Growing the Future: Switchgrass Management for Ethanol

By Kate Withers, MSU Crop and Soil Science Dept.

Switchgrass is a native perennial grass that has been selected as a model lignocellulosic feedstock for biofuel production. This fact sheet is intended to provide Michigan growers with information on establishing and maintaining a switchgrass stand in a sustainable manner.

Selecting a cultivar and purchasing seed

Few switchgrass cultivars are currently available, but it is hoped that improved breeding efforts will develop higher yielding cultivars for specific agro-ecological regions. Growers need to select an upland cultivar that is high-yielding and has long-term yield stability. Switchgrass reaches peak biomass by flowering time, so a cultivar that flowers late in the season will accumulate more biomass than one that flowers earlier. However, the plant must enter reproductive growth in time to undergo its programmed senescence, during which carbohydrates and nutrients are translocated to the root system. Otherwise, winter hardiness and stand longevity will suffer. Upland cultivars are best suited for Michigan. Currently the cultivar ‘Cave-in-Rock’ is being used in research efforts in Michigan, and ‘Shawnee’ shows promise as a high-yielding variety. Purchase non-dormant seed with few to no weed seeds and with a high germination rate. Switchgrass variety performance trials are ongoing at Michigan State University. Contact your local MSU Extension office to obtain up-to-date information on switchgrass variety performance.

Establishment

It has been suggested that wide rows (30 inches vs. 7.5 inches) lead to higher biomass production (Ma et al., 2001), but a good stand can be achieved with existing seeding equipment, including a conventional or no-till seed drill or Brillion forage seeder. Recommended seeding rates vary, but our research shows that calibrating your equipment for 8 pounds of pure live seed (PLS) per acre provides a good population. Seeding depth should be 0.25 to 0.5 inches.

A stand frequency of 40 percent or greater is needed in the first year to ensure adequate yields in the future (Schmer et al., 2006). A frequency grid developed by Vogel and Masters (2001) will be useful in determining if you are above the threshold. Cut a piece of wire mesh used to reinforce concrete into a five-cell by five-cell grid. Each cell is 6 inches by 6 inches. Place the grid in the field, and record whether each cell has or does not have a switchgrass plant in it (present or absent). The grid is then flipped over four times until 100 cells have been viewed and recorded per sampling area. This should be done multiple times to try to get a representative stand frequency for the field.

Fertilizer, Herbicides and Pesticides

Switchgrass performs best on moderately well to well-drained soils with a pH in the range of 5.5 to 7. Re-coupling establishment costs and growing the crop in a cost-effective manner means maximizing yield over a long period of time. It is recommended that a soil test be conducted before establishment to check for pH and macronutrient levels, particularly potassium and phosphorus. Most Michigan soils will be in the 5.5 - 7 pH range; liming may be necessary in acidic or sandy soils. Establishing adequate P and K levels that will remain sustainable with multiple harvests could prove to be a good investment in the long run. No nitrogen fertilizer is used in the first year because switchgrass is a warm-season grass and slow to establish. Nitrogen
applied in the first year of establishment will only ben-
etween weed species that could outcompete switchgrass
and result in a poor stand. Switchgrass has no signifi-
cant insect or disease pests that cause economic losses
in Michigan at this time, so insecticides and fungicides
are not likely to be cost effective.

No herbicides are registered for use in switchgrass in
Michigan. Researchers at Michigan State University
are working to identify herbicides and weed control
programs for producing switchgrass as a biomass feed-
stock. One option is to clip weeds to a height of 4 to 5
inches whenever they reach a height of 6 to 10 inches.
This may be one or more times during the first grow-
ing season. When generating a weed control program,
it is important to have a good idea of what weeds may
be problematic to your area or particular field, the cul-
tural weed control options available and the method of
establishment that will be used.

If you’re using a no-till system, a fall burndown appli-
cation to target biennial, perennial and winter annual
weeds may be necessary. Cool-season grasses and
broadleaf weeds that emerge in early spring can be
knocked back with effective tillage or with a preplant
herbicide burndown application. Using a preemer-
gence herbicide that is effective in killing both grass
and broadleaf weeds with good residual effect is key
to effective switchgrass stand establishment. Grasses
that might emerge after a tillage event and around the
same time as switchgrass also pose a threat to estab-
ishment. Large crabgrass, the foxtails and fall panici-
um are good examples. Once the stand is established,
herbicides may not be needed, but monitoring weed
species and populations is recommended.

Postestablishment Fertility Management
Nitrogen (N) is needed to maximize switchgrass yield
in Michigan. The amount required is still unknown,
but research efforts are under way to determine the
amount of nitrogen needed to optimize yield and
feedstock quality. A nitrogen fertilizer rate of 70 lb N/
acre is the current recommendation for Michigan. This
may change if research shows that higher yields can
be realized in a cost-effective manner with minimal
environmental impact.

Harvest
Harvest management is one of the most important
considerations in producing switchgrass because it is
an important determinant in yield, biomass quality
and stand longevity. Switchgrass should be harvested
in the late fall after a killing frost to optimize feedstock
quality and ensure nutrient translocation back to the
root system. A 6- to 8-inch stubble height is recom-
mended for reducing tire injury and for trapping snow
and improving winter survival. It can stand overwin-
ter, but substantial yield losses of up to 40 percent
can occur. Switchgrass can be baled (round or large
rectangles) or cut high-moisture and ensiled with con-
ventional hay-making equipment. The needs of future
bioconversion facilities will determine desired harvest
methods and biomass storage practices.

Conclusion
Switchgrass is an efficient, low-cost crop with poten-
tial as an energy crop. It takes 2 to 3 years to establish
a mature stand, but patience and proper management
can lead to a successful crop that can be harvested for
10 to 12 years. The Biomass Crop Assistance Program
offered by the Farm Service Agency through the Farm
Bill provides assistance for farmers wanting to es-
tablish a new crop of switchgrass. Contact your local
Farm Service Agency office for details. Additional
information, including sources of seed, can be found
in MSU Extension bulletin E-2987, “Switchgrass as a
Biofuel for Michigan.”

Bughrara, S., R. Leep, D. Min, D. Hudson and T. Dietz.
2007. Switchgrass as a Biofuel for Michigan. MSU
Extension Bulletin E-2987.

of row spacing, nitrogen rate, and time on carbon
partitioning of switchgrass. Biomass & Bioenergy
20:413-419.

Schmer, M.R., K.P. Vogel, R.B. Mitchell, L.E. Moser,
K.M. Eskridge and R.K. Perrin. 2006. Establishment
stand thresholds for switchgrass grown as a bioen-

simple tool for measuring grassland establishment.

Vogel, K.P., J.J. Brejda, D.T. Walters and D.R. Bux-
ton. 2002. Switchgrass biomass production in the
Midwest USA: Harvest and nitrogen management.
Agronomy Journal 94:413-420.