Fencing for Beef Cattle

Lester A. Burdette, The Pennsylvania State University and
Kenneth R. Geuns, Michigan State University

Fences are used to divide property and confine cattle. They should be carefully planned and properly constructed. The type of fence constructed will have a major influence on cost. The layout of your fences will influence the working efficiency of your farm. Many times fences are rebuilt in old locations when a new layout would improve working efficiency. Water and corral locations are major factors to consider in fence layouts. Gates located in or near fence corners make it easier to move cattle out of a field than gates in the middle of a line fence.

TYPES OF FENCES

Permanent fences can be constructed of woven wire, barbed wire, combinations of these or boards. Board fences being more expensive, are usually used only around the farmstead to improve its appearance or for corral fences. Woven wire fences are usually used in areas of high animal pressure or where sheep and cattle both use the same pastures. Barbed-wire fences will control cattle under most farm conditions.

Temporary fence is usually electric with one or two wires. Electric fences are best used to subdivide fields for better grazing management rather than as perimeter fences around the farm. Electric fence can be constructed on steel or wood posts with insulators or attached directly to fiber glass or plastic posts. Only fence chargers bearing the Underwriters Laboratory (U.L.) seal should be used. Electric fences can be relied upon to give a powerful shock and deter animals. In addition, posts can be lighter and placed further apart. Furthermore, in some cases, the added costs of the energizer may be offset by savings in fence construction and maintenance.

CONSTRUCTION AND MATERIALS

Brush clearing and minor ground leveling makes fence building much easier, if the fence is not to be built on a cleared area.

A fence will only be as strong as the corners and braces. It will pay to build corners as strong as possible (See figures 1 & 2). Corners can be constructed with wood, concrete or special steel posts.

![Fig. 1. Wood corner posts detail. Use 5-inch top posts. Double strand no. 9 wire used for wire bracing and 4" x 4" as horizontal brace.](image-url)
Wood Posts

These can be purchased in many localities at reasonable cost. Wood posts should be mostly heartwood since sapwood of most species will rot in 2 to 5 years. The preferred species of tree from which posts are cut are Osage Orange, Red Cedar and Black Locust. These will have life expectancy of about 25 years. If other species are used they should be treated to resist decay. Special methods are required to properly treat posts on the farm. Brushing on wood preservative is not recommended since the wood will not absorb enough preservative to give effective prevention against decay.

Pressure treated southern pine posts are available in most areas. If properly treated these posts have a life expectancy of at least 30 years.

Steel Posts

These have a number of advantages. They are lightweight, fireproof and easily driven into most soils. They offer the additional feature of grounding the fence against lightning when in contact with moist or wet soil.

In areas of high cattle pressure steel posts can be bent or forced out of line.

Setting Posts

Corner posts should be set about 3 to 3½ feet into the ground and brace posts at least 3 feet. Wood line posts are usually set 2 to 2½ feet in the ground and steel posts 1½ to 2 feet. The depth the posts are set in the ground and the height of the fence determine the length of the post needed.

Corners and braces will be stronger if a post hole is dug and the post set with well-tamped fill dirt or poured concrete. Line posts can be satisfactorily driven with a post driver mounted on a tractor.

Safety Precautions

Fence construction always involves the risks of injury. Follow these precautions:

- Wear heavy leather gloves, boots or high shoes, and tough, close-fitting clothing.
- Never use a tractor to stretch woven-wire or barbed-wire fencing. While up on the tractor you may not be able to tell when the fencing has been stretched to the breaking point. If the wire should break, you could be seriously injured by the recoil of the clamp bar, chain, or fencing.
- Carry staples, nails, or other fasteners in a metal container or in an apron—not on your person. Under no circumstances carry them in your mouth—a common, but extremely dangerous habit.
- When stretching woven wire or barbed wire, stand on the opposite side of the post from the wire and stretcher unit.
- If you handle preservative-treated posts, do not rub your hands or gloves on your face or other parts of your body. Some people are allergic to the chemical.

Attaching Fence

Be systematic when stringing wire. Always attach the top wire first when constructing a barbed-wire fence. Work from the top down. This will assure that all wires are of equal tension. Attach wire to the sides of the post nearest to the livestock being fenced, except when appearance is important.

Always drive staples at an angle to the posts. Staples should be a minimum of 1½ inches in length. Longer staples are necessary in soft wood posts. Driving staples tightly against the wire is a common mistake. This weakens the wire and does not allow the fence to expand and contract.
I. Description of Fence Types

<table>
<thead>
<tr>
<th>Type of Wire</th>
<th>Post Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 strands barb</td>
<td>12 ft.</td>
</tr>
<tr>
<td>B 4 strands barb</td>
<td>16 ft.</td>
</tr>
<tr>
<td>C 5 strands barb</td>
<td>12 ft.</td>
</tr>
<tr>
<td>D 5 strands barb</td>
<td>16 ft.</td>
</tr>
<tr>
<td>E 35 inch woven, 2 top strands barb</td>
<td>14 ft.</td>
</tr>
<tr>
<td>F 35 inch woven, 2 top strands barb</td>
<td>16 ft.</td>
</tr>
</tbody>
</table>

Line fence stretching braces installed:

- level land — 1 brace each 40 rods
- hilly land — 1 brace each 20 rods

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Spacing</td>
<td>ft.</td>
<td>ft.</td>
<td>ft.</td>
<td>ft.</td>
</tr>
</tbody>
</table>

G 4 strands barb, twisted stay each 10 ft. 50 ft.

H 4 strands barb, twisted stay each 10 ft. 100 ft.

Line fence stretching braces installed each 250 ft. for 50 ft. 50-ft. post spacing and each 400 ft. for 100-ft. post spacing.

II. Fence Input Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>6½-ft. steel posts</td>
<td>$2.65 ea.</td>
</tr>
<tr>
<td>8-ft. red cedar posts, delivered</td>
<td>$3.93 ea.</td>
</tr>
<tr>
<td>Woven wire, 47 in.</td>
<td>$99.00/20 rod roll</td>
</tr>
<tr>
<td>Barb wire, 12½ gage</td>
<td>$34.00/80 rod roll</td>
</tr>
<tr>
<td>Twisted wire stays</td>
<td>$29.00/100</td>
</tr>
<tr>
<td>Brace wire, #9</td>
<td>$7.60/lb. roll</td>
</tr>
<tr>
<td>Staples</td>
<td>$28.00/50 lb.</td>
</tr>
<tr>
<td>Labor</td>
<td>$4.00/hr.</td>
</tr>
<tr>
<td>Post hole digging</td>
<td>$0.40/hole</td>
</tr>
<tr>
<td>Tractor rental (no labor or fuel)</td>
<td>$16.00/hr.</td>
</tr>
<tr>
<td>Electric fence energizer</td>
<td>$250.00 ea.</td>
</tr>
</tbody>
</table>

III. Cost Summary

A. Initial Investment Cost/rod

<table>
<thead>
<tr>
<th>Fence Type</th>
<th>A 4 strands barb, twisted stay each 10 ft. 50 ft.</th>
<th>B 4 strands barb, twisted stay each 10 ft. 50 ft.</th>
<th>C 5 strands barb 12' posts</th>
<th>D 5 strands barb 16' posts</th>
<th>E 35" woven, 2 barbs 10' stays 50' posts</th>
<th>F 35" woven, 2 barbs 16' posts</th>
<th>G 4 barbs 10' stays 50' posts</th>
<th>H 4 barbs 16' stays 50' posts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.25</td>
<td>4.70</td>
<td>9.52</td>
<td>9.15</td>
<td>9.95</td>
<td>8.85</td>
<td>3.82</td>
<td>3.60</td>
</tr>
<tr>
<td>C</td>
<td>4.20</td>
<td>1.05</td>
<td>1.35</td>
<td>1.20</td>
<td>1.02</td>
<td>.96</td>
<td>.60</td>
<td>.57</td>
</tr>
<tr>
<td>D</td>
<td>.35</td>
<td>.56</td>
<td>.56</td>
<td>.59</td>
<td>.59</td>
<td>.59</td>
<td>.56</td>
<td>.35</td>
</tr>
<tr>
<td>E</td>
<td>7.24</td>
<td>6.50</td>
<td>8.10</td>
<td>7.36</td>
<td>10.95</td>
<td>10.68</td>
<td>5.08</td>
<td>4.60</td>
</tr>
<tr>
<td>F</td>
<td>2313.60</td>
<td>2080.00</td>
<td>2592.00</td>
<td>2355.20</td>
<td>3504.00</td>
<td>3417.60</td>
<td>1625.60</td>
<td>1472.00</td>
</tr>
</tbody>
</table>

B. Annual Cost/rod

- **Non-cash (depreciation, interest on investment)**
 - A: .78
 - B: .71
 - C: .88
 - D: .79
 - E: 1.19
 - F: 1.14
 - G: .54
 - H: .48
- **Cash (repairs)**
 - A: .07
 - B: .06
 - C: .07
 - D: .07
 - E: .08
 - F: .08
 - G: .06
 - H: .11
- **Total Annual Cost/rod**
 - A: .85
 - B: .77
 - C: .95
 - D: .86
 - E: 1.27
 - F: 1.22
 - G: .62
 - H: .59

Total Annual Cost/mile

- A: 272.00
- B: 246.40
- C: 304.00
- D: 275.20
- E: 406.40
- F: 390.40
- G: 198.40
- H: 188.80

1. Actual
2. Estimated
Fig. 4. Suspension fence construction. Posts up to 100 ft. apart. Twisted wire stays 10 to 15 ft. apart.