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ABSTRACT

ON THE ESTIMATION OF POINCARÉ MAPS OF
THREE-DIMENSIONAL VECTOR FIELDS NEAR A HYPERBOLIC

CRITICAL POINT

By

Yuting Zou

We study the estimation of Poincaré maps of three-dimensional vector fields

near a hyperbolic critical point, which involves linearization problems. Standard

linearization theorems have several defects in applications. They usually require

complicated non-resonance conditions on the eigenvalues of the vector field at the

critical point. Even when one has these non-resonance conditions, as one gets close to

a resonance, the size of the neighborhood where the C1 linearization exists typically

gets too small for practical uses. We seek for a linearization theorem that overcomes

these shortcomings and may have broad practical applications.

We have proved a partial linearization theorem that gives a C1 linearization

h near a hyperbolic critical point p on a two-dimensional invariant surface Σ of a

three-dimensional vector field X . Let the eigenvalues of DX(p) be a, b and c, where

a > 0 > b > c. Essentially our theorem only requires that 2b > c to obtain h in some

neighborhood U of p in Σ. In addition, the explicit size of U is found, which depends

on the C2 information of X , as well as the C0 and C1 sizes of h. Based on our

partial linearization theorem, we obtain desired estimation of Poincaré maps from

some transversal curve to the stable manifold of p to another transversal surface to

the unstable manifold of p.

Our estimation of such Poincaré maps will have many applications, including an



in-depth study of the famous Lorenz equations. For example, it seems likely that

we will be able to substantially improve results of Tucker on the existence of the

Lorenz strange attractor, and obtain rigorous results on the existence of chaos near

the first homoclinic bifurcation as numerically investigated in the well-known book

of Colin Sparrow.
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Chapter 1

Introduction

Let M be a smooth (C∞) three dimensional Riemannian manifold with associated

topological metric d, and let X be a C2 vector field on M with a hyperbolic critical

point p0 ∈M with real distinct eigenvalues a, b, c satisfying

a > 0 > b > c. (1.1)

Assume that X is forward complete in the sense that, if φ(t, x) denotes the local

flow of X , then, φ(t, x) is defined for all t ≥ 0 and all x ∈M .

Let Ws(p0),W
ss(p0),W

u(p0) denote, respectively, the stable, strong stable,

and unstable manifolds of p0.

These are defined as follows.

Ws(p0) = {x ∈ M : φ(t, x) exists for all t ≥ 0 and lim
t→∞

d(φ(t, x), p0) = 0}
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Wss(p0) = {x ∈M : φ(t, x) exists for all t ≥ 0

and lim sup
t→∞

1

t
log d(φ(t, x), p0) < b}

Wu(p0) = {x ∈M : φ(t, x) exists for all t ≤ 0 and lim
t→−∞

d(φ(t, x), p0) = 0}.

It is well-known thatWs(p0),W
ss(p0) andW

u(p0) are C
2 injectively immersed

copies of the plane and line, respectively, in M .

Let us use the notation Comp(E, x) for the connected component of the set E

containing the point x. For a point p ∈ Ws(p0) and a neighborhood U of p inM , let

Ws(p, U) = Comp(Ws(p0)
⋂
U, p). One can choose arbitrarily small neighborhoods

U so that Ws(p, U) is a topological 2-disk and U \Ws(p, U) consists of a disjoint

pair of open 3-balls.

Let p ∈ Ws(p0) \ {p0}, q ∈ Wu(p0) \ {p0} and let N be a smoothly embedded

2-disk in M , such that N is transversal to Wu(p0) at q. An application of the

Grobman-Hartman theorem (C0 local linearization theorem) shows that there is a

small neighborhood U of p in M and a connected component U0 of U \Ws(p, U)

such that there is a well-defined Poincaré map P from U0 into N . This map simply

takes a point in U0 to the first point on its positive orbit which hits N .

In many applications (e.g. Section 2.2 in [7], [9], and the books [6], [1]) one

encounters the following problem.

Let p ∈ Ws(p0) \ W
ss(p0) and let γ be a C2 embedded arc in U meeting
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Ws(p0) transversely at p and assume that U is small enough so that for each y ∈ γ,

d(y, p) is boundedly related to the arc length of the subarc of γ joining p to y. Let

γ0 = γ
⋂
U0, and, for a point y ∈ γ0, let γ

′
0(y) denote the unit tangent vector to

γ0 at y. One seeks an estimate of the derivative P ′(y) = DPy(γ
′
0(y)).

If the vector field X is C1 linearizable near p0, then it is well-known and easy

to prove that one can find constants 0 < C1 < C2 such that

C1|P
′(y)| ≤ d(y, p)|

b
a|−1 ≤ C2|P

′(y)|. (1.2)

In most applications using estimates of the type (1.2), one merely assumes that

X is, in fact, at least C1 linearizable near p0. In view of the Sternberg linearization

theorem, a generic C∞ vector field is C∞ linearizable near a hyperbolic critical

point, so it does not seem to be a big assumption to assume linearity. However, it

should be noted that there are several defects to the application of the Sternberg

theorem even to get C1 linearizations. Among these defects are the following.

• The theorem requires so-called non-resonance conditions on the eigenvalues

a, b, c;

• Even in the case that X is C∞, as one gets close to a resonance, the size of the

neighborhood on which the C1 linearization exists typically gets very small;

• The amount of smoothness required on X depends on the eigenvalues a, b, c.

Our main result shows that, with the mild additional assumption that b > c
2,

we obtain the estimate (1.2) above for general C2 vector fields in dimension three.
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Theorem 1.0.1. Let X, p0, p, γ0 and P be as above. Also, as above, for y ∈ γ0, let

P ′(y) = DPy(γ
′
0(y))

be the derivative of P on the unit tangent vector γ′0(y) to γ0 at y.

Assume that the eigenvalues a, b, c of X at the critical point p0 satisfy

a > 0 > 2b > c. (1.3)

Then, there are constants 0 < C1 < C2 such that

C1|P
′(y)| ≤ d(y, p)|

b
a|−1 ≤ C2|P

′(y)|. (1.4)

The main tools we use are modifications of techniques in so-called normal hy-

perbolicity theory to get a C2 invariant surface Σ which contains both γ0 and p0

and is tangent at p0 to the sum of the eigenspaces of a, b. Since, by a theorem of

P. Hartman [2], two dimensional C2 vector fields with a hyperbolic saddle point p0

are C1 linearizable near p0, one can get the required estimate.

Since we obtain a linearization of X restricted to an invariant two-dimensional

surface through p0 and not in a full neighborhood of p0, we will refer to our result

as a partial linearization theorem.

Remarks.

• It should be noted that the general tools of normal hyperbolicity in the lit-

erature give some two dimensional surfaces tangent at p0 to the sum of the
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eigenspaces of a, b. However, these surfaces are far from unique, and are usu-

ally constructed by means of globalization techniques. Since we need such

surfaces which contain an a priori given curve γ0, the globalization technique

is not applicable as far as we know. The existence of C2 invariant surfaces

through p0 which contain an arbitrary given transverse curve γ0 seems to be

a new result, and our proof avoids the use of globalizations.

• For various applications, it is important to know the sizes of the constants

C1, C2 in (1.2). We take care to give explicit estimates for these in our work

below.

Using appropriate local coordinates near p0 and replacing p and q by points in

their orbits, it suffices to prove our results for vector fields in R3 with a hyperbolic

critical point at the origin. The precise statement needed is in Theorem 3.0.6.

We first review some of the history of linearization theorems.
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Chapter 2

Linearization theorems

The first general linearization theorem was given by Poincaré in his thesis. He

obtained a theorem that can be rephrased as follows:

Theorem 2.0.2. Let

dxi
dt

= λixi + fi(x1, . . . , xn), 1 ≤ i ≤ n. (2.1)

be a system of differential equations such that λi is a complex number, and each fi is

a complex analytic function in a neighborhood of the origin which vanishes together

with its first order partial derivatives at the origin.

Suppose all the λi lie in the same open half-plane about the origin and

λi 6=

n∑

j=1

mjλj (2.2)

for any non-negative integers mj with 2 ≤
∑k
j=1mj .
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Then, there exists a complex analytic change of coordinates yi = ψi(x1, x2, · · · , xn)

transforming (2.1) into the linear system

dyi/dt = λiyi, 1 ≤ i ≤ n

The conditions (2.2) are called non-resonance conditions and, without them,

there are examples even of polynomials fi where the theorem fails.

Let us recall the definitions of local linearizations in both the flow and diffeo-

morphism contexts.

Let f : Rn → Rn be a Cr diffeomorphism, r ≥ 1, from a neighborhood U of 0

in Rn into Rn such that

f(0) = 0, Df(0) = L.

Then, L is, of course, a linear automorphism of Rn.

A local Ck linearization of f near 0 is a Ck homeomorphism h from a neigh-

borhood V of 0 in U to another neighborhood V ′ of 0 such that

Lh(x) = hf(x)

for x ∈ V
⋂
f−1(V ) .

Next, consider a Cr local flow near 0 in Rn with a fixed point (or critical point)

at 0. This is a Cr map φ(t, x) from a neighborhood (−ǫ, ǫ)× U into Rn where ǫ is

a positive real number such that

7



1. φ(0, x) = x for all x ∈ U ,

2. φ(t, 0) = 0 for all t ∈ (−ǫ, ǫ), and

3. φ(t+ s, x) = φ(t, φ(s, x)) for t, s ∈ (−ǫ, ǫ) such that t + s ∈ (−ǫ, ǫ).

We often use φ or φt to denote the local flow where φt(x) = φ(t, x). Sometimes

we reverse the t and x and write φ(x, t).

A Cr vector fieldX near 0 in Rn is a Cr mapX : U0 → Rn from a neighborhood

U0 of 0.

If X is a Cr vector field near 0 such that X(0) = 0 (with r ≤ 1), then, for every

T > 0 there is a neighborhood U of 0 in Rn and a local flow φ(t, x) = φX(t, x)

defined on (−T, T )× U such that

∂φ(t, x)

∂t
= X(φ(t, x))

for all t ∈ (−T, T ) and x ∈ U .

The local flow φ(t, x) is called the flow of X near 0.

The local flow φ(t, x) is called linear if, in addition to the usual flow properties,

we have x→ φ(t, x) is a linear automorphism of Rn for each t.

Let φt and ψt, |t| < ǫ be two local flows near 0 with fixed points at 0. Let k ≥ 0

be a positive integer.

A local Ck conjugacy near 0 between φt and ψt is a C
k homeomorphism h from

a neighborhood V of 0 to another neighborhood V ′ of 0 such that, there is a positive

real number ǫ1 such that
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1. ψt is defined on V ′ for all |t| ≤ ǫ1,

2. h ◦ φt is defined for all |t| ≤ ǫ1, and

3. ψt ◦ h = h ◦ φt for all |t| ≤ ǫ1.

If ψt is linear, then a local Ck conjugacy between φt and ψt near 0 is called a

local linearization of φt near 0.

If X is a C1 local vector field near 0 with associated local flow φt and derivative

L = DX(0), then a local Ck linearization of X near 0 is a local Ck conjugacy

between φt and the linear flow given by L. In this case, we may assume that the

local flow φt is defined for |t| ≤ T where T is arbitrary. For large T , we simply have

to shrink the neighborhood on which the linearization is defined.

We are now in a position to state the well-known Grobman-Hartman Theorem

[6], [3].

Theorem 2.0.3. (Grobman-Hartman).

1. Let f be a C1 local diffeomorphism of Rn with a hyperbolic fixed point at 0

(i.e., the eigenvalues of Df(0) have norm different from 1). Then, f has a

local C0 linearization near 0.

2. Let X be a C1 local vector field near 0 with a hyperbolic critical point at 0

(i.e. X(0) = 0 and the eigenvalues of DX(0) have non-zero real parts). Let

L = DX(0) and let ψt be the flow of L. Then, for any T > 0, there is a local

C0 conjugacy h between φt and ψt for all |t| ≤ T .
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This is a beautiful and powerful theorem. One could ask for smooth local lin-

earizations for smoother f and/or X .

In this direction there is another well-known theorem due to Sternberg. See the

appendix starting on page 256 in [3] for a proof of this theorem as well as related

results, and further references.

Theorem 2.0.4. (Sternberg)

1. Let f be a C∞ local diffeomorphism of Rn with a hyperbolic fixed point at 0

(i.e., the eigenvalues of Df(0) have norm different from 1). Let λ1, λ2, . . . , λn

be the eigenvalues of Df(0).

Suppose that, for every positive 1 ≤ i ≤ n,and any n-tuple of non-negative

integers (m1, m2, . . . , mn) with 2 ≤
∑n
j=1mj , we have

λi 6=

n∏

j=1

λ
mj
j . (2.3)

Then, f has a local C∞ linearization near 0.

2. Let X be a C∞ local vector field near 0 with a hyperbolic critical point at 0

(i.e. X(0) = 0 and the eigenvalues of DX(0) have non-zero real parts). Let

L = DX(0) and let ψt be the flow of L.

Suppose that, for every positive 1 ≤ i ≤ n,and any n-tuple of non-negative

integers (m1, m2, . . . , mn) with 2 ≤
∑n
j=1mj , we have

λi 6=
n∑

j=1

mjλj. (2.4)
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Then, for any T > 0, there is a local C∞ conjugacy h between φt and ψt for

all |t| ≤ T .

Again the conditions (2.3) and (2.4) are called non-resonance conditions. With-

out them, even a real-analytic system may not be C1 linearizable.

Sternberg’s theorem is very important, and has many applications. However, as

we mentioned in our introduction, it does have some shortcomings.

Finally, we mention the two dimensional C1 linearization theorems of Hartman

[2] which is of major relevance to this thesis. Here, fortunately, there are no non-

resonance conditions to worry about.

Theorem 2.0.5. 1. Let f be a C2 local diffeomorphism of R2 with a hyperbolic

saddle fixed point at 0 (i.e., a pair of real eigenvalues λ1, λ2 of Df(0) satisfy

0 < |λ2| < 1 < |λ1|). Then, f has a local C1 linearization near 0.

2. Let X be a C2 local vector field near 0 in R2 with a hyperbolic saddle critical

point at 0 (i.e. X(0) = 0 and the eigenvalues λ1, λ2 of L = DX(0) satisfy

λ2 < 0 < λ1). Let ψt be the flow of L. Then, for any T > 0, there is a local

C1 conjugacy h between φt and ψt for all |t| ≤ T .

As previously mentioned, we will give a new proof of Theorem 2.0.5 with explicit

estimates for the C0 and C1 sizes of the linearization.
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Chapter 3

A quantitative partial linearization

theorem in R3

Let x = (x1, x2, x3) ∈ R3, and X(x) be a forward complete C2 vector field which

vanishes at the origin and can be written as

X(x) = (X1(x), X2(x), X3(x)) = (ax1 + X̄1(x), bx2 + X̄2(x), cx3 + X̄3(x))

where c < 2b < 0 < a, and X̄i,xj
(0, 0, 0) = 0 for i, j = 1, 2, 3.

For small positive ε0, let

B1 = B1ε0
= {x ∈ R3||x2| ≤ ε0, |x1| ≤ ε0, |x3| ≤ ε0}

and let | · | = supx∈B1
| · | denote the maximum norm of various quantities in

B1. Then, there is a finite constant M > 0, such that |X̄i,xj,xk
(x)| ≤ M for
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i, j, k = 1, 2, 3, and, using the mean value theorem, we have some small constants

ǫ1 > 0 and ǫ2 > 0, such that |X̄i,xj
(x)| ≤ M · ε0 = ǫ2, and |X̄i(x)| ≤ ǫ2 · ε0 = ǫ1

for i, j = 1, 2, 3.

Let

B1top = {x ∈ B1|x2 = ε0},

B1bot = {x ∈ B1|x2 = −ε0},

B+
1 = {x ∈ B1|x1 = ε0},

and

B−
1 = {x ∈ B1|x1 = −ε0}.

and let ϕ(x, t) = ϕt(x) be the local flow of X , so we may write

ϕ(x, t) = (ϕ1, ϕ2, ϕ3) = (eatx1 + ϕ̄1, e
btx2 + ϕ̄2, e

ctx3 + ϕ̄3)

where ϕ̄i for i = 1, 2, 3 are the higher order terms. Set ψt(x) to be the flow of the

corresponding linear vector field of X , i.e,

ψt(x) = (eatx1, e
btx2, e

ctx3)

13



Let us denote the origin (0, 0, 0) by 0, and let Ws(0) denote its stable manifold.

Let Ws
loc =Ws

loc(0) = Comp(Ws(0)
⋂
B1, 0) denote the connected component

of the Ws(0)
⋂
B1 containing 0.

In the following we choose B1 small enough so that the indicated statements

are valid.

Let Γ = Ws
loc

⋂
B1top. Then Γ divides B1top into two connected open sets

each of whose closures is a topological 2-disk. By the Grobman-Hartman theorem,

if x ∈ B1top \ Γ, then there exists τφ(x) > 0, such that ϕ(x, τφ(x)) ∈ B+
1 ∪ B−

1 ,

and for 0 ≤ s < τ(x), ϕ(x, s) is not in B+
1 ∪ B−

1 .

Let

B+
1top = {x ∈ B1top|ϕ(x, τφ(x)) ∈ B+

1 },

and

B−
1top = {x ∈ B1top|ϕ(x, τφ(x)) ∈ B−

1 }.

Then, the map P (x) = ϕ(x, τφ(x)) is called a Poincaré map from B+
1top ∪B

−
1top \Γ

to the sides B+
1 ∪B−

1 .

Recall that we use the maximum norm

|(v1, v2, v3)| = max(|v1|, |v2|, |v3|)

on vectors v = (v1, v2, v3) ∈ R3 and its induced norm on various other quantities.

For instance, the arclength of curves, lengths of tangent vectors, and norms of linear
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maps are all defined relative to this maximum norm.

Consider a C2 curve γ in B1top which is transverse to Γ at the point p ∈ Γ.

Let γ± = γ ∩ B±
1top. Assume that γ is parametrized by arclength and, for y ∈ γ,

let ℓy denote the arclength of the subarc of γ from p to y. Assume that there are

constants A2 > A1 > 0 such that

A1ℓy ≤ |y − p| ≤ A2ℓy.

Let vy be the unit tangent vector to γ± at the point y ∈ γ±, and let P ′(y) =

DPy(vy).

The main result needed to prove Theorem 1.0.1 is then the following

Theorem 3.0.6. There are constants C2 > C1 > 0 such that

C1|P
′(y)| ≤ |y − p||

b
a |−1 ≤ C2|P

′(y)|.

3.1 A sketch of the proof

The proof of Theorem 3.0.6, which we call the quantitative partial linearization

theorem, is divided into several parts, shown step by step in the subsequent sections.

First, we straighten Ws
loc(0) andW

u
loc(0) and then obtain a C2 surface Σ in B1

which meets B1top in the curve γ and is invariant under the flow φ = φ(x, t) on orbit

pieces which stay in B1. This allows us to transform the problem to an analogous

problem for a flow η = η(x, t) in R2 with a hyperbolic critical point at (0, 0) with a
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transverse curve γ̃ through a point p̃ in the stable manifold of η. Now, a well-known

theorem of Hartman [2] gives a C1 linearization of η in some neighborhood of (0, 0).

Using this linearization, we can complete the proof of the Theorem 3.0.6.

General comment. We emphasize that, while many of the general ideas in

our construction have been available in the dynamics literature, we believe that our

results are new in at least two ways.

• the construction of the invariant C2 surface Σ containing an arbitrary trans-

verse curve γ.

• the detailed estimates of the C1 sizes in our linearization.

Comment on the two dimensional local linearization. Following Stern-

berg [8] to linearize a flow, one first linearizes the time T map for some T > 0 and

uses the so-called integral technique. Thus the problem reduces to finding a local C1

linearization near a hyperbolic fixed point for a C2 planar diffeomorphism f . This

theorem is also proved in Hartman [3].

A new proof for the diffeomorphism case was given by Palis and Takens in [5].

Their method consists of first C1 linearizing along the stable and unstable mani-

folds, and then contructing two transverse C1 foliations containing these manifolds

which are used to define the coordinates of the required C1 linearization. Their

proof relies on a clever use of the stable manifold theorem for the derivative map

Df on the tangent bundle, and, hence involves a four dimensional local diffeomor-

phism. While their proof can be modified to work in our case, it seems somewhat

complicated to obtain estimates of the size of the domain of the linearization and
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its C1 size from that approach. Since these types of estimates are important for

applications, we proceed to construct our own proof of the Hartman theorem. The

only thing that we borrow from Palis and Takens is the idea of transverse foliations.

Our construction of the foliations and the ensuing estimates are new.

3.2 Linear estimates in dimension two

Here let us derive some properties of a linear flow in R2:

ψt(x) = (ψ1, ψ2) = (eatx1, e
btx2)

where a > 0 > b. Here in R2, we only consider B1 = {x = (x1, x2) ∈ R2|0 ≤

x1 ≤ ε0, 0 ≤ x2 ≤ ε0}, with B1top = {(x1, ε0) : 0 ≤ x1 ≤ ζε0, 0 < ζ < 1},

B1r = {x ∈ B1|x1 = ε0}. Since other quadrants can be done similarly, we do

not show them here. Let the point p = (0, ε0), as is stated above, for any ini-

tial condition x = (x1, ε0) ∈ B1top \ p, there is a finite time τ(x) > 0, such that

ψ(x, τ(x)) = (ε0, y2) ∈ B1r. Let us name such map Pl(x1, ε0) = (ε0, y2), where

x1 6= 0. We want to find the size of DPl, so we proceed as follows.

We have Pl(x1, ε0) = (ε0, y2) = (eatx1, e
btε0), where x1 6= 0. By comparing

the first component, we have

et = (
ε0
x1

)
1
a .
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Plugging to the second component, we have

y2 = ε0(
ε0
x1

)
b
a .

So we can write

Pl(x1, ε0) = (ε0, ε0(
ε0
x1

)
b
a ).

Since

∂(ε0(
ε0
x1

)
b
a )/∂x1 = ε0 ·

b

a
· (
ε0
x1

)
b
a−1 −ε0

(x1)
2
= −

b

a
(
ε0
x1

)
b
a+1

we have

DPl =




0 0

∂y2
∂x1

0


 =




0 0

− b
a(
ε0
x1

)
b
a+1 0


 .

So

DPl ·



1

0


 =




0

− b
a(
ε0
x1

)
b
a+1


 .

3.3 Conjugacy restricted to the stable manifold

In this section, we will adapt the proof of Sternberg’s linearization theorem [1956]

into the following quantitative version, with explicit conditions on the neighborhood

and sizes of the linearization worked out.

Theorem 3.3.1. Let f : R→ R be a C2 function such that f(0) = 0 and f
′
(0) = a

where |a| ∈ (0, 1). If in Bε0(0) = {y ∈ R : |y| ≤ ε0}, we have |f
′′
| ≤ M and

β = |a| +Mε0/2 < 1, then there is a unique C1 map u : Bε0 → R, such that
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u′(0) = 0, and if h(y) = (id+ u)(y) then

h(f(y)) = ah(y).

Moreover,

|h| ≤ ε0 exp(
C

1− β
) and |h

′
| ≤ exp(

2C

1− β
)

where C =Mε0/(2|a|).

Proof: Using Taylor’s theorem, in a small neighborhood of the origin Bε, there

is a real number θy ∈ (0, y) such that

f(y) = ay +
f
′′
(θy)

2
y2. (3.1)

For k ≥ 0, let

fk(y) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k

(y)

so that

fk(y) = y

k∏

i=1

fi(y)/fi−1(y)

and

fk(y)

ak
= y

k∏

i=1

fi(y)/(afi−1(y)).

Since

fi(y) = f(fi−1(y)) = afi−1(y) +
f
′′
(θi)

2
(fi−1(y))

2
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we have

fi(y)/(afi−1(y)) = 1 +
f
′′
(θi)

2a
fi−1(y),

and, hence,

fk(y)

ak
= y

k∏

i=1

fi(y)/(afi−1(y)) = y
k∏

i=1

[1 +
f
′′
(θi)

2a
fi−1(y)].

Let us define a function h(y) by

h(y) = lim
k→∞

fk(y)

ak
.

Assuming this, notice that it provides a linearization since

h(f(y)) = lim
k→∞

fk(f(y))

ak
= lim
k→∞

fk+1(y)

ak
= lim
k→∞

a
fk+1(y)

ak+1
= ah(y).

Let us proceed to prove that h(y) is well defined; i.e., that the limit exists.

We have

h(y) = lim
k→∞

fk(y)

ak
= lim
k→∞

y
k∏

i=1

[1 +
f
′′
(θi)

2a
fi−1(y)] (3.2)

so, it suffices to show that

∞∑

i=1

|
f
′′
(θi)

2a
fi−1(y) |<∞. (3.3)
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Let

| · | = sup
y∈Bε0

| · |.

Now,

f(y) = ay +
f
′′
(θ)

2
y2 = (a +

f
′′
(θ)

2
y)y

and, since |f
′′
| ≤M and |a| ∈ (0, 1), we have

|f(y)| ≤ (|a|+
M

2
ε0)|y|.

By induction, for i ≥ 1 we then get

|fi−1(y)| ≤ (|a|+
M

2
ε0)

i−1|y| ≤ (|a|+
M

2
ε0)

i−1ε0.

Hence

|
f
′′
(θi)

2a
fi−1(y)| ≤

M

2|a|
(|a|+

M

2
ε0)

i−1ε0 = Cβi−1 (3.4)

where the constants C =
ε0M
2|a|

and β = |a| + M
2 ε0 ∈ (0, 1) are those given in the

theorem. The above inequality implies that the infinite product in (3.2) converges

uniformly, and thus, the linearization h(y) exists. As the uniform limit of continuous

functions is continuous, we conclude that h(y) is continuous.

Using log(1 + x) ≤ x for x > 0, we have, for any positive real numbers pn
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∞∏

n=1

(1 + pn) = exp(log(
∞∏

n=1

(1 + pn))) = exp(
∞∑

n=1

log(1 + pn))

≤ exp(
∞∑

n=1

pn).

Using that

h(y) = lim
k→∞

fk(y)

ak

where

fk(y)

ak
= y

k∏

i=1

fi(y)/(afi−1(y)) = y
k∏

i=1

[1 +
f
′′
(θi)

2a
fi−1(y)]

we get

| h(y) | = | y




∞∏

i=1

[1 +
f
′′
(θi)

2a
fi−1(y)]


 |

≤ ε0 exp(
∞∑

i=1

Cβi−1) ≤ ε0 exp(
C

1− β
).

Further, for each y ∈ (0, ε0) there is a τi ∈ (0, ε0) such that

f ′(y) = a+ f ′′(τi)y.

Since, for each k > 0 we have (with a possibly different τi)
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f ′k(y)

ak
=

k∏

i=1

(
f ′(fi−1(y))

a
) =

k∏

i=1

(
a+ f ′′(τi)fi−1(y)

a
) (3.5)

=

k∏

i=1

(1 +
f ′′(τi)

a
fi−1(y))

and, as above,

|
f ′′(τi)

a
fi−1(y)) |≤ 2C βi−1

we get h′(y) exists and

h′(y) = lim
k

f ′k(y)

ak
.

In addition, with C as above, we get

| h′(y) |≤ exp(
2C

1 − β
).

Notice that, from the last expression in (3.5), we have that

f ′k(y)

ak
= 1

for y = 0. Thus, h(y) = y + u(u) where u is a C1 function such that u′(0) = 0.

By now we have shown the existence of a C1 linearization h described in the

theorem. It remains to show such h is unique. Let L(y) = ay. Suppose there is
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another function g : Bε0 → R of the same properties as h; i.e., g−1fg = L, g(0) = 0,

and g′(0) = 1. Then f = gLg−1 and so h−1gLg−1h(y) = ay. Let ρ = h−1g, we

have ρLρ−1 = L, ρ(0) = 0, and ρ′(0) = 1. So we can write ρ(y) = y + v(y)

with v(y) ∈ C1, v(0) = 0 and v′(0) = 0. Then let us show for such ρ, we have

ρ(y) = y for all y ∈ Bε0, i.e., v(y) = 0 for all y ∈ Bε0. By ρLρ
−1(y) = ay, we have

ρL(y) = aρ(y), which is

ay + v(ay) = a(y + v(y))

so v(ay) = av(y), for all y ∈ Bε0. Taking derivatives, we get av′(y) = av′(ay), i.e.,

v′(y) = v′(ay) for all y ∈ Bε0. We claim that v′(y) = 0 for all y ∈ Bε0. Suppose

there is z ∈ Bε0 such that v′(z) 6= 0, then v′(z) = v′(az) 6= 0. Since |a| < 1,

aiz ∈ Bε0 for integer i ≥ 0. We have

v′(anz) = · · · = v′(az) = v′(z) 6= 0.

But limn→∞ anz = 0, by the continuity of v′ we have v′(z) = v′(0) = 0 which is

a contradiction. So the claim is proved, which says v′(y) = 0 for all y ∈ Bε0, i.e,

v(y) is a constant function. Since v(0) = 0, we have v(y) = 0, giving ρ(y) = y or

thus h = g. The uniqueness is proved, and so the proof of Theorem 3.3.1 is complete.

Now consider a local C2 flow φt, |t| ≤ 1, on R, with a hyperbolic critical point at

the origin, i.e., if f = φ1, then f satisfies the assumptions of Theorem 3.3.1. Thus,

f(x) = ax + f̃(x), where 0 < a < 1, x ∈ R, and f̃(x) stands for the higher order

terms. Using the uniqueness of h, which is derived from a standard technique as in
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[ref Newhouse Notes] show that h also linearizes {φt}|t|≤1. That is, if ψt(x) = eatx,

then hφt(x) = ψth(x) for x ∈ Bε0.

3.4 Local C1 linearization for two dimensional dif-

feomorphisms

Remark: It is well-known that linearizations for flows follow from consideration of

associated time−1 maps. Hence we restrict here to the case of diffeomorphisms (see

p. 817 in [8]).

In this section, we consider the C2 diffeomorphism f : R2 → R2 with a hyper-

bolic fixed point at (0, 0). We assume the local unstable and stable manifolds of f ,

denoted by Wu(0),Ws(0), are contained in the coordinate lines {(x1, x2) : x2 =

0}, {(x1, x2) : x1 = 0}, respectively.

Let ε0 > 0 and consider the square

Bε0 = {(x1, x2) : |x1| ≤ ε0, |x2| ≤ ε0}.

For x = (x1, x2) ∈ Bε0, we assume that

f(x1, x2) = (λ1x1 + f̃1(x1, x2), λ2x2 + f̃2(x1, x2)) = (f1, f2) (3.6)

where f̃i, i = 1, 2, are the nonlinear terms, and λ1 > 1, 0 < λ2 < 1.
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Let us write the Jacobian matrix of Dfx as

Dfx =



Ax Bx

Cx Dx


 .

In addition, we assume that there are a small ǫ > 0 and a constant K > 0 such

that

f̃i(0, 0) = 0 and the first partial derivatives f̃ixj
(0, 0) = 0, for i, j = 1, 2 (3.7)

|B| ≤ ǫ, |C| ≤ ǫ, 0 < λ2 − ǫ ≤ D ≤ λ2 + ǫ < 1, 1 < λ1 − ǫ ≤ A ≤ λ1 + ǫ, (3.8)

and,

|dA−1| ≤ K, |dB| ≤ K, |dC| ≤ K, |dD| ≤ K. (3.9)

Using the previous section, suppose we have found C1 linearizations hs : U → R

of f |Ws(0) and h
u : U

′
→ R of f |Wu(0). Then in this section, we will proceed to

linearize f : R2 → R2 in some neighborhood B1 of Ws(0)
⋃
Wu(0) in Bε0. This

will be done via a modification of ideas in [[5]]. We will construct the neighborhood

B1 and C1 submersions πu : B1 → Ws(0) and πs : B1 → Wu(0) which commute

with f , and, together with the linearizations hs and hu restricted to the local stable

26



and unstable manifolds, will give a linearization h in B1 as

h(q) = (h1, h2) = (huπs(q), h
sπu(q)) = q̄

h−1(q̄) = π−1
u (hs)−1(q̄y) ∩ π

−1
s (hu)−1(q̄x).

The inverse images of the submersions πs, πu will define two transverse folations

which are invariant by f . These foliations, after adjustments using hu, hs, become

the local coordinate curves of the linearization h.

We actually only deal with the construction of πu, leaving the analogous con-

struction of πs to the reader.

Thus, we prove the following theorem.

Theorem 3.4.1. Let f : R2 → R2 be a C2 diffeomorphism satisfying (3.6)-(3.9)

above. Define

α =
1

(λ1 − ǫ)(λ2 − ǫ)
, M =

λ1 + 2ǫ

α(1− ǫ2
α )

, µ =
M(λ2 + 2ǫ) + ǫ

λ1 − ǫ
. (3.10)

Assume that ǫ is small enough so that

λ2 + 3ǫ

λ1 − ǫ
< 1 and µ < 1. (3.11)

Then, there is a neighborhood B1 of Ws(0)
⋃
Wu(0) in Bε0 and a C1 submer-

sion πu : B1 → Ws(0) such that
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πuf = fπu on B1

⋂
f−1(B1). (3.12)

Moreover, one has the estimates

|πu(x1, x2)− x2| ≤ ε0, (3.13)

and

|
∂πu
∂x1

| ≤ ε0(1 +
F

1− µ
) · exp(

ε0F

1− µ
)

|
∂πu
∂x2

− 1| ≤ (
ε0 · F

1− µ
) exp(

ε0 · F

1− µ
)

where

F =M ·K(
3

λ1 − ǫ
+ λ2 + 3ǫ).

Let us start proving the theorem. We write f(x1, x2) = (f1(x1, x2), f2(x1, x2)).

Consider the sets B+
ε0

and B−
ε0

defined by

B+
ε0

= {(x1, x2) ∈ Bε0 |x2 ≥ 0}, (3.14)

B−
ε0

= {(x1, x2) ∈ Bε0 |x2 ≤ 0} (3.15)
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We will construct πu on B+
ε0

and leave the analogous construction on B−
ε0

to

the reader.

We choose 0 < y0 < ε0, and a small δ > 0, such that

f−1(0, y0 + δ) ∈ B+
ε0
.

If we write p = (0, y0), and p
± = (0, y0 ± δ), then the above condition becomes

f−1(p+) ∈ B+
ε0
.

We write I1 to be the interval between p− and p+ on the y-axis, and similarly write

I2 to be the interval between f(p−) and f(p+), and I0 to be the interval between

f(p−) and p+ (see figure 3.1). In addition, we use I−1 to denote the set of the

second coordinates of f−1(0× I0) (see figure 3.1). Then we use l0 to represent the

horizontal line segment that passes through p inside B+
ε0

. And we take D0 as the

region bounded above and below by l0 and f(l0), which stays inside B+
ε0

, including

its boundaries (see figure 3.2).

We define B1 to be the connected component of
⋃∞
n=0(f

n(D0) ∩ B+
ε0

) that

contains p. Now let us proceed to define a C2 horizontal foliation Fu over the base

I0, which can then be extended to the whole B1 by the iteration of f .

First, we may choose a smooth bump function ρ(x2) over I0 such that, ρ(x2) = 1

over I1; ρ(x2) = 0 over I2; and over I0 \ (I1∪I2), ρ(x2) is monotonically increasing

w.r.t. x2 with 0 < ρ(x2) < 1.
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Figure 3.1: Intervals

Second, we define the first horizontal foliation F1 over the base I0 ∪ I−1 (see

figure 3.3). For every given x2 ∈ I0 ∪ I−1, define the leaf through (0, x2) as the set

F1(x2) = {(x1, x2)| |x1| ≤ ε0}

which can also be rewritten as

F1(x2) = {(x1, η1(x1)| |x1| ≤ ε0}

where η1(x1) = x2 for every given x2 ∈ I0 ∪ I−1, i.e., η1 is a constant function.

Next, let us define our second horizontal foliation F2 (see figure 3.4) over the
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Figure 3.2: D0. For interpretation of the references to color in this and all other
figures, the reader is referred to the electronic version of this dissertation

base I0. We write f−1(0, x2) = (0, x̃2) ∈ B+
ε0

. And for every given x2 ∈ I0, define

the leaf through (0, x2) to be

F2(x2) = f(F1(x̃2)) ∩ B
+
ε0
.

We may also write it as

F2(x2) = {(x1, η2(x1)| |x1| ≤ ε0}

where η2(0) = x2.

Finally, our desired horizontal foliation Fu over I0 is a combination of F1 and

F2 via the bump function ρ(x2). As for every given x2 ∈ I0, we define the leaf of
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Figure 3.3: F1(y)

Fu through (0, x2) to be:

Fu(x2) = {(x1, ρ(x2)η1(x1) + (1− ρ(x2))η2(x1)) : |x1| ≤ ε0}.

Observe that, by our definition of ρ(x2), F
u(x2) agrees with F1(x2) for x2 ∈ I1,

and agrees with F2(x2) for x2 ∈ I2. For every given x2, the tangent vectors along

the leaf F1(x2) equals 0; and the tangent vectors along the leaf F2(x2) can be

written as



f1x1

f1x2

f2x1
f2x2






1

0


 =



f1x1

f2x1


 rescaled

−−−−−−−→




1

f2x1
f1x1




where we know f1x1
6= 0. So the tangent vectors to the leaf Fu(x2) can be repre-
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Figure 3.4: F2(y)

sented as

ρ(x2)



1

0


+ (1− ρ(x2))




1

f2x1
f1x1


 =




1

(1− ρ(x2))
f2x1
f1x1


 . (3.16)

The computation above also implies that our leafs of Fu(x2) for different x2’s do

not intersect, i.e, the tangent vector at every point to a given leaf is uniquely de-

fined. Moreover, in the next paragraph we show the slope of each tangent vector is

bounded by 1, which implies our foliation Fu(x2) is well defined.

Let

Xu =



Xu,1

Xu,2


 =




1

(1− ρ(x2))
f2x1
f1x1


 .

We will need the following estimate, which says the absolute value of the slope of
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each tangent vector above is less than 1. Recall our assumption in (3.8), we know

f1x1
≥ λ1 − ǫ > 1 and |f2x1

| ≤ ǫ, so we have

|Xu,2|

|Xu,1|
= |(1− ρ(x2))

f2x1
f1x1

|

≤ |
f2x1
f1x1

|

≤
ǫ

λ1 − ǫ
< 1.

We now extend Xu to B1. For each x ∈ B1 \ B1bot, there is a least integer

n(x), such that f−n(x)(x) ∈ D0. Let

Xu(x) = Df
n(x)

f−n(x)(x)
·Xu(f

−n(x)(x)).

A λ-lemma (inclination lemma) argument shows that the absolute value of the slope

|Xu,2(x)/Xu,1(x)| of Xu(x) remains bounded by 1 for all x ∈ B1 and converges to

0 as x approaches B1bot. Let

P̃x =
Xu,2(x)

Xu,1(x)

be this slope. For each x we define

Yu =




1

P̃x


 (3.17)

for x ∈ B1 \B1bot, and

Yu =



1

0



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for x ∈ B1bot. This P̃x is a continuous function from B1 to R, such that |P̃x| ≤ 1

for all x ∈ B1.

Our main result of this section is the following.

Theorem 3.4.2. The vector field Yu constructed above is C1 in B1. Equivalently,

the function x→ P̃x is C1 in B1.

As we indicated above the integral curves of Yu will give our desired foliation

Fu. The proof that Yu is C1, or equivalently, the function x → P̃x is C1, will

require several steps. The proof will be obtained by finding a sequence g1, g2, · · · ,

of C1 functions, such that

1. gn converges to P̃ uniformly on B1,

2. Dgn converges uniformly on B1.

Following this, it is standard that P̃ is C1 and DP̃ = limn→∞Dgn.

We will use the technique of the Fiber Contraction Theorem familiar from the

Invariant Manifold Theory as in [4]. This involves definitions of certain function

spaces and associated mappings. Let us proceed to define our first function space

G.

Consider the space C0(B1, R) of bounded continuous functions from the box

B1 to R with supremum norm supx∈B1
| · | that makes it a Banach space. Let
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C01(B1, R) be the closed subset of C0(B1, R) with each of its element bounded by

1. Then C01(B1, R) is a complete metric space with the metric induced by this norm.

Let

G = {P |P ∈ C01(B1, R), P (x) = P̃ (x) for x ∈ D0 ∪B1bot}.

G is also a complete metric space equipped with the same norm supx∈B1
| · |.

The first step is to show that P̃x is the unique fixed point of a contraction map

Γ on G, which we now define. Let f = φX,T , by construction we have

Dfy ·




1

P̃y


 =




c

c · P̃x


 (3.18)

where y = f−1(x) and c is a scalar. Using the notation at the beginning of this

section, we write 


Ay By

Cy Dy


 ·




1

P̃y


 =




c

c · P̃x


 . (3.19)

By solving the above equations for P̃ , we have

Ay +ByP̃y = c

Cy +DyP̃y = c · P̃x.

So

P̃x =
Cy +DyP̃y

Ay +ByP̃y
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which is equivalent to

AyP̃x + P̃yByP̃x = Cy + P̃yDy.

So we have

P̃x = A−1
y Cy + A−1

y DyP̃y − A−1
y ByP̃yP̃x.

Given P ∈ G, we define Γ(P ) as follows. For x ∈ D0 ∪B1bot, set

Γ(P )x = P̃x.

For x ∈ B1 \ (D0 ∪ B1bot), let y = f−1(x), and

Γ(P )x = A−1
y Cy + A−1

y DyPy − A−1
y ByPxPy. (3.20)

Clearly, Γ(P )x is continuous in x. To show that Γ(P ) ∈ G, it suffices to show

that

sup
x∈B1

|Γ(P )x| ≤ 1.

For each x ∈ B1 and y = f−1(x), we have

|Γ(P )x| ≤ |A−1
y Cy|+ |A−1

y DyPy|+ |A−1
y ByPxPy|

≤
ǫ

λ1 − ǫ
+
λ2 + ǫ

λ1 − ǫ
+

ǫ

λ1 − ǫ
.
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If the size of B1 is properly chosen, we will have

λ2 + 3ǫ

λ1 − ǫ
< 1.

So

|Γ(P )| < 1

which means Γ maps G into itself.

Moreover, the Lipschitz constant λ of Γ can be computed as follows

|Γ(P1)x − Γ(P2)x| ≤ |A−1
y Cy + A−1

y DyP1(y)− A−1
y ByP1(x)P1(y)

−A−1
y Cy − A−1

y DyP2(y) + A−1
y ByP2(x)P2(y)|

≤ |A−1
y Dy||P1(y)− P2(y)|

+|A−1
y By||P1(x)P1(y)− P2(x)P2(y)|

where

|P1(x)P1(y)− P2(x)P2(y)| ≤ |P1(x)P1(y)− P1(x)P2(y)

+P1(x)P2(y)− P2(x)P2(y)|

≤ |P1(x)||P1(y)− P2(y)|+ |P2(y)||P1(x)− P2(x)|.

Since |P1| ≤ 1 and |P2| ≤ 1,

|P1(x)P1(y)− P2(x)P2(y)| ≤ 2|P1 − P2|
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we have

|Γ(P1)− Γ(P2)| ≤ (|A−1D|+ 2|A−1B|)|P1 − P2|

Let

λ = |A−1D|+ 2|A−1B| ≤
λ2 + ǫ

λ1 − ǫ
+ 2

ǫ

λ1 − ǫ
=
λ2 + 3ǫ

λ1 − ǫ

If in B1, we have λ < 1, then Γ is a contraction mapping with contraction constant

λ. That means, for any initial choice of P ∈ G, Γn(P ) converges uniformly to a

unique fixed point. Since Γ(P̃ ) = P̃ , we know P̃ is the unique attracting fixed point.

So we may choose our converging sequence as follows.

To get our initial P0, we may use a smooth bump function ρ : R2 → R such

that ρ(x) = 1 on a neighborhood of D0 and ρ(x) = 0 on a neighborhood of B1bot.

Then we define a C1 function g0, such that g0|B1
∈ G:

g0 = ρ(x)P̃ + (1− ρ(x)) · 0 = ρ(x)P̃

for all points in a neighborhood U0 of B1. Let P0 = g0|B1
, we see that P0|D0

= P̃ ,

P0|B1bot
= 0 and is C1 on B1. Now for y = f−1(x), let

g1(x) = Γ(g0) = A−1
y Cy + A−1

y Dyg0(y)− A−1
y Byg0(x)g0(y)

which is C1 on a neighborhood of B1. Inductively, set

gn(x) = Γ(gn−1) = A−1
y Cy + A−1

y Dygn−1(y)− A−1
y Bygn−1(x)gn−1(y)
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This gives us a sequence of C1 functions gn with the following properties:

1. gn is defined and is C1 on a neighborhood Un of B1,

2. gn|B1
∈ G,

3. Γ(gn) converges uniformly to P̃ on B1.

Let Pn = gn|B1
for n ≥ 0, we have Γn(P0) = Pn, and we can find the C0 size

of P̃ , that is

|P̃ | ≤
λn

1− λ
|P1 − P0|+ |Pn|. (3.21)

Also it can be shown that

|P̃ | ≤
λ

1− λ
|P1 − P0|.

We wish to show that DPn converges uniformly on B1. For this purpose we will

use the Fiber Contraction Theorem on a suitable space G ×H which we proceed to

define. First of all, let us briefly review some definitions and the Fiber Contraction

Theorem.

Definition 3.4.3. Let (G, dG) and (H, dH) be metric spaces. The map Λ : G×H →

G ×H of the form Λ(P,Q) = (Γ(P ),Ψ(P,Q)) is called a bundle map on G ×H over

the base Γ : G → G with principle part Ψ : G ×H → H.

Definition 3.4.4. The bundle map is called a fiber contraction on G × H if there

is a k ∈ [0, 1), such that, for every P ∈ G, the map Q → Ψ(P,Q) is a contraction

mapping with contraction constant k.

40



Theorem 3.4.5. [Fiber contraction theorem ] Let (G, dG) and (H, dH) be met-

ric spaces and Λ a continuous fiber contraction on G × H over the base Γ : G → G

with principle part Ψ : G × H → H. If P̃ and Q̃ are unique attracting fixed points

of Γ and Q→ Ψ(P̃ , Q) respectively, then (P̃ , Q̃) is a unique attracting fixed point of

Λ.

Now let us define the set of candidates of DP where P is C1, and then con-

struct an operator which has a unique fixed point as DP in this set. Let H =

C0(B1, L(R
2, R)) be the space of bounded continuous functions from B1 to the lin-

ear maps from R2 to R. Let Q be any element in H, H is a Banach space equipped

with the norm

|Q| = sup

x∈B1,v∈R
2,|v|=1

|Qx · v|.

We now define an operator Q → Ψ(P,Q) for Q ∈ H, P ∈ G. For a C1 function P ,

we have

dΓ(P )x = d(A−1
f−1(x)

C
f−1(x)

) + d(A−1
f−1(x)

D
f−1(x)

P
f−1(x)

)

−d(A−1
f−1(x)

B
f−1(x)

PxPf−1(x)
).

Let y = f−1(x) as before,

dΓ(P )x = {dA−1
y df−1(x)Cy + A−1

y dCydf
−1(x) + d(A−1

y Dy)df
−1(x)Py

+A−1
y DydPydf

−1(x)− d(A−1
y By)df

−1(x)(PxPy)}

−(A−1
y By)(dPxPy + PxdPydf

−1(x)).
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In this form, we define

Ψ(P,Q)(x) = {dA−1
y df−1(x)Cy + A−1

y dCydf
−1(x) (3.22)

+d(A−1
y Dy)df

−1(x)Py + A−1
y DyQydf

−1(x)

−d(A−1
y By)df

−1(x)(PxPy)}

−(A−1
y By)(QxPy + PxQydf

−1(x)).

Consider the bundle map Λ(P,Q) : G × H → G × H defined by Λ(P,Q) =

(Γ(P ),Ψ(P,Q)). Observe that, since Γn(P0) = Pn, we have

Λ(P0, dP0) = (Γ(P0),Ψ(P0, dP0)) = (Γ(P0), dΓ(P0)) = (P1, dP1).

Suppose

Λn−1(P0, dP0) = (Pn−1, dPn−1)

Inductively,

Λn(P0, dP0) = (Γ(Pn−1),Ψ(Pn−1, dPn−1)) = (Γ(Pn−1), dΓ(Pn−1))

= (Pn, dPn).

which converges uniformly if Λ is a fiber contraction, by the Fiber Contraction

Theorem. And thus dPn converges uniformly. Now let us show that Λ is a fiber

contraction.
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First, we prove that for any given P ∈ G, the map Q → Ψ(P,Q) maps H to

itself. It is easy to see that Ψ(P,Q), for a given P , is continuous with respect to

x ∈ B1, since f is C2. We will need to show Ψ(P,Q) is bounded. We proceed as

follows

|Ψ(P,Q)| ≤ {|dA−1||C|+ |A−1||dC|+ |d(A−1D)||P | − |d(A−1B)|P |2}|df−1|

+|A−1D ·Q||df−1|+ |A−1B||Q · P + P ·Q · df−1|

≤ {|dA−1||C|+ |A−1||dC|+ |d(A−1D)|+ |d(A−1B)|}|df−1|

+|A−1D||Q||df−1|+ |A−1B|(|Q|+ |Q||df−1|)

≤ {|dA−1||C|+ |A−1||dC|+ |d(A−1D)|+ |d(A−1B)|}|df−1| (3.23)

+{|A−1D||df−1|+ |A−1B|(1 + |df−1|)}|Q|

where we have used |P | ≤ 1. Now, we need to compute |df−1| to proceed. For

df =




A B

C D




we know

df−1 =
1

AD − BC



D −B

−C A


 .

Recall the definitions of α and M from (3.10), we have

α =
1

(λ1 − ǫ)(λ2 − ǫ)
(3.24)

and
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M =
λ1 + 2ǫ

α(1− ǫ2
α )

≈
λ1
λ1λ2

=
1

λ2
, (3.25)

We claim that

|df−1| ≤M. (3.26)

Indeed, since |AD| > α and |BCAD | < ǫ2
α , we have

|df−1| ≤ |
1

AD − BC
||



D −B

−C A


 |

≤ |
1

AD − BC
|(|A|+ |C|)

≤
1

|AD||1− BC
AD |

(|A|+ |C|)

≤
1

|AD||1− BC
AD

|
(λ1 + ǫ+ ǫ)

≤
1

α(1− ǫ2
α )

(λ1 + 2ǫ) =M.

In addition, from (3.9) we have

{|dA−1||C|+ |A−1||dC|+ |d(A−1D)|+ |d(A−1B)|}|df−1|

≤ M(ǫK +
K

λ1 − ǫ
+K(λ2 + ǫ) +

K

λ1 − ǫ
+Kǫ+

K

λ1 − ǫ
)

= M ·K(
3

λ1 − ǫ
+ λ2 + 3ǫ).
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To simplify the expression, let us write

F =M ·K(
3

λ1 − ǫ
+ λ2 + 3ǫ). (3.27)

Now, going back to (3.23), we have

|Ψ(P,Q)| ≤ F + (M
λ2 + ǫ

λ1 − ǫ
+

ǫ

λ1 − ǫ
(1 +M))|Q|.

Since Q ∈ H is also bounded, we have Ψ(P,Q) is bounded. So we have proved

the map Q→ Ψ(P,Q) maps H to itself.

Next, we will show that the map Q → Ψ(P,Q) is a contraction mapping. For

any given P ∈ G and any Q, Q̃ ∈ H, we know

Ψ(P,Q)x −Ψ(P, Q̃)x = A−1
y DyQydf

−1(x)− A−1
y DyQ̃ydf

−1(x)

−(A−1
y By) · (Qx · Py + Px ·Qy · df

−1(x))

+(A−1
y By) · (Q̃x · Py + Px · Q̃y · df

−1(x))

= A−1
y Dy(Qy − Q̃y)df

−1(x)− A−1
y By(Qx − Q̃y)Py

−A−1
y ByPx(Qy − Q̃y)df

−1(x).
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Since |P | ≤ 1, we have

|Ψ(P,Q)−Ψ(P, Q̃)| ≤ M
λ2 + ǫ

λ1 − ǫ
|Q− Q̃|+

ǫ

λ1 − ǫ
|Q− Q̃|

+M
ǫ

λ1 − ǫ
|Q− Q̃|

=
M(λ2 + 2ǫ) + ǫ

λ1 − ǫ︸ ︷︷ ︸
µ

|Q− Q̃|.

Plugging in M ≈ 1
λ2

from (3.25), we have

0 < µ ≈
1

λ1
< 1. (3.28)

Assuming the contraction µ, we have proved that, for any given P ∈ G, the map

Q→ Ψ(P,Q) is a contraction mapping. This implies that, for P̃ ∈ G, the map Q→

Ψ(P̃ , Q) has a unique fixed point Q̃ ∈ H. If we choose Λ(P,Q) = (Γ(P ),Ψ(P,Q))

as the bundle map on G × H. Then, by definition, Λ(P,Q) is a fiber contraction

on G × H. Since it has been proved that P̃ is the unique attracting fixed point of

Γ, then by the Fiber Contraction Theorem, (P̃ , Q̃) is the unique globally attracting

fixed point of Λ. It remains to show that Q̃ = dP̃ , so that P̃ ∈ C1.

We may start with (P0, dP0), where P0 ∈ C1. Let Γn(P0) = Pn, we have

Λ(P0, dP0) = (Γ(P0),Ψ(P0, dP0)) = (Γ(P0), dΓ(P0)) = (P1, dP1).

Suppose

Λn−1(P0, dP0) = (Pn−1, dPn−1).
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Then

Λn(P0, dP0) = (Γ(Pn−1),Ψ(Pn−1, dPn−1)) = (Γ(Pn−1), dΓ(Pn−1))

= (Pn, dPn).

We know Pn converges to P̃ uniformly, and dPn converges to Q̃ uniformly. It is

standard that Q̃ = dP̃ , and thus, P̃ is C1. Now we proceed to find the size of dP̃ .

Since

dΓ(P )x = {dA−1
y df−1(x)Cy + A−1

y dCydf
−1(x) + d(A−1

y Dy)df
−1(x)Py

−d(A−1
y By)df

−1(x)PxPy}+ A−1
y DydPydf

−1(x)

−(A−1
y By) · (dPx · Py + Px · dPy · df

−1(x)).

In addition, we have |P | ≤ 1 and |df−1| ≤M , so we can write the form of the size

of |dΓ(P )| for any P ∈ G as follows

|dΓ(P )| ≤

F︷ ︸︸ ︷
{|dA−1||C|+ |A−1||dC|+ |d(A−1D)||P |+ |d(A−1B)||P |2}M

+M |A−1D||dP |+ |A−1B|(|dP |+M |dP |)

≤ F + (M |A−1D|+ (1 +M)|A−1B|)|dP |

≤ F + (τ1τ2M + (1 +M)τ1ε0
)|dP |

= F + µ|dP |
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where

F =M ·K(
3

λ1 − ǫ
+ λ2 + 3ǫ) ≤ M ·K(4 + 3ǫ). (3.29)

For m > n we have

|dPm| = |dΓ(Pm−1)| (3.30)

≤ F + µ|dPm−1|

≤ F + µ(F + µ|dPm−2|)

= F + µF + µ2|dPm−2|

· · ·

≤ F
m−n−1∑

i=0

µi + µm−n|dPn|.

So

|dP̃ | = lim
m→∞

|dPm| ≤
F

1− µ
+ lim
m→∞

µm−n|dPn| =
F

1− µ
. (3.31)

Therefore, not only have we proved that P̃ ∈ C1, but also found the explicit

formula for the C0 and C1 sizes of P̃ which can be implemented in a computer.

Our next task is to find the C0 and C1 sizes of πu, which projects B1 to the

x2-axis along the horizontal foliation Fu. Recall that Fu consists of the integral

curves of the vector field defined in (3.17), i.e.,

Yu =




1

P̃x


 =



Yu,1

Yu,2


 .
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Let x = (x1, x2), and φ(x, t) be the solution of the vector field Yu with initial

value x ∈ B1, and let τ(x) be the real number such that the first coordinate of

φ(x, τ(x)) is zero. Of course, if x1 > 0, then τ(x) < 0 and if x1 < 0, then τ(x) > 0.

For simplicity, let us assume that x1 < 0. Since the first coordinate of Yu is 1 by

definition, the maximum time τ(x) for any x ∈ B1 is ε0.

So we can write πu as

(0, πu(x)) = φ(x, τ(x)) = (φ1(x), φ2(x))

with

φ(x, t) =



x1 +

∫ t
0 Yu,1(φs(x))ds

x2 +
∫ t
0 Yu,2(φs(x))ds


 =




x1 + t

x2 +
∫ t
0 P̃xds


 =



φ1(x, t)

φ2(x, t)


 (3.32)

giving




0

πu(x)


 =




x1 + τ(x)

x2 +
∫ τ(x)
0 P̃xdt


 =




0

x2 +
∫−x1
0 P̃xdt.


 .

We have

|πu(x)− x2| = |

∫ −x1

0
P̃xdt| ≤ |x1| · |P̃ | ≤ ε0,
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∂φ1
∂x1

= 1,
∂φ1
∂x2

= 0,
∂φ1
∂x2

= 0,
∂φ2
∂xj

=
∂πu
∂xj

for j = 1, 2,

τ(x) = −x1, ∂τ(x)/∂x1 = −1, and, ∂τ(x)/∂x2 = 0.

Hence, by (3.31) and the Gronwall inequality, we have

|
∂πu
∂x1

(x)| = |

∫ −x1

0
DP̃ (φ(x, τ(x))) · (

∂φ1
∂x1

,
∂φ2
∂x1

)ds

+
∂τ

∂x1
(x)P̃ (φ(x, τ(x)))|

= |

∫ −x1

0
(
∂P̃

∂x1
+
∂P̃

∂x2

∂πu
∂x1

)ds− P̃ (φ(x, τ(x)))| (3.33)

≤ |P̃ |+
ε0F

1− µ
+

∫ |x1|

0

(
F

1− µ

)
|
∂πu
∂x1

|ds

≤ ε0(1 +
F

1− µ
)exp(

ε0F

1 − µ
),

when |P̃ | ≤ ε0 in small B1, which is possible due to the Inclination Lemma, as we

have |P̃ | = 0 along our initial B1top. And we have
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|
∂πu
∂x2

(x)− 1|

= |

∫ τ(x)

0
DP̃ (φ(x, τ(x))) · (

∂φ1
∂x2

,
∂φ2
∂x2

)ds+
∂τ

∂x2
(x)P̃ (φ(x, τ(x)))|

= |

∫ τ(x)

0

∂P̃

∂x2
(
∂πu
∂x2

− 1)ds+

∫ τ(x)

0

∂P̃

∂x2
ds| (3.34)

≤
ε0F

1− µ
+

∫ |x1|

0
(
F

1− µ
)|
∂πu
∂x2

(x)− 1|ds (3.35)

≤
ε0F

1− µ
exp(

ε0F

1− µ
). (3.36)

This completes the proof of Theorem 3.4.1.
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3.5 Three dimensional vector fields

Let us recall our assumptions on the vector field introduced at the beginning. We

write x = (x1, x2, x3) ∈ R3, and X(x) is a forward complete C2 vector field :

X(x) = (X1(x), X2(x), X3(x)) = (ax1 + X̄1(x), bx2 + X̄2(x), cx3 + X̄3(x))

where

c < 2b < 0 < a, (3.37)

and

X̄i,xj
(0, 0, 0) = 0 for i, j = 1, 2, 3. (3.38)

Let

B1 = {x ∈ R3|0 ≤ x2 ≤ ε0, |x1| ≤ ε0, |x3| ≤ ε0}

and let | · | = supx∈B1
| · |. Then we have a finite constant M > 0 such that

|X̄i,xj ,xk
(x)| ≤ M for i, j, k = 1, 2, 3. By the mean value theorem, we have some

small constants ǫ1 > 0 and ǫ2 > 0, such that, |X̄i,xj
(x)| ≤ M · ε0 = ǫ2, and

|X̄i(x)| ≤ ǫ2 · ε0 = ǫ1 for i, j = 1, 2, 3.

Let

B1top = {x ∈ B1|x2 = ε0},
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B+
1 = {x ∈ B1|x1 = ε0},

B−
1 = {x ∈ B1|x1 = −ε0}.

Letting ϕt(x) be the local flow of X , so we may write

ϕ(x, t) = (ϕ1, ϕ2, ϕ3) = (eatx1 + ϕ̄1, e
btx2 + ϕ̄2, e

ctx3 + ϕ̄3)

where ϕ̄i for i = 1, 2, 3 are the higher order terms. Set ψt(x) to be the flow of the

corresponding linear vector field of X , i.e,

ψt(x) = (eatx1, e
btx2, e

ctx3)

Let f be the time-T map ϕT , for some 0 < T ≤ 1. So f : R3 → R3 is C2

with a hyperbolic fixed point at 0. Let L = Df(0), and R3 = Eu ⊕ Es ⊕ Ess

be the splitting given by the eigenspaces of L. For convenience, we also write

L = (Lu, Ls, Lss) = (Lc, Lss) with respect to the splitting Ec ⊕ Ess, where Ec =

Eu ⊕ Es and Eu, Es and Ess correspond to the x1, x2 and x3 axes respectively.

In addition, we assume that the local unstable and stable manifolds of f have been

straightened, i.e., Wu
loc(0) is in the x1-axis and W

s
loc(0) is in the x2x3-plane inside

B1.

Let

B1ε0
= {x ∈ B1 : x3 = 0}

B2ε0
= {x ∈ B1 : x1 = 0, x2 = 0}.
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For the most part of this section, unless we specify the index i = 1, 2, 3, we will

always use this representation x = (x1, x2) ∈ B1ε0
, and y = x3 ∈ B2ε0

, so that,

f(x, y) = (Lcx+ f̃1(x, y), L
ssy + f̃2(x, y)) = (f1(x, y), f2(x, y)) (3.39)

where f̃1(x, y) and f̃2(x, y) are the nonlinear terms. In B1, we assume f = (f1, f2)

satisfies these conditions for λ1 > 1 and 0 < λ2, λ3 < 1:

∂f1
∂x

(0) =



λ1 0

0 λ2


 (3.40)

0 <
∂f2
∂y

(0) = λ3 < (λ2)
2 < 1

for i = 1, 2

f̃i(0) = 0 and the first partial derivatives f̃ix(0) = f̃iy(0) = 0, (3.41)

and

|f̃ix| ≤ ǫ, |f̃iy | ≤ ǫ, |f̃ixx| ≤M1, |f̃ixy | ≤M1, |f̃iyy| ≤M1. (3.42)

In this section, we consider a short initial line segment in the cone of angle less

than π
4 about the x1-axis on the plane x2 = ε0.
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Choose small positive numbers w, ζ satisfying

0 < w < ζ <
ε0
2
, (3.43)

and, consider the line segment

ℓ : l(s) = (l1, l2, l3) = l(0) + sv ⊂ B1

where l(0) = (0, ε0, w),

−ζ < s < ζ, (3.44)

v =




1

0

θ



, (3.45)

and |θ| < 1.

Let D0 =
⋃
0≤t≤T ϕt(l) ⊂ int(B1) which is possible when ℓ is short (i.e., ζ

is small). And let D1 be the connected component of f(D0) ∩ B1. Inductively,

let Dn be the connected component of f(Dn−1) ∩ B1. Define Σ =
⋃∞
j=0Dj , and

let Π(x1, x2, x3) = (x1, x2) be the projection onto the x1x2−plane. Notice that Σ

invariant almost by definition: f(Σ)∩B1 ⊂ Σ. The next result shows that Σ is the

graph of a C2 function g⋆ from Π(Σ) to B2ε0
.

Theorem 3.5.1. Suppose that f, ℓ, and Σ satisfy the conditions (3.39)–(3.45) and
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that the following inequalities hold,

λ2 − ǫ > 0 , (λ3 + ǫ)(λ2 − ǫ)−1 < 1 (3.46)

(λ3 + ǫ)(1 +
ǫ

λ2 − ǫ
) < 1 (3.47)

λ3 + 2ǫ

λ2 − 2ǫ
< 1 ,

λ3 + ǫ

λ2 − 2ǫ
+ ǫ

λ3 + 2ǫ

(λ2 − 2ǫ)2
< 1 (3.48)

µ =
λ3 + ǫ

(λ2 − 2ǫ)2
+
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
< 1. (3.49)

Then, there is a C2 function g⋆ : Π(Σ) → B2ε0
, such that g⋆(0, 0) = 0 and

Σ = {(x, g⋆(x))|x ∈ Π(Σ) ⊂ B1ε0
}.

Moreover, we have

|g⋆| ≤ ε0 (3.50)

|Dg⋆| ≤
ǫ

λ2 − λ3 − 3ǫ
(3.51)

|D2g⋆| ≤
4M1(λ2 + λ3)

(λ2 − 2ǫ)3(1− µ)
. (3.52)

Once we have obtained g⋆ as in the above theorem, we consider the graph map:

h(x1, x2) = (x1, x2, g
⋆(x1, x2)). This is a C

2 diffeomorphism, and we can conjugate

f to f̃ : R2 → R2 defined by
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h−1fh(x1, x2) = f̃(x1, x2).

This means, of course, that we can replace f by the two dimensional diffeomor-

phism f̃ .

We can also replace the flow φt restricted to Σ to a two-dimensional flow φ̃t =

h−1φth.

The first step in the proof of Theorem 3.5.1 is to show that the upper part D0

of Σ is a C2 graph. That is,

Lemma 3.5.2. The set D0 is the graph

{(x1, x2, x3) : x3 = g0(x1, x2))}

of a C2 function g0 defined on Π(D0).

As we will show, this holds because X is C1 close to its linear part, and the

analogous statement is true for the linear part.

Indeed, let us consider the linear vector field L(x1, x2, x3) = (ax1, bx2, cx3).

Let ψ(t, x) = (ψ1(t, x), ψ2(t, x), ψ3(t, x)) denote the flow of L, and let T > 0 be

such that if x0 ∈ ℓ and |t| < T , then

|ψ1(t, x0)| <
bε0
c− a

. (3.53)

Let
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D̃0 = {ψ(t, x) : |t| < T, x ∈ ℓ}.

Proposition 3.5.3. Under the conditions above, the set D̃0 is the graph of the

(real-analytic) function

x3 = θx1(
x2
ε0

)
c−a
b

whose first order partial derivatives are bounded by 1.

Proof: First, let us write down the solution of the linear ODE with initial

condition (x10, x20, x30) ∈ B1 as follows:

x1 = eatx10 (3.54)

x2 = ebtx20 (3.55)

x3 = ectx30. (3.56)

We want to represent x3 in terms of x1 and x2, i.e., x3 = g0(x1, x2), the graph

of which passes through the initial line segment l. By (3.55), we have

et = (
x2
ε0

)
1
b . (3.57)
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Plugging it into (3.54), we have

x10 = x1(
x2
ε0

)
−a
b .

Since x30 = θx10, together with the above equation and (3.57), solution (3.56)

becomes

x3 = (
x2
ε0

)
c
b · θx1(

x2
ε0

)
−a
b = θx1(

x2
ε0

)
c−a
b .

Let β = c−a
b

, which satisfies β > 2, because of (3.37).

It is straightforward to compute that

∂x3
∂x1

= θ(
x2
ε0

)β

and

∂x3
∂x2

=
θβx1
ε0

(
x2
ε0

)β−1.

Now, we have 0 ≤ x2 ≤ ε0, and |θ| ≤ 1. Further, (3.53) gives |x1| <
ε0
β
, so we

get that |
∂x3
∂x1

| and |
∂x3
∂x2

| are bounded by 1, and the proposition is proved.

Using Lemma 3.5.5, let us prove the following lemma.

Lemma 3.5.4. Given such D0 that contains l in B1, D0 can be represented as the

graph of a C2 function g0(x1, x2) for (x1, x2) ∈ Π(D0), where Π is the projection

into the x1x2-plane. Moreover, we have

Lip(g0) = sup
x∈Π(D0)

|Dg0| ≤ 1
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and D2g0(x) is uniformly bounded in Π(D0).

Proof:

Let the solution of the associated linear vector field of X be:

ψ1(t, l(0) + sv) = eats

ψ2(t, l(0) + sv) = ebtε0

ψ3(t, l(0) + sv) = ect(w + θs).

We have the solution of the vector field X :

x1(t, s) = ϕ1(t, l(0) + sv) = ψ1 + ξ1

x2(t, s) = ϕ2(t, l(0) + sv) = ψ2 + ξ2

x3(t, s) = ϕ3(t, l(0) + sv) = ψ3 + ξ3

where ψi’s and ξi’s are evaluated at (t, l(0) + sv). In order to find g0(x1, x2), we

express (t, s) as functions of (x1, x2), so that we can write

g0(x1, x2) = ϕ3(t(x1, x2), l(0) + s(x1, x2)v).
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This requires that the determinant of the Jacobian does not equal to zero:

DET = det |
∂(x1, x2)

∂(t, s)
| = det



x1,t x1,s

x2,t x2,s




= det



ψ1,t + ξ1,t ψ1,s + ξ1,s

ψ2,t + ξ2,t ψ2,s + ξ2,s




= det



aeats+ ξ1,t eat + ξ1,s

bebtε0 + ξ2,t 0 + ξ2,s




= (aeats+ ξ1,t)ξ2,s − (eat + ξ1,s)(be
btε0 + ξ2,t)

We have

DET ≈ bε0e
(a+b)t 6= 0 (3.58)

when ξi’s are small enough.

Here we use the notation xi,t =
∂xi
∂t

and xi,s =
∂xi
∂s

for i = 1, 2.

In addition, since

∂(t, s)

∂(x1, x2)
=



tx1 tx2

sx1 sx2


 =

1

DET



x2,s −x1,s

−x2,t x1,t




we have 

tx1 tx2

sx1 sx2


 =

1

DET




ξ2,s −eat − ξ1,s

−bebtε0 − ξ2,t aeats+ ξ1,t


 .
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So we may compute the first derivatives of g0:

|
∂g0(x1, x2)

∂x1
| = |

∂ϕ3
∂t

·
∂t

∂x1
+
∂ϕ3
∂s

·
∂s

∂x1
|

= |
(ψ3,t + ξ3,t) · ξ2,s

DET
+

(ψ3,s + ξ3,s)(−be
btε0 − ξ2,t)

DET
|

= |
(cect(w + θs) + ξ3,t) · ξ2,s

DET
+

(ectθ + ξ3,s)(−be
btε0 − ξ2,t)

DET
|

≈ |
−bθε0e

(b+c)t

bε0e
(a+b)t

| , by (3.58)

= |θe(c−a)t| < 1

where ξi,j for i = 2, 3, j = t, s are small enough.

Similarly, we have

|
∂g0(x1, x2)

∂x2
| = |

∂ϕ3
∂t

·
∂t

∂x2
+
∂ϕ3
∂s

·
∂s

∂x2
|

= |
(ψ3,t + ξ3,t) · (−e

at − ξ1,s)

DET
+

(ψ3,s + ξ3,s)(ae
ats+ ξ1,t)

DET
|

= |
(cect(w + θs) + ξ3,t) · (−e

at − ξ1,s)

DET

+
(ectθ + ξ3,s)(ae

ats+ ξ1,t)

DET
|

≈ |
−ce(a+c)t(w + θs) + a · sθe(a+c)t

bε0e
(a+b)t

| , by (3.58)

≈ |
θ(a− c)s · e(a+c)t

bε0e
(a+b)t

| , where w is close to 0

≤ |θ| · |
(a− c)s

bε0
|e(c−b)t < 1
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where ξi,j for i = 1, 3, j = t, s are small and |
(a−c)s
bε0

| < 1.

Since g0 is C2, all its second derivatives are uniformly bounded over Π(D0) ⊂

B1ε0
, the lemma is proved.

Lemma 3.5.5. Let φt(x) be the solution of the vector field

X(x) = (ax1 + X̄1(x), bx2 + X̄2(x), cx3 + X̄3(x)) = (L+ X̄)(x),

where a > 0 > b > c and −c > a, with

|X̄i| ≤ ǫ1, |X̄i,xj
| ≤ ǫ2, |D

2X̄| ≤M1, for i, j = 1, 2, 3.

Let ψt(x) be the solution of the corresponding linear vector field, then in B1, there

exists small constants δ0, δ and a constant M2, such that,

|φt(x)− ψt(x)| ≤ δ0,

|Dφt(x)−Dψt(x)| ≤ δ,

and

|D2φt(x)−D2ψt(x)| = |D2φt(x)| ≤M2.
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Proof: By definition, we have

φt(x)− ψt(x) = x+

∫ t

0
(L+ X̄)(φs(x))ds− x−

∫ t

0
Lψs(x)ds

=

∫ t

0
X̄(φs(x))ds+

∫ t

0
L(φs − ψs)(x)ds.

So by the Gronwall’s inequality, we have

|φt(x)− ψt(x)| ≤

∫ t

0
|X̄(φs(x))|ds+

∫ t

0
|L||φs(x)− ψs(x)|ds

≤ ǫ1te
|c|t ≤ ǫ1Te

|c|T = δ0

Next, let us compare Dφt(x) with Dψt(x), which come from the first variational

equations of φt(x) and ψt(x). We have

Dφ̇t(x) = DXφt(x)
·Dφt(x) = (DL+DX̄φt(x)

)Dφt(x).

so

|Dφ̇t(x)| ≤ |Id|+

∫ t

s=0
|DL+DX̄φs(x)

||Dφs(x)|ds.

By our assumption in this lemma, we have each entry X̄i,xj
(φs(x)), i, j = 1, 2, 3,

of the 3× 3 matrix DX̄φs(x)
is bounded by ǫ2, thus

|DX̄φs(x)
| = max

i=1,2,3
{|X̄i,x1

|+ |X̄i,x2
|+ |X̄i,x3

|} ≤ 3ǫ2.
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Then by the Gronwall’s inequality we have

|Dφt(x)| ≤ exp(|DL+DX̄|t) ≤ exp((|c|+ 3ǫ2)t). (3.59)

Now

Dφt(x)−Dψt(x)

= Id+

∫ t

0
(DL+DX̄φs(x)

)Dφs(x)ds− Id−

∫ t

0
DL ·Dψs(x)ds

=

∫ t

0
DX̄φs(x)

Dφs(x)ds+

∫ t

0
DL(Dφs(x)−Dψs(x))ds.

By the Gronwall’s inequality again and the inequality (3.59), we have

|Dφt(x)−Dψt(x)| ≤ 3ǫ2t exp(|DL+DX̄|t) exp(|DL|t)

≤ 3ǫ2t exp((2|DL|+ |DX̄|)T )

≤ 3ǫ2T exp((2|c|+ 3ǫ2)T )

= δ.

Finally, let us find the size of |D2φt(x)−D2ψt(x)| = |D2φt(x)− 0|. We have

∂2φ

∂xi∂xj
(t, x) =

∂

∂xj
(ei +

∫ t

0
DXφs(x)

∂φ(s, x)

∂xi
ds)

=

∫ t

0
D2Xφs(x)

· (
∂φ

∂xi
)(
∂φ

∂xj
) +DXφs(x)

·
∂2φ(s, x)

∂xi∂xj
ds.

By using (3.59) and the Gronwall’s inequality again, and sinceD2Xφs(x)
= D2X̄φs(x)
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we have

|
∂2φ

∂xi∂xj
(t, x)| ≤

∫ t

0
M1 exp(2s(|c|+ 3ǫ2))ds+

∫ t

0
(|c|+ 3ǫ2) · |

∂2φ(s, x)

∂xi∂xj
|ds

≤
M1

2(|c|+ 3ǫ2)
[exp(2T (|c|+ 3ǫ2))− 1] · exp(T (|c|+ 3ǫ2))

= M2.

Thus the lemma is proved.

Let us be briefly reminded of the definition of our surface Σ. We have D0 =

⋃
0≤t≤T ϕt(l) ⊂ int(B1) for our initial line segment l. By now we have shown that

D0 can be represented as a graph of a C2 function g0. Now let D1 be the connected

component of f(D0)∩B1. And inductively, let Dn be the connected component of

f(Dn−1) ∩ B1 which is connected to Dn. We define Σ =
⋃∞
j=0Dj .

Theorem 3.5.6. Σ can be represented as the graph of a C2 function g⋆.

We will use the same Fiber Contraction method as in the previous section. The

proof will require several steps. It involves obtaining a sequence g1, g2, · · · , of C
2

functions, such that

gn converges to g⋆ uniformly on B1, (3.60)

Dgn converges uniformly on B1, (3.61)
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D2gn converges uniformly on B1. (3.62)

The proof involves definitions of certain function spaces and associated map-

pings. Let us proceed to define our first function space G. Here we recall that B1ε0

is B1 ∩ x1x2-plane, and B2ε0
is B1 ∩ x3-axis. Let

B01 = {g|g ∈ C0(Π(Σ), B2ε0
), Lip(g) = sup

ξ1 6=ξ2

|g(ξ1)− g(ξ2)|

|ξ1 − ξ2|
≤ 1}.

B01 is a complete metric space with respect to the supremum norm (defined

above). The subspace

G = {g| g ∈ B01, g(x1, 0) = 0 for |x1| ≤ ε0, g|Π(D0)
= g0}

is also a complete metric space equipped with the metric

d(g1, g2) = sup
x∈B1ε0

|g1(x)− g2(x)|.

For x ∈ Π(Σ) ∩Π(f(Σ)), we have the following graph transform formula

Γf (g) = f2 ◦ (1, g) ◦ [f1 ◦ (1, g)]−1.

We need to show that Γf : G → G is a well defined contraction map. This will give

us a continuous function g as the unique attractive fixed point of Γ.

Lemma 3.5.7. Given f satisfying the conditions at the beginning of this section, if
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λ2 − ǫ > 0 and (λ3 + ǫ)(λ2 − ǫ)−1 ≤ 1 in B1, then Γf (g) is well-defined and maps

G to itself. If, in addition,

η = (λ3 + ǫ)(1 +
ǫ

λ2 − ǫ
) < 1

then Γf (g) is a contraction mapping with contraction µ. The unique fixed point of

Γf (g) is a C0 function g⋆ with

|g⋆| ≤
η

1− η
|g1 − g0|.

Proof: To show that Γf is well-defined, it is sufficient to show that f1 ◦ (1, g)

is invertible. Let E denote the x1x2−plane. For u = (u1, u2) ∈ E, (L | E)(u) =

(λ1u1, λ2u2).

Let

min(L | E) = inf
|u|=1

|(L | E)u| > λ2 > 0.

For two points u 6= v ∈ B1ε0
, we have
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|f1 ◦ (1, g)(u)− f1 ◦ (1, g)(v)| = |(L | E)(u− v) + f̃1(u, gu)− f̃1(v, gv)|

≥ min(L | E)|u− v| − |f̃1(u, gu)− f̃1(v, gv)|

≥ λ2|u− v| − Lip(f̃1)Lip(1, g)|u− v|.

Since Lip(f̃1) ≤ ǫ and Lip(1, g) ≤ 1, we have

|f1 ◦ (1, g)(u)− f1 ◦ (1, g)(v)| ≥ (λ2 − ǫ)|u− v| > 0. (3.63)

Hence, on B1ε0
, f1 ◦ (1, g) is injective, and thus, invertible. That also implies

Lip([f1 ◦ (1, g)]−1) ≤ (λ2 − ǫ)−1.

In order to have Γf (g) map G to itself, we first prove that for x1 ∈ [0, ε0] we

have

Γf (g)(x1, 0) = 0.

Let us be reminded that, as a part of our assumptions on f , we have Wu
loc(0) of f is

in the x1-axis inside B1. In addition, we have had Γf (g) = f2◦(1, g)◦ [f1◦(1, g)]
−1

being well defined, i.e., f1 ◦ (1, g) is a one-to-one invertible map. So we know there

is a unique (x̄1, 0) ∈ B1ε0
with |x̄1| ≤ |x1| such that

f1 ◦ (1, g)(x̄1, 0) = (x1, 0)
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where |x̄1| = |x1| is achieved when x1 = 0. So

Γf (g)(x1, 0) = f2 ◦ (1, g)(x̄1, 0) = f2(x̄1, 0, g(x̄1, 0)).

For g ∈ G, we have g(x̄1, 0) = 0, so

Γf (g)(x1, 0) = f2(x̄1, 0, 0) = 0.

Next, let us prove Lip(Γf (g)) ≤ 1 as follows.

Again, for u = (u1, u2), v = (v1, v2) ∈ B1ε0
, we have

|f2 ◦ (1, g)(u)− f2 ◦ (1, g)(v)| = |λ3g(u)− λ3g(v) + f̃2(u, gu)− f̃2(u, gv)|. (3.64)

Since Lip(f̃2) ≤ ǫ, Lip(1, g) ≤ 1, we have

|f2 ◦ (1, g)(u)− f2 ◦ (1, g)(v)| ≤ (λ3 + ǫ)|u− v|. (3.65)

As we know the Lipschitz constant of the composite function of any f and g

over domain U can be computed as

Lip(f ◦ g(x)) = sup
x,y∈U

|f(g(x))− f(g(y))|

|x− y|

≤ sup
x,y∈U

Lip(f)|g(x)− g(y)|

|x− y|
= Lip(f)Lip(g)
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we have

Lip(Γf (g)) ≤ (λ3 + ǫ)(λ2 − ǫ)−1.

Under the condition that (λ3 + ǫ)(λ2 − ǫ)−1 ≤ 1, we have Lip(Γf (g)) ≤ 1, and

thus, Γf (g) maps G to itself.

Now let us show Γ is a contraction mapping in G. Let ξ1 = [f1 ◦ (1, g1)]
−1,

ξ2 = [f1 ◦ (1, g2)]
−1, we have

|Γf (g1)− Γf (g2)| (3.66)

= |f2 ◦ (1, g1) ◦ [f1 ◦ (1, g1)]
−1 − f2 ◦ (1, g2) ◦ [f1 ◦ (1, g2)]

−1|

= |f2 ◦ (1, g1)ξ1 − f2 ◦ (1, g2)ξ2)|

≤ |f2 ◦ (1, g1)ξ1 − f2 ◦ (1, g2)ξ1|+ |f2 ◦ (1, g2)ξ1 − f2 ◦ (1, g2)ξ2)|

≤ Lip(f2)|(ξ1, g1ξ1)− (ξ1, g2ξ1)|+ Lip(f2)Lip((1, g2))|ξ1 − ξ2|

≤ Lip(f2)|g1ξ1 − g2ξ1|+ Lip(f2)|ξ1 − ξ2|

= Lip(f2)|g1 − g2|+ Lip(f2)|ξ1 − ξ2|.

So we need to find |ξ1 − ξ2|. Claim:

|ξ1 − ξ2| ≤
ǫ

λ2 − ǫ
|g1 − g2|. (3.67)

Let us prove this claim. In our notations, ξ1 = [f1◦(1, g1)]
−1, ξ2 = [f1◦(1, g2)]

−1,

let τ1 = ξ1x and τ2 = ξ2x, then we have x = ξ−1
1 τ1 = f1 ◦ (1, g1)τ1, x = ξ−1

2 τ2 =
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f1 ◦ (1, g2)τ2. So

f1 ◦ (1, g1)τ1 = f1 ◦ (1, g2)τ2.

As before, we write

f1(τ1, g1τ1) = Lcτ1 + f̃1(τ1, g1τ1),

and

f1(τ2, g2τ2) = Lcτ2 + f̃1(τ2, g2τ2).

So we have

Lcτ1 + f̃1(τ1, g1τ1) = Lcτ2 + f̃1(τ2, g2τ2)

Lc(τ2 − τ1) = f̃1(τ1, g1τ1)− f̃1(τ2, g2τ2)

then,

Lc(τ2 − τ1) = f̃1(τ1, g1τ1)− f̃1(τ2, g1τ2) + f̃1(τ2, g1τ2)− f̃1(τ2, g2τ2)

which implies

Lc(τ2 − τ1)− f̃1(τ1, g1τ1) + f̃1(τ2, g1τ2) = f̃1(τ2, g1τ2)− f̃1(τ2, g2τ2)

f1 ◦ (1, g1)τ2 − f1 ◦ (1, g1)τ1 = f̃1(τ2, g1τ2)− f̃1(τ2, g2τ2).
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By (3.63), i.e.,

|f1 ◦ (1, g1)τ2 − f1 ◦ (1, g1)τ1| ≥ (λ2 − ǫ)|τ1 − τ2|

we have

(λ2 − ǫ)|τ1 − τ2| ≤ |f̃1(τ2, g1τ2)− f̃1(τ2, g2τ2)|

≤ Lip(f̃1)|(1, g1)τ2 − (1, g2)τ2|

≤ ǫ|g1τ2 − g2τ2|

≤ ǫ|g1 − g2|.

By our notations τ1 = ξ1x and τ2 = ξ2x, so

|ξ1 − ξ2| ≤
ǫ

λ2 − ǫ
|g1 − g2|

and the claim (3.67) is proved. Plugging (3.67) to (3.66), we have

|Γf (g1)− Γf (g2)| ≤ Lip(f2)|g1 − g2|+ Lip(f2)
ǫ

λ2 − ǫ
|g1 − g2|.

As we write f2(x1, x2) = Lssx2 + f̃2(x1, x2) with Lip(f̃2) ≤ ǫ, we have

Lip(f2) ≤ λ3 + ǫ.

Hence,

|Γf (g1)− Γf (g2)| ≤ (λ3 + ǫ)(1 +
ǫ

λ2 − ǫ
)|g1 − g2|.
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We may observe that (λ3 + ǫ)(1 + ǫ
λ2−ǫ

) is approximately equal to λ3, which

is much less than 1. If the neighborhood is properly chosen, we will have

η = (λ3 + ǫ)(1 +
ǫ

λ2 − ǫ
) < 1.

So the Lemma is proved.

Thus, there is a unique globally attracting fixed point g⋆ ∈ G for the operator

Γ.

To show that g⋆ is, in fact, C2, and to estimate its C2 size, we modify the fiber

contraction procedure of Hirsch and Pugh familiar from invariant manifold theory

[4].

We construct two product bundles G ×H and G ×H ×K and maps

Φ : G ×H → G ×H,

Ψ : G ×H×K → G ×H ×K

satisfying the following properties:

1. Φ is a fiber contraction over Γ,

2. Ψ is a fiber contraction over Φ,

3. if g is any map in G which happens to be C2 and (g,Dg,D2g) is in G×H×K,
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then

(a) Φ(g,Dg) = (Γ(g), DΓ(g)), and

(b) Ψ(g,Dg,D2g) = (Γ(g), DΓ(g), D2Γ(g)).

It will follow that, if ḡ ∈ G is C2, and we set gn = Γn(ḡ) for each n > 0, then

the convergence conditions (3.60), (3.61), and (3.62) will hold, and the proof that

g⋆ is C2 will be complete.

In the process, we will also obtain bounds for the first and second derivatives of

g⋆.

We have several tasks ahead.

First, we find a C2 initial function ḡ in G.

Recall that our original function g0 on Π(D0) was C
2.

Now, choose a smooth bump function ρ : R2 → R such that ρ(x) = 1 on a

neighborhood of Π(D0) and ρ(x) = 0 on a neighborhood of B1bot = {(x1, 0, 0)|0 ≤

x1 ≤ ε0}. Then, letting ν(x) be the identically 0 function on R2, and define ḡ by

ḡ = ρ(x)g0 + (1− ρ(x))ν(x).

The function ḡ is clearly C2 and is evidently in G.

Next, we proceed to define the function space H and the map Φ.

Let H = C01(Π(Σ), L(R
2, R)) be the set of continuous functions H from Π(Σ)

to the linear maps from R2 to R, and |H| ≤ 1. H becomes a complete metric space
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equipped with the metric d(H1, H2) = |H1 −H2| induced by the norm

|H| = sup

x∈B1ε0
,y∈R2,|y|=1

|Hx(y)|.

We can see that H is the set of candidates of Dg. To get the fiber contraction

operator over the functional space G × H, we proceed as follows. Let u(x) = [f1 ◦

(1, g)]−1(x). By the chain rule, we take the derivative of Γf (g) = f2 ◦ (1, g) ◦ [f1 ◦

(1, g)]−1 with respect to x, we have

DxΓf (g) = (f2x + f2yDu(x)g)(f1x + f1yDu(x)g)
−1

where the partial derivatives of f are evaluated at the point (u(x), g(u(x))). In this

form, we define

R(g,H) = (f2x + f2yHu(x))(f1x + f1yHu(x))
−1

where the partial derivatives of f are evaluated at the point (u(x), g(u(x))). And

let Φ : G ×H → G ×H be

Φ(g,H) = (Γf (g), R(g,H)).

By construction, if g is C1, then

Φ(g,Dg) = (Γf (g), D(Γf (g))).
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We shall show that Φ(g,H) = (Γf (g), R(g,H)) is a fiber contraction on G ×H

with the maximum metric in this product space.

Lemma 3.5.8. Given f satisfying the conditions at the beginning of this section, if

the following conditions are satisfied in B1

λ3 + 2ǫ

λ2 − 2ǫ
< 1 and

λ3 + ǫ

λ2 − 2ǫ
+ ǫ

λ3 + 2ǫ

(λ2 − 2ǫ)2
< 1, (3.68)

then the function g⋆ in Lemma 3.5.7 is C1 with

|Dg⋆| ≤
ǫ

λ2 − λ3 − 3ǫ
. (3.69)

Proof: Let us prove this lemma by first showing that Φ(g,H) maps G × H to

itself. Since Γf (g) : G → G, we only need to show R(g,H) : G ×H → H. As we can

write

f1x + f1yHu(x) = f1x(I + f−1
1x f1yHu(x)),
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for |H| ≤ 1, we have

|(f1x + f1yHu(x))
−1| = |{f1x(I + f−1

1x f1yHu(x))}
−1|

= |(I + f−1
1x f1yHu(x))

−1f−1
1x |

≤ |(I + f−1
1x f1yHu(x))

−1||f−1
1x |

=
1

min(I + f−1
1x f1yHu(x))

|f−1
1x |

≤
1

1− |f−1
1x f1yHu(x)|

|f−1
1x |

≤
|f−1
1x |

1− |f−1
1x ||f1y|

=
1

|f−1
1x |−1 − |f1y|

.

Since |f1y| ≤ ǫ and |f−1
1x |−1 = min(f1x) ≥ λ2 − ǫ, we have

|(f1x + f1yHu(x))
−1| ≤

1

λ2 − 2ǫ
.

Moreover,

|R(g,H)| ≤ |f2x + f2yHu(x)||(f1x + f1yHu(x))
−1| (3.70)

≤ (ǫ+ (λ3 + ǫ)|Hu(x)|)
1

λ2 − 2ǫ

≤
λ3 + 2ǫ

λ2 − 2ǫ
.

If we have
λ3+2ǫ
λ2−2ǫ

< 1 in some neighborhood of 0, we have proved that Φ(g,H)

maps G ×H to itself.
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Now we shall show Φ(g,H) is a fiber contraction map. Let R2(g,H)x(y) =

(f2x+ f2yHu(x))(y), R1(g,H)x(y) = ((f1x+ f1yHu(x))
−1)(y), both of which are

linear operators in y. So we may write R(g,H)x = R2(g,H)◦R1(g,H)x, where the

partial derivatives of f are evaluated at the point (u(x), g(u(x))). By what we have

just computed, we know

|R1(g,H)| = |(f1x + f1yHu(x))
−1| ≤

1

λ2 − 2ǫ
(3.71)

and

|R2(g,H)| = |f2x + f2yHu(x)| ≤ λ3 + 2ǫ. (3.72)

And by the linearity of R1 and R2, we have

|R(g,H1)x −R(g,H2)x|

≤ |R2(g,H1) ◦R1(g,H1)x −R2(g,H2) ◦R1(g,H1)x|

+|R2(g,H2) ◦R1(g,H1)x −R2(g,H2) ◦R1(g,H2)x|

≤ |R2(g,H1)− R2(g,H2)||R1(g,H1)x|

+|R2(g,H2) ◦ (R1(g,H1)x −R1(g,H2)x)|

≤ |f2yH2 − f2yH1|
1

λ2 − 2ǫ

+|R2(g,H2)||R1(g,H1)x − R1(g,H2)x|

≤ (λ3 + ǫ)|H2 −H1|
1

λ2 − 2ǫ

+(λ3 + 2ǫ)|R1(g,H1)x −R1(g,H2)x|.
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Here |R1(g,H1)x − R1(g,H2)x| = |(f1x + f1yH1)
−1 − (f1x + f1yH2)

−1| which

involves inverse functions. So let us consider this trick:

F−1
1 − F−1

2 = F−1
1 (F2 − F1)F

−1
2

which implies

|F−1
1 − F−1

2 | ≤ |F−1
1 ||F−1

2 ||F1 − F2|

By the above inequality, we have

|R1(g,H1)x −R1(g,H2)x|

= |(f1x + f1yH1)
−1 − (f1x + f1yH2)

−1|

≤ |(f1x + f1yH1)
−1||(f1x + f1yH2)

−1||(f1x + f1yH1)− (f1x + f1yH2)|

≤ (
1

λ2 − 2ǫ
)2|f1yH1 − f1yH2|

≤ (
1

λ2 − 2ǫ
)2ǫ|H1 −H2|.

Therefore,

|R(g,H1)− R(g,H2)| ≤ (
λ3 + ǫ

λ2 − 2ǫ
+ ǫ

λ3 + 2ǫ

(λ2 − 2ǫ)2
)|H1 −H2|.

By (3.68), we have

µ =
λ3 + ǫ

λ2 − 2ǫ
+ ǫ

λ3 + 2ǫ

(λ2 − 2ǫ)2
< 1.

Hence, Φ is indeed a fiber contraction, and the lemma is proved.
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Moreover, we can find the size of Dg⋆. By a similar argument in the previous

section, we start from (3.70), which says

|Dgn| = |R(gn−1, Dgn−1)| ≤ (
ǫ

λ2 − 2ǫ
+

λ3 + ǫ

λ2 − 2ǫ
|Dgn−1|)

Let

J =
ǫ

λ2 − 2ǫ
, and N =

λ3 + ǫ

λ2 − 2ǫ
,

we have

|Dgn| ≤ J +N |Dgn−1|.

Similar to the estimate in the inequality (3.30), we have

|Dg⋆| ≤
J

1−N
=

ǫ

λ2 − λ3 − 3ǫ
.

In order to have g⋆ in C2, we need another fiber contraction to compute

D2g⋆. We still use the same notation and definition of G and H. Recall that

H = C01(Π(Σ), L(R
2, R)), now we define another functional space K to be the set

of candidates of D2g:

K = C0(Π(Σ)× (R2)2, R)

which is the set of bounded continuous functions K from Π(Σ) to the bilinear maps

from R2 to R. K is a complete metric space equipped with the metric d(K1, K2) =
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|K1 −K2| induced by the norm

|K| = sup

x∈B1ε0
,|v1|=1,|v2|=1,v1,v2∈R

2
|Kx(v1, v2)|.

Similar to the previous fiber contraction constructions, we first use the chain

rule to find D2
xΓf (g) which gives the form of our bundle map. As we know

Γf (g) = f2 ◦ (1, g) ◦ [f1 ◦ (1, g)]−1.

Let u(x) = [f1 ◦ (1, g)]−1, we have

DxΓf (g) = f2x(u(x), g(u(x)))Du(x) + f2y(u(x), g(u(x)))Dg(u(x))Du(x).

Now we take the derivative of the above with respect to x one more time to obtain

the following formula, all the derivatives of f are evaluated at (u(x), g(u(x))):

D2
xΓf (g) = f2xx(Du(x))

2 + f2xyDg(u(x))(Du(x))
2 + f2xD

2u(x) (3.73)

+{f2yxDu(x) + f2yyDg(u(x))Du(x)}Dg(u(x))Du(x)

+f2y{D
2g(u(x))(Du(x))2 +Dg(u(x))D2u(x)}.

Now let us explicitly compute Du(x) and D2u(x). We have

Du(x) = [f1x(u(x), g(u(x))) + f1y(u(x), g(u(x)))Dg(u(x))]
−1
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and with all the derivatives of f evaluated at (u(x), g(u(x))):

D2u(x) = −Du(x){f1xx(Du(x))
2 + 2f1xyDg(u(x))(Du(x))

2

+f1yy(Dg(u(x)))
2(Du(x))2 + f1y(Du(x))

2D2g(u(x))}.

In this form, we define

D1 = D1(u,H)x = [f1x + f1yHu(x)]
−1

and

D2 = D2(u,H,K)x = −D1{f1xx(D1)
2 + 2f1xyHu(x)(D1)

2

+f1yy(Hu(x))
2(D1)

2 + f1y(D1)
2Ku(x)}.

So we define the following functional derived from (3.73)

R̄(g,H,K) = f2xx(D1)
2 + f2xyHu(x)(D1)

2 + f2yxD1Hu(x)D1

+f2yyHu(x)D1Hu(x)D1 + f2xD2

+f2yKu(x)(D1)
2 + f2yHu(x)D2

where the partial derivatives of f are evaluated at the point (u(x), g(u(x))), and

only the last three terms contain K. To get the fiber contraction operator in the

functional space G ×H×K, we let Ψ : G ×H ×K → G ×H ×K satisfy this form

Ψ(g,Dg,D2g) = (Γf (g), DΓf (g), D
2Γf (g)).
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So we write

Ψ(g,H,K) = (Γf (g), R(g,H), R̄(g,H,K))

and we shall show that Ψ(g,H,K) is a fiber contraction on G × H × K with the

maximum metric in this product space.

Lemma 3.5.9. Given f satisfying the conditions at the beginning of this section.

In addition, each one of the second derivatives of f is bounded by some constant

M1 > 0. If in B1 the following condition is satisfied

µ =
λ3 + ǫ

(λ2 − 2ǫ)2
+
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
< 1, (3.74)

then g⋆ is C2 with

|D2g⋆| ≤
4M1(λ2 + λ3)

(λ2 − 2ǫ)3(1− µ)
. (3.75)

Proof: Let us first prove that Ψ maps G × H × K to itself, and it is clear that

we only need to show, for given g and H , R̄(g,H,K) is still in K. By our definition

D1 = [f1x + f1yHu(x)]
−1

and what we have obtained in inequalities (3.71), we have

|D1| = |(f1x + f1yHu(x))
−1| ≤

1

λ2 − 2ǫ
.
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Also we have

|D2| ≤ |D1|{|f1xx||D1|
2 + 2|f1xy||D1|

2

+|f1yy||D1|
2 + |f1y||D1|

2|K|}

= |D1|
3(|f1xx|+ 2|f1xy|+ |f1yy|+ |f1y||K|)

≤
4M1 + ǫ|K|

(λ2 − 2ǫ)3
.

In addition, since |H| ≤ 1 and each one of the second derivatives of f is bounded

by some constant M1, we have

|R̄(g,H,K)| ≤ |f2xx||D1|
2 + 2|f2xy||D1|

2 + |f2yy||D1|
2 (3.76)

+(|f2x|+ |f2y|)|D2|+ |f2y||K||D1|
2

≤
4M1

(λ2 − 2ǫ)2
+ (λ3 + 2ǫ)

4M1 + ǫ|K|

(λ2 − 2ǫ)3
+

(λ3 + ǫ)|K|

(λ2 − 2ǫ)2

=
4M1

(λ2 − 2ǫ)2
+

4M1(λ3 + 2ǫ)

(λ2 − 2ǫ)3

+{
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
+

(λ3 + ǫ)

(λ2 − 2ǫ)2
}|K|.

Since K is also bounded, we know R̄(g,H,K) is bounded. Hence, we have proved Ψ

maps G ×H×K to itself. Now let us show the bundle map Ψ is a fiber contraction

on G ×H×K. By definition, what we need to show is the map K → R̄(g,H,K) is
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a contraction mapping. Again, from

R̄(g,H,K) = f2xx(D1)
2 + f2xyHu(x)(D1)

2 + f2yxD1Hu(x)D1

+f2yyHu(x)D1Hu(x)D1 + f2yKu(x)(D1)
2

+(f2x + f2yHu(x))D2

where

D2 = −D1{f1xx(D1)
2 + 2f1xyHu(x)(D1)

2 + f1yy(Hu(x))
2(D1)

2}

−D1f1y(D1)
2Ku(x)

we notice that only the last two terms of R̄(g,H,K) involve K. We may have the

terms that do not contain K canceled if we perform the following substraction, i.e.,

R̄(g,H,K1)− R̄(g,H,K2)

= f2yK1(D1)
2 − f2yK2(D1)

2

+(f2x + f2yH){−D1f1y(D1)
2K1 +D1f1y(D1)

2K2}.
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By using |H| ≤ 1, we have

|R̄(g,H,K1)− R̄(g,H,K2)|

≤ |f2yK1(D1)
2 − f2yK2(D1)

2|

+|f2x + f2yH||D1f1y(D1)
2K1 −D1f1y(D1)

2K2|

≤ (λ3 + ǫ)|K1(D1)
2 −K2(D1)

2|

(λ3 + 2ǫ)|D1f1y(D1)
2||K1 −K2|

≤ (λ3 + ǫ)|K1 −K2||D1|
2

(λ3 + 2ǫ)ǫ|D1|
3|K1 −K2|

≤ (
λ3 + ǫ

(λ2 − 2ǫ)2
+
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
)

︸ ︷︷ ︸
µ

|K1 −K2|.

We may observe that

µ =
λ3 + ǫ

(λ2 − 2ǫ)2
+
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
≈

λ3
(λ2)

2
.

If close enough to the saddle fixed point and the strong contraction is much smaller

than the weak contraction, we may well have µ < 1. So under the condition that

λ3 + ǫ

(λ2 − 2ǫ)2
+
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
< 1

we have proved that the map K → R̄(g,H,K) is a contraction mapping. Moreover,

we can find the size of D2g⋆ by essentially the same argument used in the previous

section about the iteration (3.70). So we do not repeat the full argument here, the
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complete details of which has been shown in the previous section. Here we start

with the following estimate, derived from (3.76), which says

|R̄(g,H,K)| ≤
4M1

(λ2 − 2ǫ)2
+

4M1(λ3 + 2ǫ)

(λ2 − 2ǫ)3︸ ︷︷ ︸
J

+ {
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
+

(λ3 + ǫ)

(λ2 − 2ǫ)2
}

︸ ︷︷ ︸
N

|K|.

Let

J =
4M1

(λ2 − 2ǫ)2
+

4M1(λ3 + 2ǫ)

(λ2 − 2ǫ)3
=

4M1(λ2 + λ3)

(λ2 − 2ǫ)3

and from the above

µ =
ǫ(λ3 + 2ǫ)

(λ2 − 2ǫ)3
+

λ3 + ǫ

(λ2 − 2ǫ)2
< 1.

Since K’s are candidates of D2g⋆, the above inequality gives us a recursive

relation as

|D2gn| = |R̄(gn−1, Dgn−1, D
2gn−1)| ≤ J + µ|D2gn−1|.

Then we have the estimate similar to the one in the inequality (3.30), i.e.,

|D2g⋆| ≤
J

1− µ
=

4M1(λ2 + λ3)

(λ2 − 2ǫ)3(1− µ)

.
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3.6 Straightening Invariant manifolds of a three

dimensional map

In this section, we flatten out the local stable and unstable manifolds of a C2 map

f : R3 → R3 near its saddle fixed point at 0. We will make a C2 transformation of

the neighborhood so that the local invariant manifolds of f are flattened.

First of all, let us state the Hadamard-Perron Theorem (Stable manifold Theo-

rem).

Theorem 3.6.1. Let f :M →M be a Cr diffeomorphism of a smooth manifold M ,

and let p be a hyperbolic fixed point of f with associated splitting TpM = Eup ⊕Esp.

then Ws(p) is a Cr injectively immersed copy of Esp and Wu(p) is a Cr injectively

immersed copy of Eup . Moreover, Ws(p) is tangent at p to Esp and Wu(p) is tangent

at p to Eup .

Now let us start by assuming f : R3 → R3 is C2 and satisfies the following

conditions. Let L = Df(0) = (Lu, Ls), and R2 = Eu ⊕ Es be the splitting

given by the hyperbolicity of L, where Eu and Es correspond to the x1−axis and

x2x3−plane respectively. So we write

f(x, y) = (Lux+ f̃1(x, y), L
sy + f̃2(x, y)) = (f1(x, y), f2(x, y))

where f̃1 and f̃2 are the higher-order nonlinear terms of f . And let Bε0 be the box

around the origin of radius ε0, B1ε0
= Bε0∩x1-axis, and B2ε0

= Bε0∩x2x3-plane.
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And we assume f = (f1, f2, f3) satisfies the following conditions in Bε0:

1. Lu = λ1 > 1, Ls = (λ2, λ3), 0 < λ3 < λ2 < 1;

2. f̃i(0) = 0 and the first partial derivatives f̃ixj
(0) = 0, for i, j = 1, 2, 3;

3. |f̃ixj
| ≤ ǫ and |f̃ixjxk

| ≤M2, for i, j, k = 1, 2, 3.

We wish to find a C2 function g : B1ε0
→ B2ε0

whose graph is Wu
loc(0) and is

invariant by f . In order to find another function whose graph is Ws
loc(0), one may

set g : B2ε0
→ B1ε0

. Since the work are essentially the same, we only state the

results of g that corresponds toWu
loc(0). By using the same graph transform method

appeared in the previous section, it can be shown that there is such a function g

and it is C2. As before, we set

Γf (g) = f2 ◦ (1, g) ◦ [f1 ◦ (1, g)]−1

and

G = {g : B1ε0
→ B2ε0

| g(0) = 0, Lip(g) ≤ 1}

which is a complete metric space with the metric

d(g1, g2) = sup
x∈B1ε0

|g1(x)− g2(x)|.

We start with g0 ≡ 0, then g1 = Γf (g0), and inductively, gn = Γf (gn−1), the

sequence of which converges to some function g⋆ ∈ G. Since the proof is essentially

the same as is shown in the previous section, we do not repeat the work here. We
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will adapt a few constants, and state the lemmas and theorem accordingly.

As in the previous section,

f(x, y) = (Lcx+ f̃1(x, y), L
ssy + f̃2(x, y)) = (f1(x, y), f2(x, y))

with m(Lc) be its weak contraction eigenvalue, and |Lss| be its strong contraction

eigenvalue.

In this section, we have

f(x, y) = (Lux+ f̃1(x, y), L
sy + f̃2(x, y)) = (f1(x, y), f2(x, y))

where

m(Lu) = Lu = λ1, |Ls| = λ2.

Hence, we may adapt Lemma 3.5.7 to have

Lemma 3.6.2. Given f satisfying the conditions at the beginning of this section, if

λ1− ǫ > 0 and (λ2 + ǫ)(λ1− ǫ)−1 ≤ 1 in Bε0, then Γf (g) is well-defined and maps

G to itself. If, in addition,

η = (λ2 + ǫ)(1 +
ǫ

λ1 − ǫ
) < 1

then Γf (g) is a contraction mapping with contraction µ. The unique fixed point of
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Γf (g) is a C0 function g⋆ with

|g⋆| ≤
η

1− η
|g1 − g0|.

We get the following Lemma based on Lemma 3.5.8.

Lemma 3.6.3. Given f satisfying the conditions at the beginning of this section, if

the following conditions are satisfied in Bε0

λ2 + 2ǫ

λ1 − 2ǫ
< 1 and

λ2 + ǫ

λ1 − 2ǫ
+ ǫ

λ2 + 2ǫ

(λ1 − 2ǫ)2
< 1

then the function g⋆ in Lemma 3.5.7 is C1 with

|Dg⋆| ≤
ǫ

λ1 − λ2 − 3ǫ
.

Subsequently, we adapt Lemma 3.5.9 into

Lemma 3.6.4. Given f satisfying the conditions at the beginning of this section,

in addition, each one of the second derivatives of f is bounded by some constant

M2 > 0. If in Bε0 the following condition is satisfied

µ =
λ2 + ǫ

(λ1 − 2ǫ)2
+
ǫ(λ2 + 2ǫ)

(λ1 − 2ǫ)3
< 1

then we have g⋆ is C2 with

|D2g⋆| ≤
4M2(λ1 + λ2)

(λ1 − 2ǫ)3(1− µ)
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.

In summary, analogous to Theorem 3.5.1 we conclude the theorem as follows.

Theorem 3.6.5. Given that f satisfies the above conditions, if in Bε0 we have the

following conditions satisfied

λ1 − ǫ > 0 , (λ2 + ǫ)(λ1 − ǫ)−1 ≤ 1

η = (λ2 + ǫ)(1 +
ǫ

λ1 − ǫ
) < 1

λ2 + 2ǫ

λ1 − 2ǫ
< 1 ,

λ2 + ǫ

λ1 − 2ǫ
+ ǫ

λ2 + 2ǫ

(λ1 − 2ǫ)2
< 1

µ =
λ2 + ǫ

(λ1 − 2ǫ)2
+
ǫ(λ2 + 2ǫ)

(λ1 − 2ǫ)3
< 1

then we have a unique C2 function g⋆ : B1ε0
→ B2ε0

, whose graph is Wu
loc(0) of

f . Moreover, we have

|g⋆| ≤ ε0|Dg
⋆|

|Dg⋆| ≤
ǫ

λ1 − λ2 − 3ǫ

|D2g⋆| ≤
4M2(λ1 + λ2)

(λ1 − 2ǫ)3(1− µ)

.

After we have obtained C2 parameterizations of both local stable and unstable

manifolds of f at 0, which are now denoted by gs, and gu respectively. Then, in

general, Ws
loc(0) (respectively Wu

loc(0)) is not in Es (respectively Eu). However,
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we will show there is a C2 diffeomorphism f̃ which conjugates to f and has both

local stable and unstable manifolds straightened. Let us consider the map

ρ : Bε0 → V ⊂ R3

with

ρ(x, y) = (x− gs(y), y − gu(x)). (3.77)

By this definition, ρ is C2, ρ(0) = 0 as gs(0, 0) = gu(0) = 0, and Dρ(0) is the

identity

Dρ(0) =




1 −g
′
s(0)

−g
′
u(0) 1


 =



1 0

0 1




where we used the properties of the local manifolds that g
′
s(0) = g

′
u(0) = 0. Thus

ρ is a diffeomorphism in some neighborhood of 0 ∈ R3 by the inverse function

theorem. In Bε0 ∩ f−1(Bε0), such that ρ : Bε0 ∩ f−1(Bε0) → V
′
, let

f̃ = ρfρ−1. (3.78)

Then f̃ : V
′
→ V is a C2 diffeomorphism, with f̃(0) = 0 and Df̃(0) = L. More-

over, in Bε0 the local stable (respectively, unstable) manifold of f̃ is in Es, i.e.,

x2x3−plane (respectively Eu, i.e., x1-axis). We can verify that property as follows:

ρ(gs(y), y) = (gs(y)− gs(y), y − gu(gs(y))) = (0, y − gu(gs(y)))
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and

ρ(x, gu(x)) = (x− gs(gu(x)), gu(x)− gu(x)) = (x− gs(gu(x)), 0)

Thus, up to a smooth conjugacy, the local manifolds of f is straightened.
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