MSU Extension Publication Archive

Archive copy of publication, do not use for current recommendations. Up-to-date information about many topics can be obtained from your local Extension office.

1985 Michigan Soybean Performance Report Michigan State University Extension Service O.B. Hesterman, T. G. Isleib, R. Leep, J.L. Lockwood, D. E. Wolfe, L.Rood-Kao, Crop and Soil Sciences Issued January 1986 8 pages

The PDF file was provided courtesy of the Michigan State University Library

Scroll down to view the publication.

1985 MICHIGAN SOYBEAN PERFORMANCE REPORT

Extension Bulletin E-1206, January 1986

By O.B. Hesterman, T.G. Isleib, R. Leep, J. L. Lockwood, D.E. Wolfe and L. Rood-Kao

Dept. of Crop and Soil Sciences

This bulletin provides information on the performance of soybean varieties available in Michigan.

Comprehensive variety yield trials were conducted in Southeastern Michigan (Lenawee County), Southwestern Michigan (St. Joseph County), Far Southwestern Michigan (Berrien County), South Central Michigan (Ingham County), Central Michigan (Saginaw County), and East Central Michigan (Sanilac County). Smaller trials were conducted in Huron and Alger Counties.

Testing Procedures

Commercial varieties voluntarily entered were obtained from seed companies. Public varieties were supplied by the Michigan Foundation Seed Association.

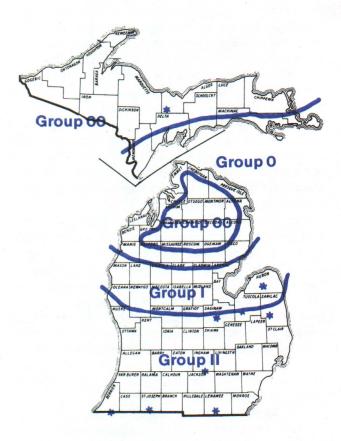
Cooperators, planting and harvest dates, fertilizer practices, previous crops, and soil management groups at the eight locations are listed in Table 1.

Maturity groups of all varieties tested are listed in tables 2 and 5. Seed of entries was planted in plots 20 feet long with a 20-inch row spacing. Seeds were planted 1½ inches deep at 4.5 seeds per foot of row. Each plot was randomized in the field and replicated 3 times. Fourteen feet of the center two rows were harvested for yield.

Evaluation of Characteristics

YIELD — Yield is expressed in bushels per acre at 13% moisture.

MATURITY DATE — Entries were considered mature when 95% of the pods had lost all green color and would crack under finger pressure. Additional field drying was required before the plants were ready to harvest. Dates were recorded by month and day.


HEIGHT — Plant height, in inches, was measured at maturity from the soil surface to the tip of the main stem.

LODGING — Lodging rates reflect the erectness of the plants before harvest. Ratings are based on the following scale:

- 1. Almost all plants erect
- 2. All plants leaning slightly, or fewer than 25% of the plants down
- 3. All plants leaning moderately (45%), or 25% to 50% of the plants down
- 4. All plants leaning considerably, or 50% to 80% of the plants down
- 5. Almost all plants down

Results

Tables 2 through 5 show results of 1985 soybean variety trials. Values given are the averages of all replications harvested at each location.

Soybean Maturity Zones for Full-Season Varieties in Michigan, and Locations (*) of Trials.

Moderate drought stress was evident in Berrien and Sanilac Counties.

The test site at St. Joseph County was irrigated with 7 inches of water delivered with a traveling gun.

The LSD (least significant difference) value is useful when comparing two varieties in the same table. Two varieties with the same genetic potential for yield may have different yields due to variation in soil fertility, compaction, and other environmental factors. If the difference is less than the LSD value, the difference between the varieties may be due to chance or minor environmental differences. However, if the difference between two varieties is greater than the LSD, there is a 95%, or better, probability that the performance is actually different.

Selecting a Variety

The primary consideration in selecting a variety is yield. When evaluating a variety, consider yield performance over several years, if available. Give preference to data obtained in the nearest variety trial. Use all trials in determining a variety's performance under various environmental conditions.

Considerations other than yield are important in selecting a variety, and in some cases result in choosing a variety with only moderate performance. It is especially important to select a variety with proper maturity. From past weather data, farmers can determine the percent probability of the first fall frost. A general rule of thumb is to choose a variety that will mature (see maturity date definition) before the average date for 25% chance of the first killing frost in the fall. Farmers growing soybeans for the first time may wish to contact neighbors to determine what varieties mature before frost in their area. When large acreages of soybeans are planted, varieties of different maturities provide staggered maturity dates for a longer harvest season.

The degree of lodging varies among varieties. Lodged plants in variety trials are manually picked up and threshed, thus yield losses from lodging are not reflected in the yields reported. Lodging ratings should be used to evaluate potential losses. Farmers who have experienced lodging in the past and have had harvest problems may select a more lodging-resistant variety. Alternately, a variety susceptible to lodging may be planted at a slightly lower population to increase standability. Evaluate lodging data over all locations to determine a variety's lodging characteristics.

Note seed size when selecting planting rates. Planting rates should be based on number of seeds per foot of row and not on pounds per acre.

Many diseases occur in soybean fields in Michigan. The diseases which contribute most significantly to yield reduction are seed and seedling diseases and those causing root and stem rot. Root rots of soybeans are generally recognized when plants turn yellow prematurely, wilt, or die. Less noticeable is the yield reduction that occurs when root rot destroys part of the root system, but causes no visible symptoms to above-ground parts. The fungi that cause root rots often survive in the soil for several years, even in the absence of a host plant. Once root rot fungi are established in a field, control is difficult, even with crop rotation.

New varieties with resistance to one or more diseases are being developed, particularly varieties resistant to *Phytophthora* root rot. Disease resistance characteristics to *Phytophthora* root rot are noted in Table 2.

It is often beneficial for growers to select a few good varieties for planting each year. Yield determination and careful field evaluation during the growing season will add to the grower's knowledge of varietal performance and allow better selection.

More information about variety selection and cultural practices can be found in Extension Bulletin E-1549, "Soybean Production in Michigan" (free).

Use of Data

Table 2 presents multiple-environment averages from all tests in the Southern and Central Michigan regions since 1975. The column labeled N refers to the number of tests in which each variety was included. The column labeled DEV. refers to the difference (in bushels per acre) between the mean yield of the variety over N tests and the mean yield of all varieties in those tests. The maturity checks used for tests of Group I and Group II varieties were "Hodgson 78" (H78) and "Corsoy 79" (C79), respectively. A positive relative maturity value means that the variety matured later than the check and a negative value means that the variety matured earlier than the check. The value is the actual number of days in either direction.

Data presented in Tables 3 through 5 are from both regional and site-specific performance trials. Both 1985 yields and multiple-year average yields from all tests since 1975 are given. Maturity, height (in inches), and lodging scores are the 1985 regional averages. Maturity for U.P. trials is expressed as the date of maturity, all others are + or – days as compared with the check variety. For 1985 yield data, all starred entries designate yields not significantly different from the highest yield for that location. Multiple-environment and multiple-year averages comprised of a greater number of tests (greater N) should be considered more reliable.

The presentation of data for the entries tested does

not suggest approval or endorsement of varieties by the authors or by those responsible for conducting the performance trials.

The MSU Cooperative Extension Service approves

the reproduction of the information in this publication only if no portion is deleted, if the data are not rearranged or otherwise manipulated, and if appropriate credit is given.

TABLE 1. Variety Trial Information

County	Lenawee	St. Joseph	Berrien	Ingham	Saginaw	Sanilac	Huron	Alger
CES Director/ Agent	N.H. Bless G.A. Wuethrich	F.J. Henningsen D. Bowen	J.E. Neibauer L.F. Bass	M.M. Preston R.A. Morrison	H.R. Ferris S.S. Poindexter	A.R. Sieting M.W. Stephenson	R.A. Johnson J.L. LeCureux	J.M. Middleton
Farmer Cooperator	D. Woods	B. Marantette J. Sheppard	R. Lamberton		C. Gosen	Mezo Farms	D. Ackerman	
Address	10992 Holloway Britton, MI	25660 Simpson Mendon, MI	2902 Creek Niles, MI	MSU Campus E. Lansing, MI	8735 Swan Creek Saginaw, MI	1640 W. Walker Sandusky, MI	1231 S. Elkton Elkton, MI	MSU Exp Stn., U.P. Chatham, MI
Soil Type	Lenawee silty clay loam	Elston sandy loam	Ostemo-Ockley complex	Capac loam	Colwood silt loam	Capac loam Parkhill loam	Shebeon-Bad- axe sandy loam	Trenary loam
Soil Management Group	1.5 с	4 a	3 a-2.5 a	2.5 b	2.5 c-s	2.5 b 2.5 c	2.5 b-d 3/2 b-d	3 a
Previous Crop	Corn	Corn	Soybeans	Oats	Sugarbeets	Corn	Corn	Barley
Fertilizer	300# 4-17-40	100# 21-0-100 + Mn and B	None	None	200# 6-28-28	300# 9-23-30	None	300# 0-14-41 50# 46-0-0
Planting Date	5/8/85	5/21/85	5/21/85	5/13/85	5/23/85	5/22/85	5/30/85	6/1/85
Harvest Date	10/25/85	10/17/85	10/16/85	10/16/85	10/28/85	10/29/85	10/30/85	11/11/85

PERFORMANCE SUMMARY FOR VARIETIES ENTERED IN THE MICHIGAN TRIALS IN 1985. PHYTOPHTHORA RESISTANCE DESIGNATIONS DENOTE THE FOLLOWING: TYPE 1A RESISTANT TO RACES 1, 2, AND 10; TYPE 1B RESISTANT TO RACES 1 AND 3-9; TYPE 1C RESISTANT TO RACES 1-3 AND 6-10; TYPE 1K RESISTANT TO RACES 1-10; TYPE 3 RESISTANT TO RACES 1-5, 8, AND 9. TABLE 2.

				AIELD	(BU/A	U HTIW (EVIATION	N FROM	MEAN	MATUR	SITY	RELAT	IVE TO	CHE	CKS		
			PHYT.	S	DUTHER	RN	(CENTRA	L	sc	UTHE	RN	CE	NTRA	L	LO	DGING
BRAND	ENTRY	MG	RES. TYPE	YIELD	(N)	DEV.	YIELD		DEV.	DATE	H78	C79					CENTRA
PUBLIC			=======									====					
PUBLIC	DAWSON	0	1A	37.0	(4)	-2.8	40.1	(11)	-2.6	9-19	2	- 5	9-20	-6	- 13	1.3	1.4
	EVANS	o	1A	36.6	(20)	-3.5 *	37.7	(27)	-2.2 *	9-13	- 4	-9	9-20		- 12	1.4	1.5
	OZZIE	o	1 A	33.6	(4)	-6.2 *	37.1	(11)	-5.6 *	9-18	0	-6	9-19		- 14	1.1	1.1
	SIMPSON	o	1A				36.5	(10)	-5.7 *		_	_	9-22		- 10	-	1.3
	BSR 101	Ī	1B	47.6	(8)	1.7	44.1	(8)	2.1	9-21	2	-5	10-3	7	- 2	1.6	1.7
	HARDIN	Ť	1 A	42.9	(14)	1.1	47.8	(17)	4.7 *	9-22	4	-3	10-1	5	-3	2.1	2.4
	HODGSON 78	Ī	1.4	40.8	(23)	-0.6	43.6	(28)	1.3	9-18	0	-6	9-27	0	-6	2.0	1.9
	WEBER 84	Ī	1A	41.0	(10)	-1.5	40.4	(10)	-0.7	9-23	4	- 3	10-1	5	- 3	2.6	2.5
	AMCOR	II	1A	42.4	(14)	-0.5	43.6	(13)	-0.5	9-28	10	3	10-10	10	4	2.8	2.9
	BSR 201	II	1B	49.1	(11)	1.4	45.6	(8)	1.2	9-24	7	1	10-6	11	1	2.7	3.1
	BEESON 80	II	1C	40.7	(14)	-2.2 *	42.0	(15)	-1.3	9-26	7	1	10-7	10	3	2.0	2.3
	CENTURY	II	1A	45.0	(15)	1.7 *	43.9	(16)	1.2	9-28	9	3	10-8	10	3	1.8	2.1
	CENTURY 84	II	1K	43.0	(6)	-0.8	43.4	(5)	0.7	9-28	10	2	10-8	12	3	1.6	1.7
	CORSOY	II	NONE	41.7	(23)	0.9	39.9	(25)	0.5	9-23	5	- 1	10-1	6	0	2.2	2.1
	CORSOY 79	II	1C	43.3	(21)	1.4	45.1	(25)	2.7 *	9-24	6	0	10-4	7	0	2.4	2.5
	ELGIN	II	NONE	45.3	(12)	1.5	47.2	(11)	3.4 *L	9-24	5	-2	10-3	6	-1	2.3	2.0
	HACK	II	1A	46.4	(7)	1.1	43.4	(6)	1.0	9-26	8	1	10-6	11	2	1.6	1.6
	KELLER	II	1C,3	40.1	(5)	-2.2	45.4	(4)	1.3	9-29	9	1	10-8	11	2	2.5	2.6
	MIAMI	II	1C,3	39.6	(6)	-4.1	42.6	(5)	-0.1	9-22	4	-4	10-3	7	-3	1.9	2.1
	NEBSOY	II	1 A	42.4	(15)	-0.9	41.6	(16)	-1.2	9-24	5	- 1	10-5	7	0	1.6	1.7
	VICKERY	II	1C	43.2	(15)	-0.1	43.5	(17)	1.2	9-23	5	-2	10-3	5	- 1	2.8	2.7
	WELLS II	II	1C	41.3	(17)	-2.0 *	41.6	(18)	-0.3	9-23	4	-3	10-3	5	- 2	1.6	1.4
	CUMBERLAND	III	NONE	37.7	(10)	-2.0			3	10-2	14	7		_	-	2.6	-
	HOBBIT	III	NONE	40.3	(12)	1.4				9-29	12	5		-	-	1.3	-
	PELLA	III	1 A	40.7	(10)	0.9	46.1	(9)	2.9	9-30	11	4	10-7	10	4	1.8	1.8
	SPRITE	III	NONE	39.9	(13)	-0.1				10-1	13	7		-	-	1.7	- 1
	WILLIAMS 82	III	1K	40.6	(7)	-0.1				10-5	15	8		-	- to the same	3.0	-
	WINCHESTER	III	1B,3	42.0	(4)	0.3		- 11.		10-6	14	6		-	-	3.2	-
	ZANE	III	NONE	42.7	(4)	1.0	42.7	(3)	0.8	10-2	10	2	10-8	12	2	2.4	2.1

STATISTICALLY SIGNIFICANT DEVIATION (P<.05).

VARIETY EXHIBITS HIGHER THAN AVERAGE RESPONSE TO HIGHLY PRODUCTIVE ENVIRONMENTS.

VARIETY EXHIBITS LOWER THAN AVERAGE RESPONSE TO HIGHLY PRODUCTIVE ENVIRONMENTS.

TABLE 2. PERFORMANCE SUMMARY FOR VARIETIES ENTERED IN THE MICHIGAN TRIALS IN 1985 (CONT'D). PHYTOPHTHORA RESISTANCE DESIGNATIONS DENOTE THE FOLLOWING: TYPE 1A RESISTANT TO RACES 1, 2, AND 10: TYPE 1B RESISTANT TO RACES 1 AND 3-9; TYPE 1C RESISTANT TO RACES 1-3 AND 6-10; TYPE 1K RESISTANT TO RACES 1-10: TYPE 3 RESISTANT TO RACES 1-5, 8, AND 9.

		PHYT.	S	OUTHER	N		CENTRA	AL.	sc	UTHE	RN		NTRA	L		ODGING
RAND ENTRY	MG	RES. TYPE	YIELD	(N)	DEV.	YIELD	(N)			H78	C79	DATE	H78	C79	SOUTH	. CENT
GRIPRO				******												
AP200 AP240	II	1A NONE	43.1	(15)	0.3	46.0	(14)	2.2	9-21	7	-4	10-1	3	-3	1.8	2.3
AP2190	II	1A	41.7	(4)	0.0 H	45.8	(3)	3.9	9-30	8	0	10-6	11	1	2.4	1.4
HP20-20 HP2530	II	1A 1A	44.6	(8)	1.4	41.3	(7)	1.2	9-22	7	-4	10-2	5	-3	2.2	2.5
SGROW																
A 1525 A 1937	I	1A 1A	43.3	(13)	2.1 *	39.0 47.8	(4)	-2.0 4.4 *	9-20	2	-4	9-28	1	-8	2.0	2.0
A2187	II	1A	40.9	(4)	-0.8	43.2	(3)	1.4	9-26	4	- 5	10-2	6	-4	1.8	1.
A2522 A2943	II	NONE	41.7	(8)	0.5 3.6 *L	45.3	(5)	2.4	9-28	12	5	10-5	7	2	1.7	2.
5150X BRAND	I	1A				41.4	(8)	0.4				9-28	2	-6		1.4
5200X BLEND	I	1A, NONE				41.9	(8)	1.0				10-3	7	0		2.
6180X 1250	II	NONE	41.0	(10)	1.2	42.9	(4)	1.9	9-29	11	4	9-29	13	-7	2.0	1.1
3210 BL.END	II	1A, NONE	41.1	(10)	1.3	43.3	(7)	1.4	9-26	7	0	10-5	7	1	2.0	1.9
4260 BLEND 6220X	II	1A . NONE	41.6	(4)	-0.1	44.4	(3)	2.5	10-3	11	2	10-10	14	4	2.5	,
6262X	II	1A	43.4	(4)	1.8	46.1	(3)	4.3 *	9-30	8	0	10-7	11	1	1.8	1.0
3310 BRAND, BLEND	111	NONE	43.8	(12)	2.9 *				9-30	11	5			• •	2.2	
5300X BRAND	III	NONE	44.4	(4)	2.7			'	10-6	14	6	4.4			2.8	
5350 BRAND	III	NONE	44.1	(8)	2.9 *				10-3	12	5				2.8	
DST-0801	0	NONE			*	36.2	(4)	-4.8 *				9-21		- 16	-	1.
DSR-120 DSR-151	I	NONE 1A	36.7	(7)	-2.9	43.9	(15)	0.1 L -0.4	9-18	1	-6	9-25	-2	-9	1.7	1.9
DSR-171 DST-1101	I	NONE 1C	43.8	(15)	1.5	45.9	(16)	2.1	9-23	4	- 2	10-1	4	- 3	2.1	2.3
DST - 1102	1	1A, NONE				43.0	(4)	2.0				9-26	-1	- 10 - 9		1.0
DST-1206 DSR-205	II	1C NONE	38.3	(5)	-3.6	39.4	(4)	-1.5 * -2.1	9-26	6	-3	9-30	2	-6		1.3
DSR-212	II	NONE	39.4	(12)	-1.4	43.6	(11)	0.1	9-25	6	- 1	10-6	5	1	1.2	1.5
DSR-255 DSR-287	II	NONE	36.8	(4)	-4.8	39.2	(3)	-2.6	9 - 29	7	-1	10-5	10	0	2.1	1.7
DSR-297	11	NONE	40.8	(4)	2.6				10-4	12	6				2.3	
DST-2202 DSR-317	III	NONE	40.9	(4)	1.5	43.9	(3)	2.0	10-1	9	1	10-9	13	3	3.0	2.7
DSR-320	III	NONE	39.8	(12)	-1.1				10-6	14	6 G				2.2	
CX 134	T	NONE	34.9	(4)	-4.9	41.0	(11)	-1.6	9-18	1	-6	9-29	3	- 5	1.6	1.5
CX 155	I	NONE	40.3	(12)	-0.2	43.5	(19)	0.5	9-23	6	-1	10-3	6	- 1	2.1	2.0
CX174 CX265	II	1.4	41.5	(8)	0.4	41.8	(8)	0.9	9-26	6	- 1	10-4	7	0	1.8	1.7
CX283	II	NONE	42.1	(8)	0.9				10-2	10	3				2.3	-
CX324 UNK	III		40.6	(10)	0.8	•			10-1	12	5				2.5	
G3115	I					42.1	(11)	-0.5				10-2	6	- 2	-	1.5
G3145 BLEND 12231	I	1A NONE				42.9	(8)	0.1	- ::			9-29	6	- 2 - 7		1.9
G3213 BLEND	II		41.5	(8)	0.3 L				9-28	7	0				2.7	
G3236 G3239 BLEND	II	NONE	38.8	(8)	0.3	48.6	(5) (5)	2.3 *	9-27	12	3	10-8	11	3	2.2	2.7
DLDEN HARVEST		NONE														
H-1233 BRAND H-1285 BRAND	II	NONE	42.8	(4)	1.2	44.3	(3)	2.5	9-29	12	- 1	10-5	15	- 1	2.3	1.6
REAT LAKES HYBRIDS (
GL 1434 BRAND GL 1900 BRAND	I	1 A 1 A				35.1	(4)	-5.8 * 0.7 H				9-30	2	- 7		1.4
GL1937 BRAND GL2250	I	1A NONE	43.7	(8)		44.1	(11)	1.4		7		10-1	5	-2		2.0
GL2634 BRAND	II	NONE.	45.7	(13)	3.9 *	44.6	(13)	4.0 +	9-24	10	4	10-6	9	2	1.8	2.1
XP2586 BRAND XP2749 BRAND	II	NONE 1B	41.9	(8)	0.8	42.3	(7)	0.4	9-30	10	2	10-7	9	3	1.9	1.8
XP2908 BRAND	II	NONE	43.6	(8)	2.4				10-8	16	5				2.8	
BIRCH	II	(IFS)	42.7	(4)	1.0 L				10-4	12	4				3.6	
OAK	II	NONE				42.2	(3)	0.3	10-4			10-8	13	3	3.6	1.8
ACQUES E8380	0	NONE				37.6	(4)	-3.3				9-23	- 4	- 13		1.3
J-231	II	1 A	43.8	(8)	2.6 *				9.29	8	0	• •			2.1	
J-2786 ING GRAIN	11	1A	42.8	(4)	1.2 H				10-3	11	3				2.2	7
KG60	I	14				36.7	(8)	-4.2 *				9-21		- 13	-	1.7
KG70 KG3224	I	14	43.2	(4)	-2.0 *	40.6	(13)	-2.2	9-22	- 1	-7	9-28	0	-6	1.6	1.5
KG8O	II	1.4				39.4	(3)	-2.5				10-10	14	4		2.3
KG3028 KESIDE STATES	11			•••		44.5	(7)	2.6		• •		10-5	7	1		2.4
EXP 87	I	1A	38.7	(4)	-3.0 *	40.0	(4)	-1.4	9-26	4	-4	10-2	4	-4	1.8	1.5
EXP 36 BRAND EXP 95	II	1C, NONE	42.0	(4)	-1.9	43.5	(3)	1.7	9-30	8	0	10-9	13	3	2.5	2.6
EXP 67 BRAND	III	1A	42.6	(4)	1.0	41.3	(3)	-0.6	10-8	15	7	10-13	17	7	2.8	2.4
LLOO19	I	1A				33.5	(4)	-7.5 *H				10-4	7	-2		2.
LL0022	II	NONE	43.5	(4)	1.8				9-29	7	- 1				2.1	
L2456	II		43.4	(4)	1.7				10-1	9	0				2.9	
BLLACKSMITH	II	NONE	42.4	(4)	0.8				10-3	10	2			••	2.5	
MILLLER BRAND	III	NONE	46.6	(4)	5.0				10-6	14	6				2.6	
LUMEE VALLEY																
CALIBER ENTERPRISE	II	1A NONE	41.5	(8)	-2.9				9-27	10	-2				2.5	
MV-2E1	II	NONE	42.7	(8)	1.5 L				10-2	11	4				2.0	-
WARRIOR	III	NONE	42.9	(4)	1.3				10-3	10	. 5				3.1	
WASHINGTON V	ÎII	1A	43.4	(8)	2.2				10-1	10	2				3.1	
																(CONT

^{*} STATISTICALLY SIGNIFICANT DEVIATION (P<.05).

H VARIETY EXHIBITS HIGHER THAN AVERAGE RESPONSE TO HIGHLY PRODUCTIVE ENVIRONMENTS.

L VARIETY EXHIBITS LOWER THAN AVERAGE RESPONSE TO HIGHLY PRODUCTIVE ENVIRONMENTS.

TABLE 2. PERFORMANCE SUMMARY FOR VARIETIES ENTERED IN THE MICHIGAN TRIALS IN 1985 (CONT'D). PHYTOPHTHORA RESISTANCE DESIGNATIONS DENOTE THE FOLLOWING: TYPE 1A RESISTANT TO RACES 1, 2, AND 10; TYPE 1B RESISTANT TO RACES 1 AND 3-9: TYPE 1C RESISTANT TO RACES 1-3 AND 6-10; TYPF 1K RESISTANT TO RACES 1-10; TYPE 3 RESISTANT TO RACES 1-5, 8, AND 9.

				YIELD	(BU/A) WITH	DEVIATIO	N FROM	MEAN		MATUR	ITY	RELA	TIVE TO	CHE	CKS		
			PHYT.		DUTHER	N		CENTRA	L		so	UTHE	RN	CE	NTRA	L	LO	DGING
BRAND	ENTRY	MG	RES.	YIELD		DEV.	YIELD	(N)	DEV.		DATE	H78	C79	DATE	H78	C79	SOUTH.	CENTRA
										===		====			====			
NORTHRU	JP KING (NK)																	
	S1346	I	NONE	41.4	(10)	0.3	43.5	(19)	0.6		9-19	1	- 5	9-26	1	-6	1.4	1.4
	\$14-60	I	NONE				41.7	(11)	-0.9	L				9-26	0	- 7	, est	1.4
	S15-50	I	1C				38.5	(4)	-2.4					9-30	2	- 7	-	1.5
	S18-84	I	1B,3	43.2	(9)	2.3	47.1	(13)	4.3	*	9-21	3	- 3	10-1	4	- 3	1.6	1.8
	S23-03	II	NONE	41.5	(8)	0.3	43.2	(4)	0.6	L	9-27	6	-2	10-4	9	- 1	2.3	2.1
	52596	II	1.4	46.6	(13)	1.9 *		(7)	1.2		9-27	7	0	10-7	10	2	1.9	1.7
	527-10	II	1C	39.9	(4)	-1.8	40.6	(3)	-1.3		10-1	9	1	10-7	11	1	2.2	1.6
	530-31	III		38.0	(6)	-1.1					9-28	10	3				2.4	-
PIONEE		111		00.0	(0)						3 20		-					
PIONEE	1981	I	1A				43.7	(4)	2.7					10-3	5	-4	-	1.6
	2480	11	1A	41.7	(8)	0.7	44.9	(10)		*	9-27	9	1	10-6	9	2	2.1	2.0
								(5)	1.8			8	o	10-4	6	1	1.6	1.8
	9271	II	NONE	42.8	(8)	1.6	44.7				9-28	5			5	- 1	1.3	
	9292	II	NONE	43.5	(8)	2.3 *	45.2	(5)	2.4		9-26	5	-3	10-3	5	- 1	1.3	1.6
PROSOY															_			
	PS 104	I	1.4	41.7	(13)	0.1	44.9	(17)	1.3		9-19	2	-4	9-29	3	- 4	1.8	1.9
	PS210	II	1 A	41.7	(12)	-0.5	46.4	(11)	2.2	* L	9-24	6	- 1	10-4	8	1	1.8	2.0
RUPP																		
	RS2100	II	NONE	40.8	(10)	1.1	45.0	(10)	2.0		9-22	3	-4	9-29	4	- 4	2.2	2.2
	RS2300	II		44.2	(15)	0.9	45.7	(13)	2.0		9-23	4	-3	10-3	5	- 1	1.6	1.6
	RS2320	II	NONE	41.9	(4)	0.3	42.8	(3)	0.9		10-2	9	1	10-10	14	4	1.7	1.3
	RS2334	II	1C	40.8	(4)	-0.8	41.3	(3)	-0.6		10-3	11	2	10-10	14	4	1.9	1.4
	RS2460P	II		45.4	(8)	4.3 *	43.1	(7)	1.2		10-1	10	3	10-8	10	4	2.0	2.0
	RS2544	III	NONE	44.4	(4)	2.7					10-6	14	6				2.6	_
	RS2546	III	NONE	42.6	(4)	1.0					10-6	14	6				2.1	
STINE	11.02040		110112	42.0	(- /													
0.2	1350 BRAND	I	1.4				41.0	(8)	0.1					9-28	2	-5	-	1.4
	1570 BRAND	ī	1A				40.0	(4)	-0.9					10-6	9	0	_	2.4
	2050+ BRAND	II	NONE				43.5	(3)	1.6					10-10	14	4	_	2.1
	2050T BLEND	II	1A , NONE	43.3	(4)	1.7	43.5	(3)			10-4	12	3		1-4		2.4	
		11	1A . NONE	43.3	(4)	1./	45.5	(3)	3.7			12		10-6	10	0	2.4	1.9
	2220 BLEND						45.5	(3)	3.7		9-29	8	0	10-6			2.3	1.9
	2510 BRAND	II	1.4	43.1	(8)	1.9						_	_			3	2.3	
	2510E BRAND	II	1 A	44.0	(4)		43.2	(3)	1.3		40.4			10-9	13			2.4
	2530 BRAND	II	1A	44.2	(4)	2.6					10-4	12	4				2.5	
	3010+ BRAND	III	NONE	43.9	(4)	2.2 *					10-6	13	5				3.0	-
	3500 BRAND	III	NONE	41.3	(4)	-0.3					10-6	14	6				2.7	-
VORIS														176.5	31.4			
	V207	II	1 A	45.1	(12)	0.8	46.2	(15)		*	9-22	3	-4	10-3	5	-2	2.0	2.1
	V311	III	NONE	43.5	(8)	2.3	46.1	(4)	3.5		10-2	12	4	10-10	15	5	2.9	2.6

TABLE 3. SOUTHERN MICHIGAN.

				YIELD (BU/A)			M A T H	L O
		ENTIRE SOUTHERN	SOUTHEAST	SOUTHWEST	FAR SOUTHWEST	SOUTH CENTRAL	RI	G
		REGION	(LENAWEE CO.)	(ST. JOSEPH CO.)	(BERRIEN CO.)	(INGHAM CO.)	I G	I
							T H	N F
BRAND	ENTRY	1985 AVG. (N)	1985 AVG. (N)	1985 AVG. (N)	1985 AVG. (N)	1985 AVG. (N)	YT	G
*********								=====
PUBLIC	BSR 101 (I)	42.7* 47.6 (8)	47.0 51.4 (5)	44.2*	31.0	48.4	-5 32	
PUBLIC	HARDIN	39.1 42.9 (14)	43.6 52.1 (6)	37.1 34.7 (3)	26.3 32.2 (3)	49.6* 44.0 (2)	-3 36 -8 33	
PUBLIC	HODGSON 78	35.4 40.8 (23)	36.9 48.4 (9)	34.1 31.8 (6)	24.5 35.2 (5)	46.2 45.7 (3)	-8 33 -3 35	
PUBLIC	WEBER 84	37.4 41.0 (10)	39.0 49.4 (4)	33.2 34.9 (2)	29.3 26.8 (2)	48.1 44.4 (2) 41.5 42.1 (2)	3 40	
PUBLIC	AMCOR (II)	40.9 42.4 (14)	48.4* 51.5 (6)	35.8 30.1 (3)	37.8 * 36.5 (3)	41.5 42.1 (2)	3 40	3.2
PUBLIC	BEESON 80	39.3 40.7 (14)	42.2 47.4 (6)	32.8 26.9 (3)	35.0* 38.3 (3)	47.0 44.7 (2)	1 35	2.3
PUBLIC	BSR 201	43.3* 49.1 (11)	46.8 51.6 (8)	40.6	32.0	53.8*	1 36	2.9
PUBLIC	CENTURY	45.6* 45.0 (15)	51.3* 52.0 (7)	42.9* 34.4 (3)	36.9* 38.3 (3)	51.2* 46.3 (2)	2 37	2.
PUBLIC	CENTURY 84	41.5 43.0 (6)	52.1* 48.0 (3)	37.6	31.9	44.3	2 36	1.9
PUBLIC	CORSOY	38.1 41.7 (23)	44.7 47.6 (10)	30.9 32.7 (5)	32.3 37.4 (4)	44.6 42.2 (4)	-2 39	3.1
PUBLIC	+ CORSOY 79	40.6 43.3 (21)	48.4* 52.7 (9)	34.2 30.1 (5)	32.6 37.0 (4)	47.2 45.6 (3)	0 40	3.0
PUBLIC	ELGIN	42.1* 45.3 (12)	49.4* 50.9 (6)	43.5* 41.0 (2)	31.8 33.0 (2)	43.8 44.8 (2)	-5 31	2.3
PUBLIC	HACK	42.0+ 46.4 (7)	46.0 50.8 (4)	44.9+	30.1	47.0	1 32	
PUBLIC	KELLER	39.1 40.1 (5)	42.7 43.4 (2)	32.3	32.5	49.0	0 35	2.7
PUBLIC	MIAMI	37.0 39.6 (6)	44.4 44.7 (3)	26.9	30.3	46.5	-4 36	2.3
PUBLIC	NEBSOY	42.3* 42.4 (15)	43.3 47.5 (7)	39.1 32.1 (3)	30.1 35.0 (3)	56.6* 50.9 (2)	-2 33	1.6
PUBLIC	VICKERY	37.4 43.2 (15)	41.5 51.9 (7)	34.1 30.3 (3)	30.2 35.8 (3)	43.9 43.3 (2)	-3 37	
PUBLIC	WELLS II	38.5 41.3 (17)	44.9 46.9 (7)	35.1 33.0 (4)	31.2 39.1 (4)	42.8 42.9 (2)	-5 35	
PUBLIC	CUMBERLAND (III)	38.2 37.7 (10)	49.2* 49.2 (3)	31.8 27.1 (3)	37.1* 33.7 (2)	34.6 40.4 (2)	7 36	
PUBLIC	HOBBIT	44.6* 40.3 (12)	48.6* 50.1 (4)	39.5 29.7 (4)	38.0* 32.9 (2)	52.2* 49.4 (2)	5 27	1.9
PUBLIC	PELLA	44.8* 40.7 (10)	51.4* 49.3 (3)	38.3 30.4 (3)	34.0 33.2 (2)	55.5* 50.8 (2)	4 36	
PUBLIC	SPRITE	42.2* 39.9 (13)	50.4* 51.0 (5)	41.0 28.4 (4)	33.5 31.0 (2)	43.9 43.6 (2)	5 27	
PUBLIC	WILLIAMS 82	41.5 40.6 (7)	46.3 50.2 (2)	38.6 36.2 (2)	34.5 32.4 (2)	46.7	8 39	
PUBLIC	WINCHESTER	42.0*	49.5*	32.4	34.3	51.7*	6 39	
PUBLIC	ZANE	42.7*	48.6*	41.4	38.3*	42.5	2 37	2.

STATISTICALLY SIGNIFICANT DEVIATION (P<.05).
VARIETY EXHIBITS HIGHER THAN AVERAGE RESPONSE TO HIGHLY PRODUCTIVE ENVIRONMENTS.
VARIETY EXHIBITS LOWER THAN AVERAGE RESPONSE TO HIGHLY PRODUCTIVE ENVIRONMENTS.

H

⁺ CHECK VARIETY USED TO CALCULATE DEVIATION FROM STANDARD MATURITY.

* NOT SIGNIFICANTLY DIFFERENT FROM HIGHEST YIELD WITHIN THAT COLUMN:

TABLE 3. SOUTHERN MICHIGAN (CONT'D).

				YIELD (BU/A)			M A T H U E	L O D
BRAND	ENTRY	ENTIRE SOUTHERN REGION 1985 AVG. (N)	SOUTHEAST (LENAWEE CO.) 1985 AVG. (N)	SOUTHWEST (ST. JOSEPH CO.) 1985 AVG. (N)	FAR SOUTHWEST (BERRIEN CO.) 1985 AVG. (N)	SOUTH CENTRAL (INGHAM CO.) 1985 AVG. (N)	R I I G T H Y T	G I N G
AGRIPRO AGRIPRO AGRIPRO AGRIPRO AGRIPRO	AP200 AP2190 AP240 HP20-20 HP2530	39.8 43.1 (15) 41.7* 42.0* 41.3 (12) 37.9 44.6 (8) 42.2* 44.6 (11)	50.4* 49.1 (7) 51.9* 49.4* 48.8 (4) 45.2 51.3 (4) 50.0* 50.9 (4)	33.7 33.7 (3) 37.9 40.6 35.8 (3) 35.8 38.7 36.8 (2)	29.2 36.5 (3) 24.9 29.2 34.0 (3) 29.2 37.4 (2) 29.3 37.0 (3)	45.8 46.0 (2) 52.1* 48.9 45.5 (2) 41.3 50.7* 51.2 (2)	-4 37 -0 33 -1 32 -5 36 1 32	3. 2. 2. 2.
ASGROW ASGROW ASGROW ASGROW CALLAHAN	A1937 A2187 A2522 A2943 1250	40.5 43.3 (13) 40.9 42.8* 41.7 (8) 45.5* 44.8 (8) 43.8* 41.0 (10)	48.8* 51.5 (5) 44.5 47.6 51.9 (2) 48.0 51.4 (2) 51.1* 47.6 (3)	35.4 34.9 (3) 38.3 43.5* 36.5 (2) 44.4* 42.2 (2) 35.8 33.6 (3)	28.1 34.9 (3) 33.7 31.7 29.5 (2) 40.6* 38.6 (2) 34.3 33.4 (2)	49.7* 48.0 (2) 47.0 48.3 48.8 (2) 49.1 46.8 (2) 54.0* 49.6 (2)	-6 34 -5 35 0 37 5 37 4 34	2. 1. 2. 2.
CALLAHAN CALLAHAN CALLAHAN CALLAHAN CALLAHAN	3210 BLEND 3310 BRAND BLEND 4260 BLEND 5300X BRAND 5350 BRAND	40.1 41.1 (10) 43.8* 43.8 (12) 41.6 44.4* 44.9* 44.1 (8)	50.5* 53.0 (3) 48.8* 51.8 (4) 47.0	34.5 32.5 (3) 45.4* 34.3 (3) 34.8 40.6 41.2 39.4 (2)	26.1 28.8 (2) 35.0* 41.5 (3) 32.7 34.7* 36.0* 34.6 (2)	49.3* 48.6 (2) 45.8 45.6 (2) 51.8* 48.7 51.6* 47.7 (2)	5 36 2 34 6 36 6 37	2.2.2.3.
CALLAHAN	6262X	43.5*	52.7*	36.9	32.3	51.9*	-1 35	1
AIRYLAND AIRYLAND AIRYLAND AIRYLAND	DSR-171 DSR-212 DSR-255 DSR-287	40.4 43.8 (15) 39.8 39.4 (12) 36.8 44.3*	48.2* 50.8 (7) 43.6 45.2 (4) 37.9 47.2	41.6* 36.6 (3) 40.9 34.0 (3) 34.2 45.8*	28.4 34.5 (3) 26.2 33.3 (3) 30.9 34.2	43.3 43.7 (2) 48.3 45.4 (2) 44.4 49.8*	-5 35 -1 33 -1 35 3 36	2.2.2.
AIRYLAND AIRYLAND AIRYLAND AIRYLAND EKALB-PFIZER	DSR-297 DSR-317 DSR-320 DST-2202 CX174	40.9 43.1* 40.0 39.8 (12) 40.9 42.1* 41.5 (8)	47.5 53.5* 42.9 45.8 (4) 47.1 49.8* 51.2 (2)	35.7 42.9* 37.5 30.8 (3) 37.7 40.9 36.6 (2)	33.8 38.3* 37.8* 39.4 (3) 33.4 30.4 32.0 (2)	46.4 37.9 41.7 41.9 (2) 45.3 47.4 46.2 (2)	6 38 6 41 5 37 1 38 -2 32	2 2 3 2
EKALB-PFIZER EKALB-PFIZER EKALB-PFIZER UNK UNK	CX265 CX283 CX324 G3213 G3236	42.1* 43.2* 42.1 (8) 44.1* 40.6 (10) 40.7 41.5 (8) 38.2 38.8 (8)	47.7 49.4* 50.6 (2) 54.7* 50.4 (3) 45.7 49.0 (2) 44.2 44.5 (3)	43.6* 34.4 35.2 (2) 40.7 30.1 (3) 41.1 40.0 (2) 35.2 28.0 (2)	32.7 40.5* 34.8 (2) 32.9 33.4 (2) 33.1 33.8 (2) 29.5 38.4 (2)	44.4 48.6 47.8 (2) 48.1 48.6 (2) 42.9 43.6 (2) 43.7	1 34 4 36 5 37 -1 37 2 34	2 3 3 3
UNK OLDEN HARVEST OLDEN HARVEST LH LH		42.4* 42.6 (5) 42.9* 43.5* 43.4* 45.7 (13) 43.8* 41.9 (8)	44.2 50.7* 51.1* 49.3* 53.0 (5) 47.2 48.6 (2)	42.4* 40.5 36.9 40.5 35.1 (3) 42.2* 40.0 (2)	33.8 33.4 38.7* 34.8* 42.6 (3) 37.3* 34.4 (2)	49.2 46.2 (2) 46.8 47.1 48.9 48.2 (2) 48.6 44.8 (2)	4 35 -1 32 3 34 3 34 2 34	2 2 2 2
SLH SLH FS JACQUES JACQUES	XP2749 BRAND XP2908 BIRCH J-231 J-2786	39.3 44.8* 43.6 (8) 42.7* 45.2* 43.8 (8) 42.8*	44.0 52.8* 55.9 (2) 46.8 52.7* 53.7 (2) 50.7*	40.1 42.9* 38.6 (2) 41.6* 41.3 37.9 (2) 40.0	35.4* 36.5* 34.8 (2) 36.3* 33.3 33.4 (2) 30.0	37.6 47.2 45.0 (2) 46.0 53.3* 50.2 (2) 50.6*	8 35 6 37 4 40 1 35 3 37	2 2 3 2 2
AND O' LAKES AKESIDE AKESIDE AKESIDE AKESIDE	LLOO22 L2456 EXP 36 BRAND EXP 67 BRAND EXP 87	43.5* 43.4* 42.0* 42.6* 38.7	47.9 47.6 44.9 52.6* 45.3	40.0 37.3 40.7 35.3 36.0	36.6* 33.3 32.8 37.0* 28.0	49.4* 55.2* 49.6* 45.6	-1 33 1 36 -1 37 7 40 -5 36	2 2 2 1
AKESIDE IFI IFI IAUMEE VALLEY	EXP 95 BLLACKSMITH MILLLER CALIBER ENTERPRISE	39.7 42.4* 46.6* 40.1 41.5 (8) 38.8	44.9 46.8 52.9* 45.2 48.6 (2) 44.4	33.8 39.6 49.2* 36.5 39.1 (2) 35.7	31.5 35.4* 37.5* 30.9 30.8 (2) 35.7*	48.7 47.8 46.9 47.9 47.6 (2) 39.2	0 36 2 34 6 37 -2 37 2 35	2 2 2 2
NAUMEE VALLEY NAUMEE VALLEY NAUMEE VALLEY NAUMEE VALLEY	KODIAK MV-2E1 WARRIOR WASHINGTON V 523-03	43.5* 43.6* 42.7 (8) 42.9* 44.8* 43.4 (8) 39.7 41.5 (8)	49.8* 49.3* 50.2 (2) 50.3* 49.8* 55.0 (2) 45.2 48.4 (2)	39.3 40.8 39.0 (2) 37.3 43.3* 40.8 (2) 42.1* 41.2 (2)	35.8* 35.3* 35.0 (2) 36.5* 40.0* 33.8 (2) 28.4 33.0 (2)	49.1 49.0 46.6 (2) 47.6 46.1 43.9 (2) 42.9 43.2 (2)	5 38 4 36 2 35 6 42 -3 35	3 2 3 2
IK IK IONEER IONEER	\$2596 \$27-10 \$30-31 9271 9292	44.6* 46.6 (13) 39.9 38.8 38.0 (6) 43.7* 42.8 (8) 43.6* 43.5 (8)	51.7* 53.5 (6) 46.4 46.4 47.2 (2) 50.2* 52.6 (2) 49.0* 52.4 (2)	43.5* 39.6 (2) 38.9 40.5 32.7 (2) 44.0* 40.2 (2) 42.3* 41.4 (2)	34.1 38.6 (3) 26.7 31.3 31.8 29.1 (2) 30.3 30.4 (2)	49.2 45.2 (2) 47.6 37.1 48.9 49.1 (2) 52.8* 49.8 (2)	-1 32 1 33 6 37 -0 30 -4 30	2 3 2 1
ROSOY UPP UPP UPP	PS210 RS2100 RS2300 RS2320 RS2334	40.4 41.7 (12) 41.4 40.8 (10) 41.4 44.2 (15) 41.9*	48.7* 51.9 (5) 45.1 48.6 (3) 48.2* 52.1 (7) 48.3* 45.0	40.0 33.0 (3) 38.3 34.9 (3) 39.8 33.0 (3) 40.7 34.8	24.5 23.8 (2) 24.6 28.0 (2) 26.5 34.0 (3) 30.0 32.7	48.4 47.2 (2) 57.7* 50.9 (2) 51.0* 48.4 (2) 48.7 50.8*	-1 36 -5 35 -3 35 1 32 2 35	2 1 1 1
UPP UPP	RS2460P RS2544	44.1* 45.4 (8) 44.4*	51.6* 56.5 (2) 44.7	40.7 42.7 (2) 48.3*	35.5* 33.6 ·(2)	48.5 49.0 (2) 43.4	3 35 6 39	2 2
UPP TINE TINE	RS2546 2050T BLEND 2510 BRAND	42.6* 43.3* 45.0* 43.1 (8)	46.0 49.7* 54.7* 54.2 (2)	40.2 44.4* 42.2* 40.2 (2)	34.5 30.7 31.0 31.2 (2)	49.8* 48.5 52.1* 46.8 (2)	6 38 3 35 1 31	2 2 2 2
TINE TINE TINE ORIS ORIS	2530 BRAND 3010+ BRAND 3500 BRAND V207 V311	44.2* 43.9* 41.3 42.1* 45.1 (12) 42.3* 43.5 (8)	53.4* 48.7* 45.3 47.5 50.1 (6) 44.7 49.6 (2)	38.7 41.2 42.4* 38.1 32.2 (2) 40.5 39.2 (2)	36.1* 35.2* 34.7* 28.4 37.4 (2) 31.1 36.4 (2)	48.6 50.4* 42.9 54.3* 50.4 (2) 52.8* 48.6 (2)	4 37 5 38 6 38 -3 36 4 37	2 2 2 3
	LSD(.05)	4.95	6.50	7.79	6.36	8.35	2.4 2.6	0

⁺ CHECK VARIETY USED TO CALCULATE DEVIATION FROM STANDARD MATURITY.

* NOT SIGNIFICANTLY DIFFERENT FROM HIGHEST YIELD WITHIN THAT COLUMN.

				YIELD (BU/A)			T H U E	D D
RAND	ENTRY	ENTIRE CENTRAL REGION 1985 AVG. (N)	SOUTH CENTRAL (INGHAM CO.) 1985 AVG. (N)	CENTRAL (SAGINAW CO.) 1985 AVG. (N)	EAST CENTRAL (SANILAC CO.)	SAGINAW BAY + (HURON CO.)	R I I G T H Y T	G I N G
UBLIC UBLIC UBLIC UBLIC UBLIC	DAWSON (O) EVANS OZZIE SIMPSON BSR 101 (I)	36.5 40.1 (11) 35.1 37.7 (27) 30.7 37.0 (11) 33.5 36.5 (10) 42.0 44.1 (8)	40.6 42.8 (2) 44.5 37.8 (4) 37.5 39.2 (2) 	39.4 35.5 (4) 36.7 38.2 (13) 28.4 36.0 (4) 34.9 32.3 (4) 42.6 45.3 (5)	29.5 43.1 (3) 24.0 37.2 (7) 26.1 38.9 (3) 27.3 39.7 (3) 34.9	38.9 42.0 (2) 36.2 36.9 (3) 34.3 34.2 (2) 34.8 39.8 (2) 42.9*	-20 27	1. 1. 1. 0.
UBLIC UBLIC UBLIC UBLIC	HARDIN HODGSON 78 WEBER 84 AMCOR (II) BEESON 80	45.9* 47.8 (17) 39.3 43.6 (28) 40.7 40.4 (10) 40.8 43.6 (13) 40.8 42.0 (15)	49.6* 44.0 (2) 46.2 45.7 (3) 48.1 44.4 (2) 41.5 42.1 (2) 47.0 44.7 (2)	48.0* 50.0 (8) 37.1 42.3 (14) 38.7 42.4 (5) 42.5 44.0 (7) 38.8 44.7 (8)	40.2* 48.1 (5) 34.7 45.0 (8) 35.2 33.4 (2) 38.5* 43.6 (4) 36.6 36.5 (5)	37.7 42.7 (2) 38.3 44.4 (3) 36.5	-2 36 -10 32 -3 33 5 38 4 34	2 1 2 2 2
JBLIC JBLIC JBLIC JBLIC JBLIC ++	BSR 201 CENTURY CENTURY 84 CORSOY CORSOY 79	44.6* 45.6 (8) 44.8* 43.9 (16) 41.8 43.4 (5) 43.3* 39.9 (25) 42.1 45.1 (25)	53.8* 51.2* 46.3 (2) 44.3 44.6 42.2 (4) 47.2 45.6 (3)	41.5 45.5 (6) 40.2 44.8 (9) 40.3 44.0 (3) 49.1* 41.3 (13) 38.7 45.0 (13)	38.5* 42.9* 41.2 (5) 40.7* 36.1 35.6 (6) 40.5* 46.2 (7)	42.0 40.6 (2)	1 34 5 37 3 33 -2 36 10-6 38	2 1 2 2
JBLIC JBLIC JBLIC JBLIC	ELGIN HACK KELLER MIAMI NEBSOY	46.0* 47.2 (11) 44.1* 43.4 (6) 42.8* 41.2 42.6 (5) 44.9* 41.6 (16)	43.8 44.8 (2) 47.0 49.0 46.5 56.6* 50.9 (2)	48.9* 48.8 (7) 45.0* 43.3 (4) 37.7 41.8 43.8 (3) 44.0* 43.0 (9)	45.3* 43.9 (2) 40.3* 41.7* 35.4 34.1 35.3 (5)		-4 31 1 31 3 34 -3 36 -1 33	2 1 2 2 1
JBLIC JBLIC JBLIC JBLIC GRIPRO	VICKERY WELLS II PELLA (III) ZANE AP200	43.6+ 43.5 (17) 40.6 41.6 (18) 47.1+ 46.1 (9) 42.7+ 43.5+ 46.0 (14)	43.9 43.3 (2) 42.8 42.9 (2) 55.5* 50.8 (2) 42.5 45.8 46.0 (2)	45.8* 43.8 (10) 38.4 43.8 (10) 41.5 41.7 (4) 46.3* 45.2* 47.8 (8)	41.1* 42.9 (5) 40.7* 37.4 (6) 44.2* 49.0 (3) 39.3* 39.4* 42.6 (4)		-2 37 -5 34 6 36 2 36 -4 35	2 1 2 2 2
GRIPRO GRIPRO GROW GROW GROW	AP2190 HP20-20 A1525 A1937 A2187	45.8* 35.6 41.3 (7) 38.9 39.0 (4) 45.0* 47.8 (14) 43.2*	52.1* 41.3 44.4 49.7* 48.0 (2) 47.0	42.7 35.9 46.2 (4) 42.9 43.8* 48.0 (6) 45.4*	42.5* 29.7 31.6 (2) 29.5 41.5* 46.8 (4) 37.3	39.3 47.8* 49.4 (2)	1 32 -6 33 -9 31 -7 34 -4 34	1 1 2 1
LLAHAN LLAHAN LLAHAN LLAHAN	1250 3210 BLEND 5150X BRAND 5200X BLEND 6180X	46.3* 45.6 (7) 45.1* 43.3 (7) 43.6* 41.4 (8) 42.0 41.9 (8) 44.2* 42.9 (4)	54.0* 49.6 (2) 49.3* 48.6 (2) 47.6 45.9 (2) 46.2 44.5 (2) 43.0	43.2 46.4 (3) 44.5 45.8 (3) 45.7* 43.7 (3) 41.6 43.5 (3) 51.1*	41.6* 40.5 (2) 41.4* 34.2 (2) 37.4 34.1 (2) 38.1 36.6 (2) 38.4	39.8 42.3 39.2	6 35 1 34 -8 28 0 36 -8 31	1 2 1 2 1
LLAHAN LLAHAN IRYLAND IRYLAND IRYLAND	6220X 6262X DSR-120 DSR-151 DSR-171	44.4* 46.1* 40.7 43.9 (15) 38.3 42.3 (11) 43.8* 45.9 (16)	49.5* 51.9* 43.3 46.8 (2) 37.1 41.3 (2) 43.3 43.7 (2)	45.1* 45.0* 42.1 44.5 (7) 43.5 41.9 (4) 47.0* 46.9 (8)	38.6* 41.5* 36.6 42.4 (4) 34.4 44.6 (3) 41.0* 46.4 (4)	35.9 42.1 (2) 40.6 40.6 (2) 37.8 43.2 (2)	4 34 1 35 -9 35 -9 31 -4 36	1 1 1 2
IRYLAND IRYLAND IRYLAND IRYLAND IRYLAND	DSR-205 DSR-212 DSR-255 DST-0801 DST-1101	35.8 39.7 (7) 40.4 43.6 (11) 39.2 36.2 36.2 (4) 41.3 41.4 (4)	40.2 44.8 (2) 48.3 45.4 (2) 44.4 39.1 47.9	32.9 41.7 (3) 38.1 43.2 (5) 36.3 34.7 39.4	34.3 31.7 (2) 34.9 43.2 (4) 37.0 34.9 36.6	36.2	-1 32 2 33 -0 36 -18 27 -11 31	1 1 1 1
IRYLAND IRYLAND IRYLAND KALB-PFIZER KALB-PFIZER	DST - 1102 DST - 1206 DST - 2202 CX134 CX155	43.1* 43.0 (4) 40.6 39.4 (4) 43.9* 40.4 41.0 (11) 41.6 43.5 (19)	51.8* 45.5 45.3 44.8 35.9 (4) 43.6 38.9 (3)	40.0 41.2 44.2* 38.3 40.7 (4) 40.1 44.4 (9)	37.5 35.1 42.2* 38.2 42.7 (3) 41.1* 45.4 (5)	42.7*	-9 31 -8 32 3 38 -8 32 -1 38	1 1 2 1 2
KALB-PFIZER NK NK NK NK LDEN HARVEST	CX174 G3115 G3145 BLEND EXP 12231 H-1233 BRAND	42.2 41.8 (8) 39.7 42.1 (11) 43.1* 42.9 (8) 42.0 44.3*	47.4 46.2 (2) 46.2 44.3 (2) 48.3 44.8 (2) 47.6 46.8	38.6 42.2 (3) 40.3 40.8 (4) 44.7* 45.0 (3) 43.0 43.3	40.6* 36.8 (2) 32.7 41.7 (3) 36.2 38.0 (2) 35.4 42.9*	42.0 38.9 43.0 (2) 42.9* 41.8	-1 31 -3 29 -3 34 -7 30 -1 33	1 1 2 2 1
LDEN HARVEST H H H H	H-1285 BRAND GL1434 BRAND GL1900 BRAND GL1937 BRAND GL2250	45.8* 35.8 35.1 (4) 43.0* 41.7 (4) 40.1 44.1 (11) 40.6 44.6 (13)	47.1 43.1 51.0* 41.0 44.1 (2) 42.4 44.1 (2)	45.2* 33.5 43.2 41.1 44.4 (4) 44.8* 46.6 (7)	45.0* 30.8 34.9 38.2 45.1 (3) 34.5 41.2 (4)	33.1 37.6 38.8 41.8 (2)	5 34 -9 33 -1 29 -4 35 1 37	1 1 2 2
H H S CQUES NG GRAIN	GL2634 BRAND XP2586 DAK E8380 KG60	47.7* 47.2 (9) 42.9* 42.3 (7) 42.2 38.8 37.6 (4) 35.0 36.7 (8)	48.9 48.2 (2) 48.6 44.8 (2) 49.0 41.3 38.2 38.1 (2)	50.8* 45.8 (4) 41.1 43.6 (3) 40.7 38.4 40.4 41.1 (3)	43.5+ 48.4 (3) 38.9+ 37.7 (2) 36.8 36.7 26.4 30.7 (2)	34.2 32.7	4 35 4 34 3 33 -15 32 -17 25	1 1 1 1
NG GRAIN NG GRAIN NG GRAIN NG GRAIN KESIDE	KG70 KG80 KG3028 KG3224 EXP 36 BRAND	33.9 40.6 (13) 39.4 43.7* 44.5 (7) 38.4 38.2 (4) 43.5*	44.2 43.0 (2) 43.8 47.4 48.6 (2) 44.9 49.6+	33.5 39.7 (5) 35.6 45.8* 45.5 (3) 37.3 40.8	23.9 40.7 (4) 38.8* 37.8 38.7 (2) 33.0 40.2*	34.7 40.4 (2)	-6 34 4 40 -0 35 -9 32 3 37	1 2 2 1 2
KESIDE KESIDE KESIDE KESIDE	EXP 67 BRAND EXP 87 EXP 95 LLOO19 S1346	41.3 39.9 39.5 (4) 42.0 34.7 33.5 (4) 42.2 43.5 (19)	45.6 45.5 48.7 43.7 44.8 43.1 (4)	39.5 41.3 38.7 34.2 46.3* 45.3 (9)	38.8* 32.8 38.7* 26.3 35.6 41.7 (4)	38.5 29.8 38.2 39.4 (2)	7 38 -6 32 4 37 -3 31 -10 28	2 1 1 2 1

				YIELD (BU/A)			M A T	н	L
		ENTIRE CENTRAL	SOUTH CENTRAL	CENTRAL	EAST CENTRAL	SAGINAW BAY +	R	E	D S
		REGION	(INGHAM CO.)	(SAGINAW CD.)	(SANILAC CO.)	(HURON CO.)	I	,G	I O
BRAND	ENTRY	1985 AVG. (N)	1985 AVG. (N)	1985 AVG. (N)	1985 AVG. (N)	1985 AVG. (N)	Y	H	NR

NK	\$1460	39.2 41.7 (11)	41.9 45.2 (2)	40.1 39.9 (4)	35.5 42.2 (3)	41.3 41.0 (2)	-11	30	1.3
NK	\$15-50	39.3 38.5 (4)	45.8	35.7	36.3	36.3	-8	35	1.5
NK	S1884	41.9 47.1 (13)	45.4 43.6 (2)	42.6 47.5 (5)	37.7 49.1 (4)	40.1 45.8 (2)	-6	31	1.7
NK	523-03	43.0* 43.2 (4)	42.9 43.2 (2)	43.4	42.8*		- 1	34	2.3
NK	527-10	40.6	47.6	38.1	36.1		1	32	1.6
PIONEER	1981	44.5* 43.7 (4)	49.9*	41.8	41.7*	41.3	-5	33	1.7
PIONEER	2480	43.9* 44.9 (10)	49.5* 46.3 (2)	44.6* 44.0 (5)	37.6 45.6 (3)		4	37	2.1
PROSOY	PS 104	43.1* 44.9 (17)	49.6* 43.4 (2)	43.3 47.1 (9)	36.3 41.2 (4)	40.9 44.0 (2)	-6	35	1.9
PROSOY	PS210	44.6* 46.4 (11)	48.4 47.2 (2)	47.2* 47.1 (6)	38.1 44.4 (3)		1	35	1.8
RUPP	RS2100	46.8* 45.0 (10)	57.7* 50.9 (2)	44.0* 43.0 (4)	38.7* 45.3 (3)		-4	37	2.6
RUPP	RS2300	43.9* 45.7 (13)	51.0* 48.4 (2)	42.5 46.0 (7)	38.3 43.7 (4)		-2	34	1.4
RUPP	RS2320	42.8*	48.7	43.2	36.4		4	32	1.3
RUPP	RS2334	41.3	50.8+	35.8	37.2		4	34	1.4
RUPP	RS2460P	44.6* 43.1 (7)	48.5 49.0 (2)	45.3* 46.1 (3)	39.9* 32.6 (2)		5	36	2.0
STINE	1350 BRAND	40.7 41.0 (8)	46.6 47.8 (2)	39.5 43.5 (3)	36.0 32.2 (2)	37.7	- 7	27	1.0
STINE	1570 BRAND	41.4 40.0 (4)	44.9	39.5	39.7*	36.1	0	37	2.4
STINE	2050+ BRAND	43.5*	48.6	40.5	41.3*		4	35	2.1
STINE	2220 BLEND	45.5*	52.9*	44.8*	38.9*		0	34	1.9
STINE	2510E BRAND	43.2*	46.7	40.7	42.2*		3	35	2.4
VORIS	V207	44.8* 46.2 (15)	54.3* 50.4 (2)	42.6 46.8 (8)	37.6 43.5 (5)		-2	37	1.8
VORIS	V311	46.7 46.1 (4)	52.8* 48.6 (2)	47.7*	39.5+		6	38	2.9
	LSD(.05)	5.13	8.35	7.54	6.82	5.39	3.0	2.6	0.57
	TEST MEAN	41.78	46.89	41.50	37.22	38.31	-2.7	33.5	5 1.84

⁺ VALUES FROM THE 1985 HURON CO. PLOTS WERE NOT INCLUDED IN THE 1985 REGIONAL MEANS. ++ CHECK VARIETY USED TO CALCULATE DEVIATION FROM STANDARD MATURITY. * NOT SIGNIFICANTLY DIFFERENT FROM HIGHEST YIELD WITHIN THAT COLUMN.

TABLE 5. UPPER PENINSULA (ALGER COUNTY).

		115	LD (BU				LUDGING
BRAND	ENTRY	1985	AVG.	(N)	MATURITY	HEIGHT	SCORE
		=====		=====:			
PUBLIC	BICENTENNIAL (00)	27.3*	28.7	(2)	9-20	18	1.5
PUBLIC	CHICO (O)	11.5			10-10	19	1.6
PUBLIC	CLAY (O)	15.8	17.0	(3)	9-27	15	1.8
PUBLIC	MAPLE AMBER (OO)	26.0*	31.0	(3)	9-14	17	1.0
PUBLIC	MAPLE RIDGE (00)	22.3	22.9	(2)	9-12	15	1.0
PUBLIC	MCCALL (OO)	26.0*	27.0	(3)	9-15	16	1.1
	LSD(.05)	3.3		====:			
	TEST MEAN	21.5					

NOT SIGNIFICANTLY DIFFERENT FROM HIGHEST YIELD IN THAT COLUMN.

MSU is an Affirmative Action/Equal Opportunity Institution. Cooperative Extension Service programs are open to all without regard to race, color, national origin, sex, or handicap.

Issued in furtherance of Cooperative Extension work in agriculture and home economics, acts of May 8, and June 30, 1914, in cooperation with the U.S. Department of Agriculture. W.J. Moline, Director, Cooperative Extension Service, Michigan State University, E. Lansing, MI 48824.

This information is for educational purposes only. Reference to commercial products or trade names does not imply endorsement by the Cooperative Extension Service or bias against those not mentioned. This bulletin becomes public property upon publication and may be reprinted verbatim as a separate or within another publication with credit to MSU. Reprinting cannot be used to endorse or advertise a commercial product or company.