Managing Bean Leaf Beetles in Soybeans
Michigan State University Extension Service
Doug Landis, and Bruce Giebink, Department of Entomology, and Pesticide Research Center
Issued December 1992
2 pages

The PDF file was provided courtesy of the Michigan State University Library

Scroll down to view the publication.
Managing Bean Leaf Beetles in Soybeans

Doug Landis and Bruce Giebink
Department of Entomology
and Pesticide Research Center
Michigan State University

The bean leaf beetle,¹ a serious soybean pest of the southern states, is becoming more common in southern Michigan. Adult beetles feeding on foliage and the developing pods can severely reduce yields.

Description of life stages:
Adult bean leaf beetles are about 1/4 inch long and range from reddish brown to yellowish. They usually have black wing margins and two black spots on each wing cover. All bean leaf beetles have a black, triangular-shaped spot on the forward margin of the wings. Larvae are white, distinctly segmented, and are dark brown at both ends. They have three pairs of legs near the head. Mature larvae may be 1/2 inch long.

Life cycle:
Adult bean leaf beetles overwinter in leaf litter and other vegetation. They primarily hibernate in wooded areas. These adult beetles emerge over an extended period beginning in May. They feed on a variety of legumes, including clover, alfalfa and soybeans. After feeding for several weeks, the adult beetles mate and lay eggs. Each female may deposit 175 to 250 orange eggs in clusters at the base of soybean plants. Eggs hatch in about 3 weeks and the larvae begin feeding on plant parts below the soil surface. Mature larvae form earthen cells where they pupate. Adult beetles emerge to feed on bean plants until the onset of cool weather, when they begin hibernation.

Damage:
Although both the larvae and adult beetles feed on soybeans, adults cause the most damage. In the spring emerging beetles feed on the cotyledons, unifoliate and trifoliate leaves of small soybean plants. They prefer to feed on the youngest plant tissue available, and may completely defoliate the plant. Adults from the next generation, emerging in late July and early August, feed on the leaves, blossoms, and developing pods. This feeding reduces pod set and seed quality.

Management:
Biological Control—In some areas a tachinid fly aids in controlling this pest by parasitizing beetles. However, little is known about the natural enemies of bean leaf beetles in Michigan.

Cultural Control—Bean leaf beetle adults are attracted to the earliest planted beans in a given area; and these fields should be checked frequently.

¹Bean Leaf Beetle: Cerotoma trifurcata (Forster)
after emergence to detect damaging populations. In heavily infested areas, planting dates may be adjusted to miss peak beetle populations. Resistant varieties are also available for partial control of this pest in some areas.

Chemical Control - An insecticide application may be justified if foliage or pod feeding is excessive. Banded applications are effective and economical for controlling first generation adults. Consult the table for insecticide recommendations and rates.

Recommended insecticide applications for controlling bean leaf beetles in soybeans. ¹

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Formulation</th>
<th>Rate</th>
<th>RUP</th>
<th>Restrictions & Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbaryl (Sevin)</td>
<td>4F</td>
<td>1/2 to 1 qt</td>
<td>N</td>
<td>Do not mix with 2,4-DB herbicides.</td>
</tr>
<tr>
<td>Lorsban</td>
<td>4E</td>
<td>1 - 2 pt</td>
<td>N</td>
<td>28-day PHI, do not feed forage.</td>
</tr>
<tr>
<td>Lannate</td>
<td>90 SP</td>
<td>1/2 lb</td>
<td>N</td>
<td>10-day PHI forage, 14-day beans.</td>
</tr>
<tr>
<td>Orthene</td>
<td>75 S</td>
<td>2/3 - 1 1/3 lb</td>
<td>Y</td>
<td>14-day PHI, do not feed vines.</td>
</tr>
<tr>
<td>dimethoate (Cyon)</td>
<td>4EC</td>
<td>1 pt</td>
<td>N</td>
<td>5-day PHI grazing, 21-day beans.</td>
</tr>
<tr>
<td>Asana XL</td>
<td>0.66 EC</td>
<td>5.8 to 9.6 oz</td>
<td>Y</td>
<td>21-day PHI, do not feed forage.</td>
</tr>
<tr>
<td>permethrin</td>
<td>3.2 EC</td>
<td>2 - 4 oz</td>
<td>Y</td>
<td>60-day PHI, do not feed vines.</td>
</tr>
<tr>
<td>(Pounce, Ambush)</td>
<td>25WP</td>
<td>3.2 - 6.4 oz</td>
<td>Y</td>
<td>20 day PHI.</td>
</tr>
<tr>
<td>Penncap-M</td>
<td>2 EC</td>
<td>2 - 3 pt</td>
<td>N</td>
<td>28-day PHI, do not feed vines.</td>
</tr>
<tr>
<td>Larvin</td>
<td>3.2 EC</td>
<td>1 1/2 pt</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

¹ Be sure your equipment is properly calibrated. Refer to Extension Bulletin E-1582 Chemical Control of Insects and Nematodes in Field and Forage Crops, available at your county Extension office.

² Other formulations may be available.

³ Rate per acre. Full coverage is not required, and 1 gal of spray per acre by air or 10 gal of spray per acre with ground equipment is sufficient.

⁴ Restricted use pesticide. If yes (Y), a pesticide applicator certification is required.

⁵ PHI = Pre-Harvest Interval.

To protect yourself and others and the environment, always read the label before applying any pesticide.

MSU is an Affirmative-Action Equal Opportunity Institution. Cooperative Extension Service programs and materials are open to all without regard to race, color, national origin, sex, handicap, age or religion. Issued in furtherance of Cooperative Extension work in agriculture and home economics, acts of May 8 and June 20, 1914, in cooperation with the U.S. Department of Agriculture. Gail L. Imig, director, Cooperative Extension Service, Michigan State University, E. Lansing, MI 48824. This information is for educational purposes only. Reference to commercial products or trade names does not imply endorsement by the Cooperative Extension Service or bias against those not mentioned. This bulletin becomes public property upon publication and may be reprinted verbatim as a separate or within another publication with credit to MSU. Reprinting cannot be used to endorse or advertise a commercial product or company. Produced by Outreach Communications and printed on recycled paper using vegetable-based inks.