MSU Extension Publication Archive

Archive copy of publication, do not use for current recommendations. Up-to-date information about many topics can be obtained from your local Extension office.

Costs and Returns in Christmas Tree Plantations
Michigan State University Agricultural Experiment Station and Cooperative Extension
Service
Research Report
V.J. Rudolph, Forestry

Issued October 1968
4 pages

The PDF file was provided courtesy of the Michigan State University Library

Scroll down to view the publication.

RESEARCH REPORT 75

 BUSINESSFROM THE MICHIGAN STATE UNIVERSITY

Costs and Returns in

Christmas Tree Plantations

Costs and Returns in

Christmas Tree Plantations'

By V. J. RUDOLPH ${ }^{2}$

INTRODUCTION

Iv choosing a species to be planted for Christmas trees, the grower considers growth characteristics, suitability for available soils, response to cultural treatments and the current and expected market preferences and prices. From among the several species that are generally considered suitable for Christmas trees, he may decide to plant a rapidly growing species such as Scotch pine, which may sell for about $\$ 2$ per tree on the stump in about 7 years, or a slower growing species, such as Douglas fir, which may sell for about $\$ 4$ per tree on the stump, but takes 12 to 16 years to grow. Since his objective is to make a profit, he must consider the costs and returns associated with Christmas tree production from each suitable species. What are the economic aspects of growing various species for Christmas trees which require widely different growth periods, different levels of costs and sell for greatly differing prices?

PROCEDURE

In this report, costs and returns are analyzed for Scotch pine, white spruce, Douglas fir and blue spruce -four species for which production periods, costs and selling prices span a considerable range. Basic data on the rotation, planting stock, spacing, survival, weed control, fertilization, shearing, insect control and stumpage prices are not specifically for any one Christmas tree growing enterprise, but are taken from numerous sources to reflect the most reliable current

[^0]information and general practices in the Michigan Christmas tree industry.

Obviously, there are growers whose tree production practices differ from those outlined in this analysis, whose costs are either higher or lower and who sell their trees at prices either higher or lower than those used here. If an individual grower's data differ considerably from those used here, he can insert his own specific information into the procedure to analyze his own current operation. Proposed Christmas tree growing ventures may be analyzed in the same way.

To make the results applicable to any size operation, all data are for 1 acre of land. Because marketing procedures are variable - some growers sell their trees retail, others sell them cut and piled along the roadside, etc. - this analysis assumes stumpage sale of 7 foot trees.

RESULTS

In the following tabulations, the basis for each step in the production process is given. Also, each cost incurred or return received is listed, and capitalized at 6 percent compound interest to the end of the crop period. The interest factors used are available in any compound interest table.

Item	Basis	Interest factor	Capitalized to the end of 9 yrs .
Annual overhead \& taxes	\$25 cach year	11.4913	\$ 287.28
Interest on \$60 land value	Annual	. 6895	41.37
Cost of stock	\$22.50 per M $\times 1,090=\$ 24.52$	1.6895	41.43
Stock shipping cost	\$3.00	1.6895	5.07
Planting cost	\$14 per M $\times 1.090=\$ 15.26$	1.6895	25.78
Weed control - planting	\$10	1.6895	16.90
Later weed control	2 nd year, $\$ 10$	1.5036	15.04
Mowing between rows	1st year, \$6	1.5938	9.56
Fertilizer materials \& labor	None		
Spraying - inseet control	Annually, \$10	9.8975	98.98
Shearing		1.4185 1.3832 1.2625 1.1910 1.1236	$\begin{aligned} & 13.14 \\ & 12.39 \\ & 23.38 \\ & 22.06 \\ & 22.89 \end{aligned}$
Cleanup for nest crop	8th yr., \$12	1.0600	12.72
Trees sold \& returns received	$\begin{aligned} & \text { 6th yr, } 1 / 3=247 \times \$ 2.10=\$ 518.70 \\ & 7 \text { th yr., } 2 / 3=494 \times \$ 2.10=\$ 1,037.40 \end{aligned}$	$\begin{aligned} & 1.1910 \\ & 1.1236 \end{aligned}$	$\begin{array}{r} 617.77 \\ 1,165.62 \end{array}$
Total accumulated returns			1,783.39
Total accumulated costs			647.99
Net income for one crop	In 9 years		1,135.40

Item	Basis	Interest factor	Capitalized to the end of 12 yrs .
Ammal overhead \& taxes	\$25 each year	16.8699	\$ 421.75
Interest on $\$ 60$ land value	Annual	1.0122	60.73
Cost of stock	\$50 per M $\times 1.570=\$ 78.50$	2.0122	157.96
Stock shipping cost	\$5	2.0122	10.06
Planting cost	\$14 per M $\times 1.570=\$ 21.98$	2.0122	44.23
Weed control - planting	812	2.0122	24.15
Later weed control	$\begin{aligned} & \text { 2nd year, } \$ 10 \\ & \text { 4th year, } \$ 10 \end{aligned}$	$\begin{aligned} & 1.7906 \\ & 1.5938 \end{aligned}$	$\begin{aligned} & 17.91 \\ & 15.94 \end{aligned}$
Mowing between rows	1st year, \$7 2nd year, \$7 4th year, \$7	$\begin{aligned} & 1.8993 \\ & 1.7906 \\ & 1.5938 \end{aligned}$	$\begin{aligned} & 13.29 \\ & 12.53 \\ & 11.16 \end{aligned}$
Fertilizer materials \& labor (4 cz./tree @ 4ç/lb.)	$\begin{aligned} & \text { 2nd yr., } 150 \text { trees } / \mathrm{hr}=\$ 31.16 \\ & 4 \text { th yr.. } 100 \text { trees/hr. }=\$ 39.96 \end{aligned}$	$\begin{aligned} & 1.7906 \\ & 1.5938 \end{aligned}$	$\begin{aligned} & 55.80 \\ & 63.69 \end{aligned}$
Spraying-insect control	Annually $\$ 6$	14.9716	89.83
Shearing	$\begin{aligned} & \text { 4th yr., } 1 \phi / \text { tree } \times 1,334=\$ 13.34 \\ & 6 \text { th yr., } 2 \phi \text { tree } x \quad 1,334=\$ 26.68 \\ & \text { Sth yr., } 2 \phi \text { tree } x \quad 978=\$ 19.56 \end{aligned}$	$\begin{aligned} & 1.5938 \\ & 1.4185 \\ & 1.2625 \end{aligned}$	$\begin{aligned} & 21.26 \\ & 37.85 \\ & 24.69 \end{aligned}$
Cleamup for next crop	11th yr., $\$ 12$	1.0600	12.72
Trees sold \& retums received	$\begin{array}{r} \text { Sth } \mathrm{yr}, 1 / 3=356 \times \$ 2=\$ 712.00 \\ 9 t h y r, 1 / 3=356 \times \$ 2=\$ 712.00 \\ \text { 10th yr., } 1 / 3=356 \times \$ 2=\$ 712.00 \end{array}$	$\begin{aligned} & 1.2625 \\ & 1.1910 \\ & 1.1236 \end{aligned}$	$\begin{aligned} & 598.90 \\ & 877.99 \\ & 800.00 \end{aligned}$ 800.0
Total nectumulated returns			2,546.89
Total aceumulated costs			1,095.55
Net income for one crop	In 12 years		\$1,451.34

Hem	Basis	Interest factor	Capitalized to the end of 18 yrs .
Ammual overhead \& taxes	\$25 each year	30.9057	\$772.64
Interst on $\$ 60$ land value	Annual	1.8543	111.26
Cast of stock	\$900 per M $\times 1.570=\$ 141.30$	2.8543	403.31
Steck shipping cost	\$5	2.8543	14.27
Planting cost	\$14 per M $\times 1.570=\$ 21.98$	2.8543	62.74
Weed control - planting	\$12	2.8543	34.25
Later weed control	$\begin{aligned} & \text { 2nd year, } \$ 10 \\ & \text { 5th year, } \$ 10 \end{aligned}$	$\begin{aligned} & 2.5404 \\ & 2.1329 \end{aligned}$	$\begin{aligned} & 25.40 \\ & { }_{21.33} \end{aligned}$
Mowing between rows	1st year, $\$ 7$ 2nd year, \$7 4th year, \$7	$\begin{aligned} & 2.6928 \\ & 2.5404 \\ & 2.2609 \end{aligned}$	$\begin{aligned} & 18.85 \\ & 17.78 \\ & 15.83 \end{aligned}$
Fentilizer materials \& labor $(4$ oz./tree @ $44 / \mathrm{lb}$. $)$	$\begin{array}{r} \text { 6ith yr., } 100 \text { trees } / \text { hr. }=\$ 39.96 \\ 10 \text { th yr., } 90 \text { trees } / \mathrm{hr} .=\$ 42.96 \end{array}$	$\begin{aligned} & 2.0122 \\ & 1.5938 \end{aligned}$	$\begin{aligned} & 80.41 \\ & 68.47 \end{aligned}$
Spraying - insect control	Amuailly $\$ 6$	28.2129	169.28
Shearing	$\begin{aligned} 5 \text { th yr., } 1 申 / \text { tree } \times 1,334= & =\$ 13.34 \\ 7 \text { th yr. } 2 \& / \text { tree } \times 1,334 & =\$ 26.68 \\ 10 \text { th yr., } 2 \& / \text { tree } \times 1,334 & =\$ 26.68 \end{aligned}$	$\begin{aligned} & 2.1329 \\ & 1.8983 \\ & 1.5938 \end{aligned}$	$\begin{aligned} & 28.45 \\ & 50.65 \\ & 42.52 \end{aligned}$
Cleanup for nest crop	17th yr., \$12	1.0600	12.72
Trees sold \& returns received		$\begin{aligned} & 1.4185 \\ & 1.3382 \\ & 1.2625 \\ & 1.1910 \\ & 1.1236 \end{aligned}$	$\begin{aligned} & 1,009.97 \\ & 1,145.50 \\ & 1,348.35 \\ & 1,271.99 \\ & 638.00 \end{aligned}$
Total aceumulated returns			5,414.01
Total secumulated costs			1,953.16
Net income for one crop	In 18 years		3,460.85

Item	Basis	$\begin{aligned} & \text { Interest } \\ & \text { factor } \end{aligned}$	Capitalized to the end of 22 yrs .
Annual overhead \& taxes	\$25 each year	43.3923	\$1,084.8:
Interest on $\$ 60$ land value	Annual	2.6035	156.21
Cost of stock	\$70 per M $\times 1,570=\$ 109.90$	3.6035	396.02
Stock shipping cost	\$5	3.6035	18.02
Planting cost	\$14 per M $\times 1.570=\$ 21.98$	3.6035	79.20
Weed control - planting	\$12	3.6035	43.24
Later weed control	$\begin{aligned} & \text { 2nd year, } \$ 10 \\ & \text { 6th year, } \$ 10 \end{aligned}$	$\begin{aligned} & 3.2071 \\ & 2.5404 \\ & \hline \end{aligned}$	$\begin{aligned} & 32.07 \\ & 25.40 \end{aligned}$
Mowing between rows	1st year, \$7 2nd year, \$7 5th year, \$7	$\begin{aligned} & 3.3996 \\ & 3.2071 \\ & 2.6928 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 22.45 \\ & 18.85 \end{aligned}$
Fertilizer materials \& labor (4 oz./tree @ $4 \notin / \mathrm{lb}$.)	5 th yr., 150 trees $/ \mathrm{hr} .=\$ 31.16$ 10 th yr, 100 trees $/ \mathrm{hr} .=\$ 39.96$ 14 th yr., 90 trees $/ \mathrm{hr} .=\$ 42.96$	$\begin{aligned} & 2.6928 \\ & 2.0122 \\ & 1.5938 \end{aligned}$	$\begin{aligned} & 83.91 \\ & 80.41 \\ & 68.47 \end{aligned}$
Spraying - insect control	Annually 86	39.9927	239.96
Shearing		2.6928 2.3966 2.0122 1.7906	$\begin{aligned} & 35.92 \\ & 63.94 \\ & 53.69 \\ & 47.77 \end{aligned}$

Cleanup for next crop	21st year, \$12	1.0600	12.72
Trees sold \& returns received	${ }^{15 \text { th }} \mathrm{yr}$ r., $1 / 7=152 \times \$ 3.50=\$ 532.00$	1.5036	799.92
	16th yr., $1 / 6=178 \times \$ 3.50=\$ 623.00$	1.4185	883.73
	$17 \mathrm{th} \mathrm{yr}$. . $1 / 5=214 \times \$ 3.50=\$ 749.00$	1.3382	1,002.31
	18th yr, $1 / 5=214 \times \$ 3.50=\$ 749.00$	1.2625	945.61
	19th yr, $1 / 6=178 \times \$ 3.50=\$ 623.00$	1.1910	741.99
	20th yr., $1 / 8=132 \times \$ 3.50=\$ 462.00$	1.1236	519.10
Total accumulated returns			4,892.66
Total accumulated costs			2,586.86
Net income for one crop	In 22 years		2,305.80

TABLE 6 - Summary of costs, returns, and net income at the end of the crop period for four Christmas tree species

Species	$\begin{gathered} \text { Total } \\ \text { corop } \\ \text { period, } \\ \text { years } \end{gathered}$	Per acre			Per tree		
		$\begin{gathered} \text { Total } \\ \text { accum. } \\ \text { costs. } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Taccum. } \\ \text { returns } \end{gathered}$	Net inc. for period		Accum. returns	Net inc. for period
Scotch pine	,	\$ 647.99	\$1,783.39	\$1,135.40	\$0.87	\$2.41	\$1.53
White spruce	12	1,095.55	2,546.89	1,451.34	1.03	2.38	1.36
Douglas fir	18	1,953.16	5,414.01	3,460.85	1.83	5.07	3.24
Blue spruce	22	2,586.86	4,892.66	2,305.80	2.42	4.58	2.16

AVERAGE ANNUAL INCOME

These results show that all four species are expected to return a net income or profit at the end of the crop period, over and above the 6 percent compound interest on all money invested in the costs. The net incomes at the end of each crop period listed in Table 6 cannot be compared directly with each other to determine which species is the most profitable to grow because differing amounts of investment and differing time periods are required to obtain them.

If these incomes are put on an average annual basis they can then be compared to show which species will yield the highest average income per year. To do this, the average annual net income for each species is computed. For Scotch pine, for example, it is necessary to know what amount of net annual income received at the end of each year will accumulate to $\$ 1,135.40$ in 9 years if invested at 6 percent compound interest. The following formula is used:

$$
\mathrm{V}_{\mathrm{n}}=\frac{\mathrm{a}\left[(1+\mathrm{p})^{\mathrm{n}}-1\right]}{\mathrm{p}}
$$

in which $\mathrm{V}_{\mathrm{n}}=$ the accumulated value in 9 years, $=$ \$1,135.40;
$\mathrm{n}=$ the number of annual incomes, $=9$;
$\mathrm{p}=$ the interest rate,$=6$ percent;
$a=$ the unknown annual income.

$$
\begin{aligned}
\$ 1,135.40 & =\frac{\mathrm{a}\left[(1+.06)^{9}-1\right]}{.06} \\
\$ 1,135.40 & =\mathrm{a}(11.4913) \\
\mathrm{a} & =\frac{\$ 1,135.40}{11.4913} \\
\mathrm{a} & =\$ 98.80 .
\end{aligned}
$$

The same computations were made for white spruce, Douglas fir and blue spruce with the results summarized in Table 7.

TABLE 7 - Average net income per year for four Christmas tree species

	Total crop period, years	Net income at end of crop period	Average net income per year
Scotch pine	9	$\$ 1,135.40$	$\$ 98.80$
White spruce	12	$1,451.34$	86.03
Douglas fir	18	$3,460.85$	111.98
Blue spruce	22	2.305 .80	53.14

The values in Table 7 show that the income ranking for the four species is Douglas fir, Scotch pine, white spruce and blue spruce, in that order. This ranking is valid to compare the average net incomes per year, but does not tell us the true profitability of each species in terms of the actual interest rate earned on the investment required over the time period needed to grow each species.

INTERNAL RATE EARNED

In all computations to this point, 6 percent compound interest has been used, and the results show that net income (or profit over and above 6 percent) can be expected in varying amounts for each species, or that the interest rate earned is greater than 6 percent. The actual or internal rate earned on the required investment for each period for each species is computed by the method of successive approximation. In this method, a higher and higher interest rate is used in accumulating the costs and returns for each species, until the accumulated costs exactly equal accumulated returns. The interest rate at which costs balance returns defines the actual internal rate earned by the investment required for each species in the time period needed to produce the crop. These repetitive computations are so lengthy that they are best made on an electronic computer. However, to illustrate the procedure, the balancing computations for Scotch pine, which occurred at a 33 percent interest rate, are presented in Table 8. The small difference between the total accumulated returns and total accumulated costs is not significant.

The same computations were made for the other

Item	Basis	$\begin{gathered} \text { Interest } \\ \text { factor } \end{gathered}$	Capitalized to the end of 9 yrs.
Annual overhead \& taxes	\$25 each year	39.4593	\$ 986.48
Interest on $\$ 60$ land value	Annual	12.0216	721.30
Cost of stock	\$22.50 per M $\times 1,090=\$ 24.52$	13.0216	319.29
Stuck shipping cost	\$3.00	13.0216	39.06
Planting cost	$\$ 14 \mathrm{per} \mathrm{M} \times 1.090=\$ 15.26$	13.0216	198.71
Weed control - planting	\$10	13.0216	130.22
Later weed control	2nd year, \$10	7.3614	73.61
Mowing between rows	1st year, 86	9.7907	58.74
Fertilizer materials \& libor	None		
Spraying - insect control	Ammually, \$10	39.4593	394.59
Shearing	3rd yr., $1 \& /$ tree $\times 926=\$ 9.26$ 4 th y y., $1 \% /$ tree $\times 926=\$ 9.26$ 5 th yy. $2 \& /$ tree $\times 926=\$ 18.52$ 6 th yr. $2 \& /$ tree $\times 926=\$ 18.52$ 7 th yr., $3 \& /$ tree $\times 679=\$ 20.37$	5.5349 4.1616 3.1290 2.3526 1.7689	$\begin{aligned} & 51.25 \\ & 38.54 \\ & 57.95 \\ & 43.57 \\ & 36.03 \end{aligned}$
Cleanup for nest crop	8th yr., \$12	1.3300	15.96
Trees sold \& returns received	$\begin{aligned} & \text { 8th } \mathrm{yr}, 1 / 3=247 \times \$ 2.10=\$ 518,70 \\ & \text { 7th yr., } 2 / 3=494 \times \$ 2.10=\$ 1,037.40 \end{aligned}$	$\begin{aligned} & 2.3526 \\ & 1.7689 \end{aligned}$	$\begin{aligned} & 1,220.29 \\ & 1,835.06 \end{aligned}$
Total aceumulated returns			3,055.35
Total accumulated costs			3,059.25

three species, and the actual interest rate earned by each species is as follows:
Scotch pine, 33.0 percent;
White spruce, 21.0 percent;
Douglas fir, 17.0 percent;
Blue spruce, $\quad 11.6$ percent.

This ranking is different from that shown by the average net income per year in Table 7, where Douglas fir shows the highest annual income. The rate earned by Douglas fir is lower than that earned by Scotch pine, for example, even though the average net income per year is greater for Douglas fir, because a greater investment is required for Douglas fir, and it must be carried for a longer period of time. A greater return on the investment is obtained from that species which can be grown on the shorter rotations and with lower investments, even though total net income per year is higher for a species with a longer rotation and larger required investments.

SUMMARY

For the cultural practices, costs and prices used in this analysis, based on both the amount of investment and time needed to grow a crop of each species, they rank as follows: Scotch pine, white spruce, Douglas fir, and blue spruce. These results can be used as aids in the selection of a species for a proposed Christmas tree plantation endeavor. However, market demands, soil conditions, the grower's personal species preferences, amount of available capital for investment, the need for early or frequent incomes and other factors must also be considered in species selection.

These procedures can also be used to analyze the profitability of a current Christmas tree growing operation. Growers whose practices, costs, prices and rotations differ appreciably from those used here should insert their own actual data into this format to compute the rate of return they can expect from their particular enterprise.

[^0]: ${ }^{1}$ This study was financed by federal funds from the McIntire-Stennis Law (P.L.87-788). The assistance of Professors D. P. White and L. E. Bell, Dept. of For., Michigan State University, and many others who so willingly contributed cost and return information for this report is gratefully acknowledged.
 ${ }^{2}$ Professor, Dept. of Forestry.

