine crystallites are more magnesian (FO;3 gg) than olivine in the host rock (McSween et
al. 1979b). Compositions of the glass vary from olivine-rich to pyroxene-rich, depending
on which portion of the rock was locally melted, but all are enriched in the plagioclase
component (Harvey et al. 1993, |keda 1994). The quenched melts have recrystallized and
bleached the adjacent brown olivine grains in the host rock, demonstrating that the olivine
oxidation was preterrestrial.

Asis commonly seen in shocked rocks, the intensity of shock effects in lherzolitic
shergottites vary locally. Treiman et al. (1994) detailed a sequence of shock metamorphic
and annealing effects in olivine, pyroxene, and maskelynite in LEW88516, as a function of
proximity to melt pockets. Peak, localized shock pressures in excess of 60-80 GPa are
apparently required to account for shock melting of olivine and pyroxene (lkeda 1994). An
equilibrium shock pressure of -43 GPa was estimated for ALHA 77005 (Stoffler et al.
1986), based on maskelynite refractive index and other indicators.

Alteration minerals. An FeO(OH) phase associated with sulfides was reported in
ALHA77005 (McSween et a. 1979b). Smith and Steele (1984) described dark patches
within olivine and chromite in this meteorite, which they attributed to terrestrial agueous
alteration. Although chemical analyses were given, the mineralogy of these materials was
not characterized. Wentworth and Gooding (1993) studied both ALHA77005 and
LEWS88516, and described traces of Na- Ca- and KFe-sulfates, a low-Al silicate clay,
silica, and MgFe-phosphate in the interiors. It has not yet been demonstrated that any of
these phases are extraterrestrial.

Petrology, geochemistry, and chronology

Petrology. Hand specimens of the Iherzolitic shergottites are heterogeneous on a ern
scale, with dark regions composed of large pyroxenes poikilitically enclosing olivine and
chromite and light regions composed mostly of olivine and maskelynite with interstitial
pyroxenes and other phases (cf. Fig. lla and b). Olivine and chromite in both regions are
thought to be cumulus, and olivine in ALHA 77005 has a preferred crystallographic
orientation (Berkley and Keil 1981). Virtually identical crystallization sequences were
described for LEW88516 (Harvey et a. 1993) and ALHA77005 (lkeda 1994): olivine and
chromite, followed by poikilitic pyroxenes, later joined by interstitial pyroxenes,
plagioclase, ilmenite, merrillite, and sulfides. Wadhwa et a. (1994) interpret the post-
accumulation histories of these rocks to represent closed-system fractional crystallization,
based on trace element zoning patterns in various minerals.

The three meteorites are petrographically very similar. However, they were found at
sites in Antarctica in different ice flow drainages, separated by hundreds or thousands of
kilometers. They exhibit subtle differences in mineral compositions, and the distinct
terrestrial ages for LEW88516 and ALHA 77005 support the idea that they are not paired
(Treiman et a. 1994). However, the cosmic-ray exposure ages (-3.7 Ma) of al three
lherzolites are similar (Eugster and Polnau 1997), suggesting that they were eected from
Mars in the same impact event.
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Xenocrysts of low-Ca pyroxene, olivine, and chromite in lithology A of EETA79001
have compositions that are the same as in their lherzolite counterparts, leading to the
hypothesis that this basaltic shergottite magma intruded lherzolite and incorporated pieces
of it as xenoliths (McSween and Jarosewich 1983, Steele and Smith 1983). Thus, this
meteorite is possibly derived from the same geographic area as the lherzolitic shergottites,
and plausibly liberated in the same impact event. The younger cosmic-ray exposure age of
EETA79001 (~0.5 Ma) may indicate breakup of a larger rock in space at that time.

Geochemistry. Chemical analyses for lherzolitic shergottites were tabulated by
Treiman et al. (1986 1994), Meyer (1996), Warren and Kallemeyn (1996 1997), and
Gleason et al. (1997). Compared to basaltic shergottites, these meteorites have lower
abundances of Si and Al, and higher Fe and Mg, reflecting the abundance of olivine. The
Iherzolites have similar diagnostic element ratios to those in basaltic shergottites (Treiman et
al. 1986), but their absolute trace element abundances are generally lower by an order of
magnitude (McSween et al. 1979a).

Accurate REE abundances in whole-rock samples are difficult to obtain, because of the
problem in obtaining representative samples of these coarse-grained, heterogeneous rocks.
However, a whole-rock REE pattern for ALHA77005 (Smith et al. 1984) is in good
agreement with calculated REE abundances using ion microprobe analyses of phases and
modal analyses (Lundberg et al. 1990). REE abundances in this and other lherzolites (e.g.
Treiman et al. 1994) are much lower than in basaltic shergottites, and their patterns are
strongly LREE-depleted with distinctive “humps” at Tb that trail off towards lower HREE
abundances.

Chronology. Crystallization ages for the Iherzolitic shergottites suffer from the same
uncertainties that plague the basaltic shergottites. Rb-Sr ages of 187 + 12 Ma (Shih et al.
1982) and 154 + 6 Ma (Jagoutz 1989) have been accepted as the crystallization age for
ALHAT77005, although the Sm-Nd age is ~325 Ma (Shih et al. 1982). Radiogenic isotope
dates for other lherzolites are not available.

NAKHLITES (CLINOPYROXENITES/WEHRLITES)

There are three known nakhlite meteorites. The type meteorite, Nakhla, fell in 1911 at
El-Nakhla el-Bahariya, an oasis in northern Egypt. It fell as many individual stones; the
known mass is approximately 10 kg, but some reports have put the total mass at ~40 kg.
Lafayette is a single stone of 0.8 kg, and was recognized in 1931 at Purdue University. Its
pristine fusion crust would seem to imply that it was collected soon after it fell, but 14C
measurements give a fall date of ~8,000 years ago (Jull et al. 1997a). Governador
Valadares, a single stone of 0.16 kg, was found in Minas Gerias province, Brazil, in 1958.
It is unweathered and was probably found soon after it fell. Considering the uncertain
histories of Lafayette and Governador Valadares, it remains possible that they are all pieces
of the Nakhla fall.

Mineralogy

Igneous minerals. The nakhlites are igneous rocks, and their mineralogy is
dominated by phases common in basaltic igneous rocks on Earth and throughout the solar
system. Augite is by far the most abundant mineral, olivine is second, and all other
minerals are minor. Mineralogical descriptions of nakhlites, and tabulations of mineral
compositions, can be found in: Bunch and Reid (1975), Boctor et al. (1976), Berkley et al.
(1980), Smith et al. (1983), Treiman (1986 1990 1993), Gooding et al. (1991), Harvey
and McSween (1992 a,b), and Treiman et al. (1993).
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Sub-calcic augite (Table Al and Fig. 15) is present as euhedra and subhedra of 0.5
mm length on average. The augite is black in hand sample, and very pale green in thin
section. Simple twins on {100} are common. In Nakhla and Governador Valadares, the
bulk of each augite grain is a nearly homogeneous core of ~Wo3g sEns; s (Smith et al.
1983, Treiman 1990, Harvey and McSween 1992b). Outside the core is a rim of nearly
constant Wo content but monotonically increasing Fe/Mg ratio to ~Wo33En,;. The pattern
of Fe/Mg change is consistent with igneous fractionation from a reservoir of limited
volume, e.g. a magma pocket trapped in a cooling cumulate (Treiman 1990). Ferroan low-
Ca pyroxene of variable composition discontinuously surrounds the rim zone, and
sometimes replaces portions of both rim and core zones (Figs. 15 and 16). This late low-
Ca pyroxene ranges in composition from ~Wog,Enzg to Wo;;En,, to Wo,,En;¢ (Berkley
et al. 1980, Treiman 1990, Harvey and McSween 1992b). Lafayette has a comparable
range of pyroxene compositions, although the distinction between core and rim is weak
(Harvey and McSween 1992b).

0.5 Wo Nakhla
. m Cores
Augite O Rims
Pigeonite @
-.-h%aﬂa Olivine
o

En Fs
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Figure 15. Pyroxene and olivine compositions in Nakhla (modified from Harvey and McSween 1992b).
Augite cores have more Fe-rich rims, and pigeonite of variable composition replaces augite. Olivine is too
Fe-rich to be in equilibrium with augite and is thought to have suffered subsolidus re-equilibration.

Figure 16. Backscattered electron
image of Nakhla augite, showing the
homogeneous core and a higher Z
(higher Fe) rim and replacement zones.
The horizontal bar is 100 pm long.
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Minor and trace element zoning patterns in nakhlite pyroxenes are complex. Although
the augite cores have nearly constant Ca-Mg-Fe contents, their abundances of trivalent and
tetravalent elements can vary by factors of two or three (Treiman 1990, Wadhwa and
Crozaz 1995). McKay et a. (1994) found abimodal distribution of Al contents in the cores
and suggested that they might be sector-zoned. Outside the cores, minor and trace element
abundances are consistent with fractional crystalization: Al, Ti, Zr, and the REE increase
together while Mg and Cr decrease (Treiman 1990, Wadhwa and Crozaz 1995a).

There appear to have been no TEM, electron diffraction, or X-ray diffraction studies
of pyroxenes from the nakhlites.

Olivine is the second most abundant mineral in the nakhlites. It is most apparent as
postcumulus infillings among euhedral augite grains, but is aso prominent in some
sections as subhedral grains up to 4 x 3mm. It is clear and olive-green in hand sample, and
colorless in thin section; compared to augite, olivine has higher birefringence, contains
rounded magmatic inclusions, and contains feathery chromite inclusions. The chemica
compositions of olivine in Nakhla and Governador Vaadares (Table A3) are somewhat
variable, from FO30 to FO;; and CaO from 0.20 to 0.60% (Berkley et al. 1980, Treiman
1990, Harvey and McSween 1992b). This variability appears as a slight norma zoning in
FelMg from core to rim, and as oscillatory zoning in CaO (Treiman 1990, Harvey and
McSween 1992b). The zoning in FelMg probably reflects continuous diffusive exchange
with late (evolving) magma (Longhi and Pan 1989, Harvey and McSween 1992b);
variations in CaO content may reflect origina growth zoning. Olivine in Lafayette. is
effectively of constant composition, Fops, with CaO contents ranging only from 0.15 to
0.35% (Berkley et a. 1980, Harvey and McSween 1992b). Nakhlite olivines contain
significant Ni (- 200 ppm; Bunch and Reid 1975, Smith et al. 1983), but extremely low
abundances of the REE (Wadhwa and Crozaz 19953).

Olivines in the nakhlites contain numerous inclusions. Most abundant are dark
feathery lamellae, 1-2 umwide and up to 20 pm long, consisting of augite and magnetite.
They may be oxidation products of kirschteinite exsolution lamellae (Yamada et al. 1997).
Rounded to angular multi-phase inclusions are also common; they have been interpreted as
the products of magma trapped in the olivines as they grew, i.e. magmatic inclusions
gl(;lreiman 1986, 1990, 1993; Harvey and McSween 1992a). Their mineralogy is described

ow.

Low-Ca pyroxenes, including pigeonite and orthopyroxene (Wo aslow as 3%), occur
only as overgrowths on augite and as replacements of olivine and augite (Treiman 1990,
Harvey and McSween 1992b). The low-Ca pyroxene in Lafayette is pigeonite according to
Berkley et a. (1980) at -WO0!O' but orthopyroxene according to Harvey and McSween
(1992b) at W03. The crystal structures of the low-Ca pyroxenes are not known. Early
reports of pigeonite exsolution in the augite (Berkley et a. 1980) have not been confirmed.

Plagioclase and alkali feldspar occur as radiating sprays of lath-shaped grains in the
mesostasis among the larger augite and olivine grains. The plagioclase composition is
An23-26Ab60-680r03_09and the alkali feldspar is An04-06Ab20_420r52_7@Berkley et al.
1980); concentric and sector zoning are reported. The feldspars retain their normal
birefringence. Wadhwa and Crozaz (1995a) have analyzed nakhlite plagioclase for REE.

Titanomagnetite  isthe principal oxide minera in the nakhlites, and occurs as -0.1 mm
grains among the augite and olivine (Bunch and Reid 1976, Boctor et a. 1976, Berkley et
al. 1980). Most of the titanomagnetite shows abundant exsolution lamellae of ilmenite and
possibly ulvospingl;  discrete grains of ilmenite (partly replaced by rutle) and a
homogeneous chromian magnetite are also present (Bunch and Reid 1976, Boctor et al.
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1976). These oxide minerals (Table A4) are consistent with an oxidation state near the
quartz-fayalite-magnetite buffer assemblage, 740"C and fO, = 10-17 (Reid and Bunch
1985). The intrinsic oxygen fugacity measurements of Delano and Arculus (1980) imply
much more reduced conditions, somewhat above the iron-wiistite buffer.

Sulfide minerals in the nakhlites are poorly characterized. Pyrite is the apparently the
most abundant sulfide in Lafayette, and it contains lamellae of marcasite (Bunch and Reid
1975, Boctor et a. 1976, Berkley et a. 1980). Minor chalcopyrite is also present (Bunch
and Reid 1975, Bunch and Reid 1975, Meyer 1996). Iron monosulfide is common, and
has been caled troilite or FeS (Bunch and Reid 1975, Boctor 1976, Weincke 1978,
Berkley et al. 1980). However, it is much more likely to be pyrrhotite, given the oxidation
state of the nakhlites and the presence of pyrite and marcasite. In fact, Weincke's (1978)
chemical analysis of 'troilite’ from Nakhla appears to be pyrrhotite of composition FeO.97S.

Other minor minerals in the nakhlites include chlorapatite, a silica phase, and akali-
silica glass (Bunch and Reid 1975, Berkley et a. 1980). Wadhwa and Crozaz (1995a) have
analyzed the chlorapatite for REE, and it is a significant contributor to the rare earth budgets

of the nakhlites.

Magmatic inclusions in the nakhlite olivines (Fig. 17) have a dlightly different
mineralogy than the bulk rock (Harvey et al. 1992a, Treiman 1993). The inclusions consist
principally of auminous augite, silica-rich glass, and Ti-magnetite (ilmenite exsolutions not
reported); less abundant minerals include pigeonite, silica, chlorapatite, alkali feldspar, Ti-
Al chromite, pyrrhotite, and hercynite spinel (Harvey and McSween 1992a Treiman
1993). A reported analysis of kaersutite in a Governador Vaadares inclusion (Harvey and
McSween 1992a) does not have amphibole stoichiometry. The inclusions do not contain
plagioclase.

Figure 17. Backscattered electron image of a magmatic inclusion in Nakhla olivine. Aligned pyroxenes
are set in dark, silicarich glass, with small crystals of magnetite (bright dots). The large oval at upper left
is avapor bubble. Scale bar measures 100 microns.
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Shock metamorphic minerals and effects. The nakhlites show little evidence of
shock. The plagioclase in the nakhlites remains crystalline and has not been converted to
maskelynite. To our knowledge, no high-pressure phases, such as ringwoodite or majorite,
have been reported from the nakhlites. Shock effects seem to be limited to polysynthetic
twinning of augite on {001} (Berkley et al. 1980), minor granulation along fracture
(‘gouge’) zones, and possibly some minor local shock melts.

Alteration minerals. The nakhlites contain a complex assemblage of low-
temperature alteration minerals, first recognized and suggested to be extraterrestrial by
Bunch and Reid (1975) and Reid and Bunch (1975). Gooding et al. (1991) proved the case
by showing that alteration materials in Nakhla were transected by, and decomposed at, the
meteorite's fusion crust; Treiman et al. (1993) demonstrated the same relationship for
Lafayette. Stable isotope and noble gas studies have confirmed that the hydrous alteration
products are martian (Karlsson et al. 1992, Drake et al. 1994, Swindle et al. 1995, Leshin
et al. 1996, Romanek et al. 1996).

“Iddingsite’ is the prominent alteration material—rusty red veinlets and patches in
grain boundaries and replacing olivine (Bunch and Reid 1975, Boctor et al. 1976, Berkley
et al. 1980). Nakhlite ‘iddingsite’ consists principally of ferroan smectite and iron oxides
(Ashworth and Hutchison 1975, Gooding et al. 1991, Treiman et al. 1993). The smectite is
poorly crystalline and variable in composition, and the iron oxides include two-ring
ferrihydrite and magnetite (Gooding et al. 1991, Treiman et al. 1993). Chemical
compositions of the iddingsite and its constituent phases are given by Bunch and Reid
(1975), Boctor et al. (1976), Gooding et al. (1991), Treiman et al. (1993), and Treiman
and Lindstrom (1997). Swindle et al (1995, 1997) dated its formation by K-Ar methods as
a few hundred Ma.

The iddingsite is accompanied by many ionic salt minerals, including Ca-sulfate
(gypsum?), Ca-carbonate (calcite?), siderite, Mg-phosphate (epsomite? or kieserite?), and
halite (Chatzitheodoridis and Turner 1990, Gooding et al. 1991, Treiman et al. 1993,
Saxton et al. 1997, Vicenzi et al. 1997).

Petrology, geochemistry, and geochronology

Petrology. The nakhlite meteorites (Fig. 18) are considered to be cumulate igneous
rocks, enriched in augite and olivine relative to their parental magma (Reid and Bunch
1975, Berkley et al. 1980, Treiman 1986, 1990, 1993; Harvey and McSween 1992b).
Berkley et al. (1980) showed that the nakhlite pyroxenes are weakly aligned, consistent
with flow or crystal settling. Considering the sharp chemical zoning in the nakhlite
pyroxenes and the acicular habit of its plagioclase, Treiman (1986) proposed that the
naklites were surface flows or near-surface intrusions.

In fact, rocks of comparable mineralogy, compositions, and textures do occur in thick
flows and sills on Earth (Treiman 1987). Friedman et al. (1995) studied the crystal size
distributions (CSD) of the augites. They inferred that the augites grew rapidly from
magma, and that the nakhlite cumulates formed by settling of crystal clusters or of crystal
mush. Following accumulation and crystallization of intercumulus liquids, the nakhlites
experienced varying degrees of subsolidus annealing, which caused olivines to
reequilibrate (Harvey and McSween 1992b).

Geochemistry. Elemental analyses of the nakhlites were tabulated by Treiman et al.
(1986) and Meyer (1996). As befit augite-olivine cumulates, the nakhlites are relatively rich
in Ca, Mg, and Fe, and relatively poor in many incompatible elements like Al and Ti. Bulk
abundances of incompatible elements are not far different from those of Shergotty and
Zagami, but the nakhlites are relatively enriched in highly incompatible elements, e.g.



6-24 PLANETARY MATERIALS

LREEIHREE = 3x Cl. As with the shergottites, moderately volatile elements are relatively
abundant and chalcophile elements are quite depleted; some element abundance ratios
appear to be essentially identical in nakhlites and shergottites (McSween et al. 1979a,
Treiman et a. 1986, Laul et al. 1986, Warren and Kallemeyn 1997).

Because the nakhlites are cumulates, the compositions of their parent magmas have
been difficult to retrieve. Various geochemical and experimental treatments have yielded a
range of estimated compositions (Treiman 1986, Longhi and Pan 1989, Harvey and
McSween 1992a, Treiman 1993, Kaneda et a. 1997), but al are ferroan basalts with low
alumina content - Al,O, between 5 and 9% wt. This low Al,O; is manifested as the late
crystallization and low abundance of plagioclase, and early crystallization of augite. Such
Al-depleted magmas represent melts from a mantle previously depleted in Al (Longhi and
Pan 1989, Treiman et al. 1995).

Figure 18. Photomicrograph, in plain light, of Lafayette nakhlite (3.5 mm across). This view is domin-
ated by cumulus augite crystals.

Geochronology.  Unlike the shergottites, the geochronolo% of the nakhlites is
simple. All chronometric systems (U-Th-Pb, 87Rb-87Sr, 147Sm_143NdK-Ar) yield ages
near 1.3 Ga, which are generaly interpreted as the times of crystallization (Podosek and
Huneke 1973, Papanastassiou and Wasserburg 1974, Gae et a. 1975, Wooden et a.
1979, Nakamura et a. 1982a, Chen and Wasserburg 1986b, Shih et a. 1996). It is
possible that the nakhlites crystallized at dightly different times: ages for Govemador
Valadares and Lafayette are near 1.34 Ga, but ages for Nakhla center on 1.22 Ga. An older
age of -4.4 Ga is recorded in the U-Th-Pb systems (Chen and Wasserburg 1986b), and
probably represents mantle differentiation or core formation. This ancient event is also
recorded as an excess of 142Nd, decay product of the short-lived isotope 146Sm,in the
nakhlites (Harper et al. 1995). The low-temperature ateration material, iddingsite, in the
nakhlites formed sometime between 600 and 100 Ma (Swindle et a. 1995, 1997).
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CHASSIGNY (DUNITE)

The Chassigny meteorite is unique, the only martian dunite. It was seen to fall in
Haute-Marne, France, on October 3, 1815. It is not known if Chassigny fell as a single
stone or several, but its total mass was about 4 kg (Meyer 1996).

Mineralogy

Igneous minerals. Chassigny is interpreted as an igneous rock, an olivine-chromite
cumulate (Fig. 19), possibly with some cumulus augite and pigeonite (Mason et al. 1975,
Floran et al. 1978, Boynton et al. 1976, Wadhwa and Crozaz 1995). Among the cumulus
minerals is an intercumulus assemblage of pyroxenes, plagioclase, and minor phases.
Modern mineralogical descriptions of Chassigny, and tabulations of its mineral compo-
sitions, can be found in Floran et al. (1978), Johnson et al. (1991), and Wadhwa and
Crozaz (1995).

Figure 19. Chassigny, viewed in plain light (2 mm across). This view shows euhedral to subhedral
ovline, pyroxene, and plagioclase (upper left), opaque chromite, and a magmatic inclusion (lower left).
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Olivine is by far the most abundant mineral in Chassigny, comprising approximately
90% of its volume (Prinz et al. 1974, Wadhwa and Crozaz 1995). It occurs as euhedra and
subhedra averaging 1.5 mm long among the intercumulus phases, and commonly includes
euhedral chromite grains (Floran et a. 1978). The chemical composition of Chassigny
olivine isessentially constant, and rather ferroan compared.to terrestrial dunites (Table A3).
The olivines show no preferred orientation (Floran et a. 1978).

The olivines contain rounded inclusions, as large as 200 pm diameter, with a unique
minerals assemblage (at least for a meteorite): slicate glass, augite, low-Ca pyroxene,
kaersutite, chorapatite, pyrrhotite, chromite, pentlandite and biotite, but no feldspars
(Floran et al. 1978, Johnson et a. 1991). The inclusions have been interpreted as
magmatic, partialy crystallized droplets of magma trapped in the olivine as it grew.
Inclusion pyroxenes are distinctly more aluminous and titanian than those in the bulk rock
(eg. 4.9% Al Qg ininclusion augite vs. 1.2% in intercumulus augite) and dightly more
magnesian (Floran et al. 1978). Righter et a. (1997) analyzed the inclusion glass and
biotite for trace elements.

Augite and orthopyroxene account for -5% of Chassigny. The pyroxenes form
poikilitic and interstitial grains among and around the cumulus olivines; at least some of the
pyroxenes may have been cumulus themselves (Boynton, et a. 1976, Floran et a. 1978,
Wadhwa and Crozaz 1995). The origina igneous minerals appear to have been augite and
pigeonite, the latter inferred from regions of orthopyroxene with abundant fine exsolution
lamellae of augite (Wadhwa and Crozaz 1995). This exsolved pyroxene is associated with
regions of homogeneous, unexsolved orthopyroxene and augite. The pyroxenes all have
essentially the same molar Fe/(Fe+tMg) (Table Al); variations in Ca content can be ascribed
to mixing of end-member augite and orthopyroxene in the analytical volume. Despite the
constancy of their divalent cation composition, pyroxenes in Chassigny preserve significant
variations in abundances of tri- and tetravalent cations (Wadhwa and Crozaz 1995).
Abundances of Al, Ti, Y, and Ce (and other rare earths) are positively correlated in both
augite and orthopyroxene; augites show a 2-fold range in Ti content correlated with and 8-
fold range in Ce content (Wadhwa and Crozaz 1995). There appear to have been no TEM,
electron diffraction, or X-ray diffraction studies of pyroxenes from Chassigny.

Feldspars are present as intercumulus grains among the olivine and pyroxenes.
Individual feldspars are chemically homogeneous, but there is a wide continuous range of
compositions. Most of the analyzed grains are plagioclase (oligoclase/anorthoclase,
-AncAbgpOrlO)'  but individual analyses extend to labradorite, -An60Ab300rlO" and
sanidine, Ang,Ab,c0r70 (Floran et al. 1978; Table A2). Wadhwa and Crozaz (1995)
analyzed the plagioclase for rare earth elements.

The Chassigny kaersutite was the first find of a hydrous amphibole in a meteorite, and
the first find of amphibole in the martian meteorites (Prinz et a. 1974, Floran et al. 1978).
In cation content it is a typical kaersutite: rich in Ca, Ti and Al, and with an incompletely
filled A site. Analyzed OH- + F- + Cl: sum to -0.40 anions per formula unit, while their
0(3) site must contain 2.000 total anions. The deficit in this site must be filled by -1.60 0%
anions, making this amphibole an oxy-kaersutite (Hawthorne 1981). Popp et a. (1995a,b)
shown that the oxy substitution in kaersutite can be charge balanced by trivalent and
tetravalent cations in the C (or 'M") sites.

A single grain of trioctahedral mica in Chassigny isthe only documented occurrence of
this mineral group in the martian meteorites (Johnson et a. 1991, Rubin 1997). The mica
was described as biotite, but its molar MglFe ratio of 2.07 places it nearly on the (arbitrary)
boundary between bioctite and phlogopite. If any of its iron is trivalent, as seems likely,
Chassigny's mica should probably be classified as phlogopite. The mica is quite rich in
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titanium, comparable in many respects to those in terrestrial alkaline rocks. The normalized
formula has less Si+Al than required for the tetrahedral sites of a biotite; this may suggest
Ti*" in tetrahedral sites. Analyzed OH- + F~ + CI- sum to ~1.70 anions per formula unit,
while the formula should contain 4.00 total anions. The deficit in this site must be filled by
~2.30 O anions, making this mica an oxy-titan-phlogopite.

Chromite is the principal oxide mineral in Chassigny (Table A4), and is present as
euhedra to 40 um across in olivine and as larger subhedra associated with feldspar and
pyroxene among the olivines (Tschermak, 1885, Floran et al. 1978). Chassigny chromites
contain significant ferric iron, constant Fe2+/(Fe2* + Mg), and constant Cr/(Cr + Al).
However, Ti and Fe3+ contents are somewhat variable, and present an inverse relationship
between [2 Ti%* + Fe3+] and [Cr3+ + AI3+] content (Floran et al. 1978). Other oxide phases
include ilmenite, baddelyite, and rutile, which are always found together associated with
intercumulus feldspar (Floran et al. 1978).

Sulfide minerals are reported to include pyrrhotite, marcasite, and pentlandite (Floran
et al. 1978). The ‘troilite’ analyzed by Floran et al. (1978) is apparently pyrrhotite,
(Feq g7Nig o;)S. Floran et al. (1978) suggested that the marcasite is a terrestrial weathering
product, but the nakhlites and ALH 84001 contain preterrestrial (martian) marcasite and/or
pyrite. Pentlandite has only been found in the magmatic inclusions.

The phosphate in Chassigny is chlorapatite, which occurs as slender prisms. Floran et
al. (1978) and Wadhwa and Crozaz (1995) analyzed the chlorapatite for REE, and it is a
significant contributor to Chassigny’s rare earth budget.

Shock metamorphic minerals and effects. Chassigny shows variable effects of
shock metamorphism, ranging from slightly perceptible to- melting. Most of the olivine
appears little shocked, with some undulatory extinction and with fractures radiating from
magmatic inclusions. Elsewhere, the olivine is cut by planar deformation lamellae,
principally oriented near {130}, {100} and {010} (Sclar and Morzenti 1971, Floran et al.
1978, Greshake and Langenhorst 1997). Locally, olivine shows intense mosaicism and
reduced birefringence. Olivine-composition melts were produced in pools and along
fractures; this material is now glassy or devitrified to fine feathery crystals (Melosh et al.
1983); Tschermak (1885) may have described a similar assemblage. Pyroxenes appear to
be little deformed, save fracturing and local recrystallization (Floran et al. 1978, Greshake
and Langenhorst 1997). Feldspars show undulatory extinction and reduced birefringence;
maskelynite and feldspar-composition melts are rare to absent (Floran et al. 1978, Melosh
et al. 1983).

Overall, shock effects in plagioclase and olivine are consistent with a shock stage of
S4 (moderately shocked) corresponding to shock pressures of 15 to 35 GPa (Stoffler et al.
1991). However, the presence of planar deformation features suggests a shock stage of S5,
and olivine-composition melts suggest S6, consistent with local shock pressures in excess
of 55 Gpa (Stoffler et al. 1991).

Alteration minerals. Chassigny contains very little aqueous or low-temperature
alteration material. Wentworth and Gooding (1994) found discrete grains of Ca carbonate
(calcite), Mg-sulfate (gypsum or bassanite), and Mg-carbonate (magnesite and
hydromagnesite?) in veinlets crossing the primary igneous minerals. No clays or ferric
oxides were found, but traces of P and Cl are consistent with low-temperature materials in
the other martian meteorites (e.g. Treiman et al. 1993). It is not certain that these materials
are martian, though Wentworth and Gooding (1994) infer that they probably are.
Surprisingly, bulk Chassigny contains a significant amount of water, ~0.1% H,0
(Karlsson et al. 1992, Leshin et al. 1996), far beyond the contributions from its amphibole
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and biotite (Watson et al. 1994). The D/H ratio of this water is indistinguishable from
terrestrial water (Leshin et al. 1996).

Petrology, geochemistry, and geochronology

Petrology. Chassigny is interpreted as a cumulate igneous rock, enriched in olivine,
chromite, and pyroxenes relative its parental magma (Prinz et al. 1974, Floran et al. 1978,
Longhi and Pan 1981, Wadhwa et al. 1995). Initial crystallization was rapid enough to

allow the olivines in Chassigny to entrap droplets of magma, which eventually became the
magmatic inclusions. Cooling was, however, slow enough to permit the olivines and
pyroxenes to diffusively equilibrate, and for the pigeonite to exsolve to orthopyroxene and
augite. The integrated compositions of exsolved pigeonites and the compositions of the
most ferromagnesian augites suggest magmatic temperatures around 12000C (Wadhwa and
Crozaz 1995). The compositions of the most calcian augites suggest temperatures as low as

~7000C (Floran et al. 1978).

Among the martian meteorites, Chassigny has been associated with the nakhlites in
having the following characteristics: a LREE-enriched parent magma, a parent magma with
liquidus olivine and augite, and a comparable crystallization age (see below). However,
this association has been questioned by Wadhwa and Crozaz (1995), based in part on the
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Geochronology. Unlike the shergottites, the geochronology of Chassigny appears
simple. All chronometric systems (87Rb-87Sr, 147Sm-143Nd, K-Ar) yield ages near 1.3
Ga, which are generally interpreted as its time of crystallization (Lancet and Lancet 1971,
Bogard and Nyquist 1979, Nakamura et al. 1982b, Jagoutz 1996). An event near 4.5 Ga,
presumably silicate differentiation, is recorded as an excess of 142Nd, the decay product of
the short-lived isotope 146Sm (Harper et al. 1995, Jagoutz et al. 1996).

ALH84001 (ORTHOPYROXENITE)

The ALH84001 meteorite (1.9 kg) was found in the Allan Hills, Antarctica, in 1984.
It was originally classified as a diogenite. Using a strictly non-genetic classification, this
meteorite is a diogenite—a pyroxenite composed mostly of low-Ca pyroxene. Its
identification as a martian meteorite was not made until a decade after its recovery
(Mittlefehldt 1994). This meteorite does not fit into any of the previously established SNC
categories.

Mineralogy

Igneous minerals. Mineralogical descriptions of ALH84001 are given by Berkley
and Boynton (1992), Mittlefehldt (1994),” Treiman (1995b) and Harvey and McSween
(1996).

ALHB84001 consists predominantly of coarse orthopyroxene crystals of uniform
composition (En;gWos;) (Table Al). Contents of Al, Ti, and Cr also show very limited
variation (Mittlefehldt 1994). As for other martian meteorites, the REE patterns in
orthopyroxene are LREE-depleted with small negative Eu anomalies (Papike et al. 1994),
but they do not show the trace element zoning characteristic of other SNC pyroxenes
(Wadhwa and Crozaz 1994). No exsolution of clinopyroxene has been observed optically
or in microprobe analyses, but minor augite (EnysWo,3) occurs in interstitial regions.
Two-pyroxene geothermometry indicates equilibration temperatures of ~875°C (Treiman
1995b).

Harvey and McSween (1996) found a few small patches of embayed olivine (Foss)
within some orthopyroxene grains. Like the olivine in lherzolitic shergottites, this olivine is
apparently too Fe-rich to be in equilibrium with the host pyroxene. They suggested that the
olivines were relics from a reaction with a CO,-rich fluid to produce orthopyroxene, but
they could also be relics from a magmatic reaction to form orthopyroxene.

Maskelynite occurs interstially, with compositions generally varying between Ans,
and Ans; (Table A2). However, some maskelynites have much higher concentrations of Na
and K, varying from AbgOr; to Abg;Or;. Mittlefehldt (1994) noted that some
maskelynite analyses were non-stoichiometric, and argued that they were mixtures of
feldspar and silica. REE concentrations in maskelynite are LREE-enriched with pronounced
positive Eu anomalies. Wadhwa and Crozaz (1994) attributed differences in the REE
patterns of melts in equilibrium with maskelynite and orthopyroxene to metasomatism, but
Treiman (1996b) suggested that the difference reflected subsolidus chemical equilibration.

Euhedral chromite occurs throughout the rock. These grains contain 5 to 8 wt %
Fe,03, as well as minor Al and Ti (Berkley and Boynton 1992, Mittlefehldt 1994) (Table
A4). Some chromites show slight zoning, although the variations are not consistent.
Another igneous accessory phase is apatite, which occurs as small interstial grains. Its REE
pattern is LREE-enriched, like the maskelynite (Wadhwa and Crozaz 1994). Although the
apatite has the highest REE abundances in the rock, it is not the major REE carrier because
of its low modal abundance. Igneous sulfides are very uncommon in ALH84001.
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Kirschvink et al. (1996) have interpreted magnetic susceptability measurements as
indicating the presence of pyrrhotite, but this phase appears to be quite rare, at least as can
be detected using optical and electron microbeam methods.

Alteration and putative biogenic minerals

Fracture zones in ALH84001 contain a rich variety of secondary phases that have been
attributed to alteration by hydrothermal or CO,-rich fluids and to possible biogenic
processes. McKay et al. (1996) presented a number of arguments for biologic activity, and
we will address only those that are mineralogic in nature. Most prominent are rounded
globules of carbonate (Fig. 20), consisting of orange cores of ankerite with minor calcite
and rims of strongly zoned magnesite and breunnerite (Fig. 21). The magnesite-breunnerite
sequence is repeated twice on the rims. Carbonate is also found as irregular patches
(Treiman 1995b) in fracture zones and within veins of plagioclase melt glass (Scott et al.
1997). The microstratigraphy in all carbonates is the same, except where it was terminated
because the open spaces became occluded. Descriptions of the textural relationships
between the carbonate and host rock are conflicting; for example, Treiman (1995b)
observed carbonate replacing maskelynite, McKay and Lofgren (1997) and McKay et al.
(1997) noted carbonate being intruded by plagioclase glass, and Scott et al. (1997)
proposed that carbonate crystallized from impact melts now represented by plagioclase
glass. Romanek et al. (1994) argued that these carbonates formed at low temperatures
(<80°C) by reaction of an aqueous fluid with the rock. Noting the unusual carbonate
compositions and the absence of hydrous silicates, Harvey and McSween (1996) supported
the suggestion of Mittlefehldt (1994) that the carbonates formed at high temperatures
(>650°C), possibly by reaction of a CO,-rich fluid with the rock. Treiman (1995b) and
Valley et al. (1997) criticized the application of carbonate geothermometry and phase

Figure 20. Backscattered electron image of carbonate globules in ALH84001. Ankerite cores are rimmed
by multiple zones of magnesite (black) and siderite-rich carbonate (white). Scale bar is 100 microns.
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Figure 21. Compositions of zoned carbonate globules in ALH84001 (modifed from Harvey and McSween
1996). Triangle on the left shows more than 6,700 semi-quantitative analyses, illustrating that the carbon-
ates are extremely fine-grained; overlaps suggest that calcite coexists with ankerite, and ankerite abuts the
most Fe-rich member of the magnesite-siderite solid solution series. Fully quantitative microprobe analyses
are shown in the right triangle, which is the 700°C phase diagram for the Ca-Mg-Fe carbonate system.

with their elemental compositions (Leshin et al. 1997), which may suggest either
equilibration with aqueous fluids during temperature excursions of at least 250°C, or
Raleigh fractionation of CO,-rich fluids at an even wider range of temperatures. However,
C isotopic compositions may not support these scenarios (Eiler et al. 1997). Carbon
isotopic compositions demonstrate that they are extraterrestrial, but imply some exchange
with terrestrial carbon (Jull et al. 1997b). REE patterns for carbonates were measured by
Wadhwa and Crozaz (1995b) and Shearer et al. (1997), and were attributed to
metasomatizing fluids to account for differences in these patterns from those of the primary
minerals.

When examined under TEM, the carbonates are seen to contain a variety of magnetite
and sulfide morphologies that were suggested by McKay et al. (1996) to be biogenic
minerals. Nanophase magnetites were noted to be similar in size (20-100 nm diameter,
magnetically “single domain” crystals) and shape to those produced by terrestrial
magnetotactic bacteria, and sulfides (pyrrhotite and greigite) were suggested to have formed
by sulfate-respiring organisms. Monoclinic 4C pyrrhotite was identified by its composition
and (111) basal spacing of 0.57 nm (although the basal spacing of this phase,
corresponding to (002), is 0.53 nm, and the (111) spacing is 0.47 nm), but greigite was
identified only by its morphological similarity to terrestrial biogenic greigite. In addition,
McKay et al. (1996) described minute “ovoid and elongated forms” seen in SEM as
possible nanofossils.

Bradley et al. (1996) attempted to replicate these observations using TEM. They
discovered nanophase whiskers and platelets of magnetite (Fig. 22), sometimes with axial
screw dislocations, internal structures not characteristic of biogenic magnetite. The unusual
assortment of magnetite morphologies and the spiral growth mechanism are consistent with
their formation by vapor deposition. Bradley et al. (1996) argued that these grains were
deposited at high temperatures, by analogy with magnetite whiskers found in sublimates
from volcanic fumaroles. Moreover, they noted that the platelets and whiskers were similar
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Figure 22. TEM darkfield images of two nanophase magnetite whiskers in ALH84001 carbonate (from
Bradley et al. 1996). The whisker in (a) appears twisted and free of internal dislocations, whereas the
whisker in (b) has an axial screw dislocation. Splitting of hkl diffractions, seen in the selected area
diffraction pattern (c), is caused by helical lattice distortions resulting from the screw axis. Diffractions from
the surrounding carbonate are labelled “C.”

in size and morphology to the ovoid and elongated forms described by McKay et al.
(1996), and the absence of other similar materials in the carbonates suggested that these
might be the nanofossils. However, no study has yet identified a nanofossil in the SEM
and then sectioned the same particle for TEM analysis. Bradley et al. (1997) found that
some magnetite whiskers without screw dislocations had grown epitaxially onto the
carbonate substrate and on other magnetites. Epitaxial growth is another mechanism
common in vapor deposition.

Other minerals associated with carbonate and believed to be part of the alteration
assemblage include pyrite and other trace sulfides. The pyrite occurs as small euhedral
grains in the fracture zones. Its sulfur is isotopically heavy (83*S = +2.0 to +7.3%o;
Shearer et al. 1996, Greenwood et al. 1997), which appears to be inconsistent with its
formation by reduction of sulfate through chemosynthetic pathways used by known
terrestrial organisms. The occurrence of pentlandite was reported by Shearer et al. (1997),
and Wentworth and Gooding (1995) described feathery grains of ZnS within carbonates.

Silica has been reported at the juncture where some carbonate globules have growth
together (Harvey and McSween 1996), in shock-melted veins (Scott et al. 1997, Valley et
al. 1997), and also as euhedra within orthopyroxene (Kring and Gleason 1997). As noted
above, non-stoichiometric maskelynite analyses have also been attributed to mixture of
feldspar and silica (Mittlefehldt 1994).
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Figure 23. Photomicrograph of ALH84001 showing fracture zones crosscutting orthopyroxenite. The
image measures approximately 2 mm (courtesy of D. Mittlefehldt).

Shock metamorphic minerals and effects. ALH84001 is cut by numerous
deformation zones a few mm wide (Fig. 23), composed of fine grains of the same minerals
that compose the host rock. Mittlefehldt (1994) termed these “crush zones,” emphasing
their cataclastic origin. Treiman (1995b) used the term “granular bands” to call attention to
their granulitic (recrystallized) texture. Some areas of these zones exhibit mortar or augen
textures, with swirled stringers of chromite traceable to chromites in the adjacent rock.
Treiman (1995b) interpreted these zones as melt-breccia dikelets or crystalline cataclasites.

Maskelynite occurs as small, irregularly shaped grains. Veins of plagioclase glass
formed by impact melting also occur (McKay and Lofgren 1997, Scott et al. 1997).
Carbonates are commonly cut by microfaults with offsets, and radial fractures occur around
chromite and maskelynite. Orthopyroxene exhibits strain birefringence.

Petrology, geochemistry, and geochronology

Petrology. ALH84001 is a coarse-grained orthopyroxenite cumulate with homogen-
eous pyroxene, suggesting crystallization in a plutonic environment. Interstitial phases
apparently represent material crystallized from intercumulus liquid. The meteorite now
consists of coherent clasts up to a few cm across bounded by recrystallized fracture zones.
The petrologic history of this meteorite, as envisioned by Mittlefehldt (1994), was as
follows: Crystallization and accumulation of orthopyroxene and chromite from basaltic
magma was followed by crystallization of plagioclase from intercumulus liquid, and then
succeeded by formation of carbonate and pyrite. Shock metamorphism then formed fracture
zones, and additional carbonate was deposited. Treiman's (1995b) petrogenesis differs in
having only one period of carbonate deposition, but two shock events. His order of events
after formation of the cumulate rock was as follows: Shock metamorphism produced
fracture zones, followed by thermal metamorphism that resulted in textural annealing and
equilibration of all minerals. Subsequently, fluids were introduced, which precipitated
carbonates and pyrite. Following that, the rock experienced a second shock metamorphism,
possibly the ejection event, which converted plagioclase to maskelynite and deformed
carbonates.

The oxygen isotopic composition of this stone (Clayton and Mayeda 1996) clearly



6-34 PLANETARY MATERIALS

links it to SNC meteorites, and it has certain mineralogical properties, such as the presence
of sodic maskelynite and Fe3+-bearing chromite, that resemble SNC minerals. However,
the basaltic parent magma for ALH84001 is probably not related to the parent magmas of
other martian meteorites. This meteorite is, after all, 3 to 4 billion years older than other
members of this clan (see below).

Geochemistry. Major, minor, and trace elements were analyzed by Dreibus et al.
(1994), Mittlefehldt (1994), and Warren and Kallemeyn (1996). The meteorite has high
Mg/(Mg+Fe) and relatively high abundances of volatile elements. The abundances of the
siderophile elements Ni, Ir, Au, and Os are very low compared to other martian meteorites.
The REE pattern exhibits a depletion in LREE and a negative Eu anomaly, as expected for a
cumulate orthopyroxenite. The La/Lu ratio is higher than would be predicted for a parent
magma with chondritic REE ratios, but can be explained by inclusion of a small amount
intercumulus liquid in the rock.

Geochronology. The crystallization age of ALH84001 is 4.5 + 0.13 Ga, based on a
Sm-Nd isochron (Nyquist et al. 1995). Argon isotope dating gives a shock age of 4.0 +
0.1 Ga (Ash et al. 1996, Turner et al. 1997). The time of formation of the carbonates is
unclear and disputed. From 40Ar/39Ar measurements, Knott et al. (1995) suggested that the
carbonate formed at ~3.6 Ga, which was cited by McKay et al. (1996). On the other hand,
the Rb-Sr data of Wadhwa and Lugmair (1996) suggested an age of ~1.4 Ga.

MARTIAN MINERALOGY INFERRED FROM
REMOTE SENSING AND SPACECRAFT DATA

Beyond inferences from the SNC meteorites, the mineralogy . of Martian surface
materials is known only indirectly. Reflection spectra, both telescopic and spacecraft, can
be interpreted in terms of mineralogy—absorption bands in the spectra can be assigned to
specific minerals or mineral groups. The chemical composition and magnetic properties of
the martian soil, or dust, were analyzed in situ by the Viking lander spacecraft, and those
analyses provide some indirect constraints on the soil mineralogy. From imagery and
reflection spectra, the surface of Mars can be characterized in terms of three spectrally
distinct units: low-albedo (dark), gray, FeZ*-rich regions interpreted to be mixtures of dark
rocks and residual soils; high-albedo (bright), red, Fe3+-rich regions thought to be covered
with aeolian dust; and intermediate albedo regions thought to be indurated soils (Presley
and Arvidson 1988, Murchie et al. 1993). Images from the Viking landers (Fig. 24)
indicate rock abundances covering 10 to 20% of the surface, and thermal emissivity
measurements (Christensen 1986) suggest that some dark areas may contain proportions of
rock as high as 35%. In this section we compare what is inferred about the mineralogy of
the martian surface, especially the dark rocky regions, from remote sensing spectral
measurements and chemical data from the Viking and Mars Pathfinder landers with what
has been learned from the study of martian meteorites.

Igneous rocks

Near-infrared reflectance spectra of the dark regions exhibit two crystal-field
absorption bands (near 1 and 2 mm) that indicate the presence of pyroxenes with variable
Ca and Fe2+ contents (Soderblom 1992). As illustrated in Figure 25, the spectra of three
low-albedo areas on Mars (Hesperia, Iapygia, and two measurements for Syrtis Major
taken at different times—Singer et al. 1980, Mustard et al. 1993) are similar to spectra for
basaltic shergottites, but not to lherzolitic shergottites, nakhlites, or ALH84001 (McFadden
1987, Sunshine et al. 1993, Bishop et al. 1994). The 2 um absorption band is partly
masked by martian atmospheric CO,, as indicated by the widths of the boxes, and both
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Figure 24. Photograph of the martian surface at the Viking 2 landing site in Utopia Planitia, taken in
1979. The abundant rocks are partly covered by frost.

absorption bands are probably broadened by compositional scatter in pyroxenes. The
absorption bands for Mars and for the SNC meteorites are actually composite spectra of
more than one pyroxene phase; however, Sunshine et al. (1993) deconvolved the
overlapping spectral bands of pigeonite and augite in EETA79001, as shown by open
symbols with tie-lines in Figure 25. High-resolution orbital spectra of Mars obtained by
future orbiting spacecraft may be able to similarly deconvolve pyroxene spectral
components and thus identify coexisting pyroxenes in surface rocks. As an example,
Mustard and Sunshine (1995) determined differences in the modal proportions of pigeonite
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Figure 25. Long- and short-wavelength band positions for SNC meteorites, low-albedo regions of Mars,
and terrestrial pyroxenes of varying composition (modifed from McSween 1994). The martian spectra are
similar to those of basaltic shergottites, suggesting that these meteorites may represent widespread lavas.
" The deconvolved spectra for EETA79001 (Sunshine et al. 1993) separate overlapping bands for pigeonite
and augite, whose individual spectra are joined by tie-lines.
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and augite in comparing high-resolution spectra from Phobos II for Eos Chasma (within
Valles Marineris) and Nili Patera (a caldera in Syrtis Major). In any case, the spectral
properties of all regions examined so far suggest that basaltic shergottites are probably
common lava types on the martian surface (Singer and McSween 1993, Mustard and
Sunshine 1995). .

The spectral field defined by terrestrial pyroxenes with various compositions and
crystal structures is illustrated in Figure 25 by the cross-hatched area (Cloutis and Gaffey
1991). Orthopyroxene plots at the lower left corner of this distribution, and augite plots at
the upper right. The spectra of ALHA77005 and ALH84001, both of which contain
appreciable orthopyroxene, plot in the appropriate corner, and EETA79001 lithology A,
which contains xenocrysts of orthopyroxene, plots closer to this corner than does lithology
B. Likewise, the Nakhla spectra plot in the augite field. High-resolution spectra of Mars
may thus be able to locate possible source craters for these lithologies. It is noteworthy,
however, that the meteorites for which plutonic origins are inferred do not appear to be
common surface rocks.

Nore of the areas surveyed show spectra features indicative of olivine or plagioclase,
although abundant pyroxenes could mask limited amounts of these minerals. Magnetite or
other opaque phases are inferred to be present in the dark regions, based on their low
albedos and other spectral details (Mustard et al. 1993).

The chemical composition of martian duracrust-free soil at the Viking landing sites is
similar to that of basaltic shergottites (Baird and Clark 1981, Warren 1987). This may
imply derivation from a widespread volcanic protolith, and supports the inference from
spectra that shergottites are common surface rocks.

Specific craters on the martian surface have been proposed as the sites from which
SNC meteorites were ejected (e.g. Nyquist 1983, Mouginis-Mark et al. 1992). These
studies were based on a concensus that only the Tharsis volcanic terrain is young enough to
have supplied meteorites with ages <1.3 Ga. Trieman (1995a) used the properties of SNC
meteorites to argue that at least three crater sites are required. Consideration of the size of
the crater necessary to eject fragments of the required size and velocity appears to restrict
choices to craters of at least 12 km diameter (Vickery and Melosh 1987). The location of
specific launch sites for these meteorites would provide ground truth for interpreting
martian spectra.

Preliminary chemical analyses from the Mars Pathfinder landing site (Rieder et al.
1997) indicate the presence of rocks with andesitic compositions. These rocks share certain
chemical characteristics, such as high Fe/Mg, with SNC meteorites, but their compositions
are considerably more fractionated. The Pathfinder site at the mouth of an outflow channel
was originally selected because floods may have carried samples of the ancient martian
crust from the heavily cratered southern highlands. Compositional similarity between the
Pathfinder rocks and mean composition of the Earth’s crust might imply parallel differen-
tiation patterns.

Soils and weathering products

The mineralogy of the martian soil is poorly known, with limited and ambiguous data
coming from Viking lander instruments (magnetic properties, life sciences, and major
element composition), from Mars Pathfinder chemical analyses, and from reflectance
spectral measurements in the visible and near-infrared. Future spacecraft missions will
attempt to fill this void in our knowledge, both with landed mineralogic instruments and
with remote sensing in different wavelength ranges, notably the thermal infrared.
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Iron oxide minerals are prominent in the martian soil, as suggested by its red-orange
color. Reflection spectral studies suggest that the soil contains nanophase hematite and
minor crystalline hematite (Morris et al. 1989, 1993; Bell et al. 1990, Bell 1992, Murchie et
al. 1993). The soil also contains a few percent of a highly magnetic mineral which is
probably titanomagnetite (Hargraves et al. 1977, Baird and Clark 1981). Other iron
minerals may also be present, including schwertmannite (a hydroxylated ferric sulfate) and
ferrihydrite-intercalated clays (Bishop et al. 1993, Bishop and Murad 1996).

Salt minerals are also important. The Viking lander XRF and Pathfinder APXS
analyses of martian soil show high and variable abundances of S which are correlated with
those of Mg; both elements are anticorrelated with Si (Clark 1993). Both S and Mg are
more abundant in crusted soil samples, which suggests the presence of a water-soluble Mg-
sulfate salt; its identity is not known, but possible choices include kieserite MgSO04-H,0,
bloedite MgNay(SOy4),+4H70, and loweite MgNay(SO4)2:2.5H,0 (Clark and van Hart
1981). Sulfate might also be present as ferric sulfate intercalations in smectitic clays or as
schwertmannite (Bishop et al. 1995, Bishop and Murad 1996). Infrared light absorptions
characteristic of sulfate (or bisulfate) minerals are observed in reflection spectra of Mars,
but the mineralogic hosts for these anions are not clear (Pollack et al. 1990, Blaney and
McCord 1995, Bell et al. 1996). Detectable chorine in the soil suggests the presence of
chloride salts, NaCl seems likely (Clark and van Hart 1981), and the positive correlation of
Mg and Cl in soil analyses may suggest a Mg-bearing chloride (Clark 1993). The Viking
XREF analyses admit the possibility of Mg carbonate minerals in the soil, but probably not
Ca carbonates (Clark 1993). Anhydrous carbonates have not been detected spectro-
scopically, although there is some evidence for hydrous magnesium carbonate minerals
(e.g. Calvin et al. 1994). Current interpretations of the Viking life science experiments are
not consistent with abundant carbonate minerals (Banin et al. 1992).

The silicate mineralogy of the martian soil is known poorly. Reflection spectra show
no absorptions characteristic of olivine or pyroxenes, although the bulk composition of the
soil is close to that of basaltic shergottites (Baird and Clark 1981, Banin et al. 1992). The
bulk composition and color of the soil have suggested that it is palagonite, or altered
basaltic glass (Banin et al. 1992). Palagonite on Earth consists of principally of nanophase
phyllosilicates and ferric iron oxides (e.g. Banin et al. 1992), and some palagonites have
reflection spectra (visible through near-infrared) that are essentially identical to that of the
martian soil (e.g. Morris et al. 1993). This model for the soil silicate is attractive in its
simplicity, but cannot explain all available data. Results from the Viking life science and
soil reactivity experiments are more consistent with crystalline clays than with palagonite
(Banin et al. 1992), and near-infrared absorptions attributable to metal—OH bonds (as in
clays) are weak and unusually sharp for known phyllosilicates on Earth (Bell et al. 1994,
Bell 1996). The mineral scapolite has been suggested as a significant component of the
martian soil, but the spectral absorptions that suggested scapolite are also consistent with
other sulfate or carbonate minerals (Clark et al. 1990, Bell 1996).

The nature of the martian soil is one manifestation of chemical weathering on Mars,
which has been explored by Gooding (1978) and Siderov and Zolotov (1986) from
theoretical thermodynamic bases. The martian meteorites contain some low-temperature
alteration minerals of martian origin, as described above, which can be used as constraints
on weathering and soil mineralogy (Gooding 1992). A mixture of smectite and illite such as
occur in the martian meteorites, plus salt and iron oxide minerals, matches the chemical
composition of the martian soil and is perhaps more consistent with the Viking life science
experiment results than is palagonite (Gooding 1992). On the other hand, the Viking XRF
analyses can be accommodated as a mixture of a single silicate component, a single salt
component, and an Fe-Ti oxide (Clark 1993).
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APPENDIX
Representative Mineral Compositions in SNC Meteorites

The Tables on the following pages contain electron microprobe
analyses of pyroxenes (A1), feldspars (or maskelynite) (A2), olivines
(A3), and oxides (A4) in basaltic and lherzolitic shergottites,
nakhlites, Chassigny, and ALH84001.
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