MSU Extension Publication Archive

Archive copy of publication, do not use for current recommendations. Up-to-date information about many topics can be obtained from your local Extension office.

Chemical Weed Control
Michigan State University Agricultural Experiment Station
Circular Bulletin
B.H. Grigsby, Boyd R. Churchill, Charles L. Hammer, Robert F. Carlson, Botany and Plant Pathology, Farm Crops and, Horticulture
Issued May 1950
38 pages

The PDF file was provided courtesy of the Michigan State University Library

Scroll down to view the publication.
Chemical Weed Control

by

B. H. Grigsby, Boyd R. Churchill,
Charles L. Hamner and Robert F. Carlson

MICHIGAN STATE COLLEGE
AGRICULTURAL EXPERIMENT STATION
Sections of Botany and Plant Pathology, Farm Crops, and Horticulture
EAST LANSING
CONTENTS

Introduction	5
Definitions	5
Chemicals	6
Ammonium sulfamate	6
Arsenicals	6
Borax	7
Chlorates	7
Cyanamid	7
Cyanate	7
2, 4-D	8
2, 4, 5-T	10
IPC	10
Petroleum Products	10
Phenolic compounds	11
Salt	12
Sulfuric Acid	12
TCA	13
PMA	14
Equipment	14
Suggestions for use of chemicals to control weeds	18
Asparagus	18
Beets	19
Carrots	20
Corn	20
Blueberries	21
Grapes	21
Raspberries	22
Strawberries	22
Tree fruits	23
Grains and flax	23
Alfalfa and clover	24
Beans	25
Peas	25
Onions	28
Potatoes	29
Cucumbers, Melons and Transplanted Crops	30
Ornamentals	31
Nursery Crops	31
Brush	32
Lawn	33
Pasture	35

PRECAUTIONS IN CHEMICAL USE

1. Do not use 2,4-D or 2,4,5-T sprayers.
2. 2,4-D should not be used where there is a legume seeding.
3. Do not spray 2,4-D when grass is present in crops.
4. When 2,4-D is used in pastures, the pasture should be thoroughly washed to remove residues before planting for potato spraying.
5. Growers of certified potatoes should not use 2,4-D nor in their sprayers.
6. When lawns are sprayed with 2,4-D, all susceptible plants should be thoroughly washed to remove residues.
7. Do not use esters of 2,4-D because they can cause injury to susceptible plants.
8. Spot spraying for the control of weeds will not injure crop plants in the same field.
9. Handle sulfuric acid carefully.
10. Keep all materials in original containers and store separately from seeds.
11. Store chlorates away from water sources to prevent them from becoming wet.
PRECAUTIONS IN CHEMICAL WEED CONTROL

1. Do not use 2,4-D or 2,4,5-T in gardens, orchards, or in orchard sprayers.

2. 2,4-D should not be used for weed control in small grains that have a legume seeding.

3. Do not spray 2,4-D when wind will carry spray to susceptible crops.

4. When 2,4-D is used in potato sprayers, the sprayer must be thoroughly washed to remove the chemical before it is used again for potato spraying.

5. Growers of certified potato seed should not use 2,4-D in the crop nor in their sprayers.

6. When lawns are sprayed with 2,4-D, avoid possible drift to flowers and other susceptible plants.

7. Do not use esters of 2,4-D or 2,4,5-T in areas where vapors may cause injury to susceptible crop and ornamental plants.

8. Spot spraying for the control of patches of perennial weeds may injure crop plants in the sprayed areas.

9. Handle sulfuric acid carefully. (See page 13.)

10. Keep all materials in original containers carefully labeled and store separately from seeds, fertilizer and equipment.

11. Store chlorates away from farm buildings. Clothing and vegetation wet by chlorates become fire hazards.
Chemical Weed Control

By B. H. GRIGSBY, BOYD R. CHURCHILL, CHARLES L. HAMNER
and ROBERT F. CARLSON

The use of chemicals for controlling weed plants is not a new idea, but remarkable progress in this phase of crop production has been made since 1943.

Chemical control measures are not a substitute for cultivation, crop rotation and other long-established good farming practices. The cost of chemical weed control is often less than that of hand labor, but there are situations where chemical control may be equally as expensive and no more effective. In other situations, cost may not be a factor and the problem becomes that of selecting a chemical method which will secure adequate control of certain weeds.

In some instances a selective chemical can be used to control weeds in growing crops. In other instances the crop may be as susceptible to injury as the weed. When the weed problem becomes so serious that quality or yield of the crop is materially reduced, the field could be removed from the regular rotation for a year or two. Such a plan would permit (1) the growing of a crop tolerant to a selective chemical or (2) the use of a non-selective herbicide if no crop were grown on the area. How this method may work in practice is indicated in the sections on carrots and small grains.

This publication was prepared to set forth those facts and methods which have been found to be of value in farm practice.

DEFINITIONS

Herbicide—Any compound which will kill plants.

Non-selective herbicides—Those materials which kill above ground parts of most plants.

Selective herbicides—Those materials which kill only some plants.

Translocated herbicides—Those materials which are absorbed by one part of a plant, and exert a toxic action on other parts.
Hormone weed killers—Chemicals which exert an effect upon the growth processes in such a way as to cause death of plants. Growth regulators is probably a better descriptive term than hormones.

Pre-planting treatment—Any treatment applied after the soil has been prepared for planting, but before crop seeds are placed in the soil.

Pre-emergence treatment—Treatments applied after seeding, but before crop plants appear above the ground. Such treatments may be contact or residual in action:

Pre-emergence, contact—Treatments applied to weed seedlings when they emerge before crop plants. The chemicals are quickly broken down into non-toxic substances.

Pre-emergence, residual—Treatments applied soon after seeding but before either weed or crop plants emerge. The chemicals remain in the soil long enough to kill germinating weed seeds but are broken down into non-toxic materials before crop plants germinate.

Post-emergence treatment—Treatments made after both weed and crop plants have emerged.

CHEMICALS

AMMONIUM SULFAMATE

This chemical, commonly known as Ammiate, is a coarse, granular, yellow substance. It is soluble in water and applied as a spray. Ammiate is a contact, translocated herbicide, non-selective in action, and is especially effective on many types of woody plants. The chemical is absorbed through the leaves of plants but does not penetrate the older bark of trees. This fact makes it useful in the control of poison ivy, in and under fruit trees or other valuable plants. Ammiate is not poisonous to livestock or other animal life, but is corrosive to metals. Ammiate absorbs moisture from the air and may cake or "leak" in storage.

ARSENICALS

Sodium arsenite and other compounds containing arsenic are efficient herbicides. They are non-selective and poisonous to man and livestock. Therefore, the use of arsenicals for farm weed control purposes is not generally recommended.

A crude grade of borax has been used in the soil. The chemical goes into solution and makes the soil unsuitable for several years, depending upon the proportion used. It is not selective, but grasses and most other plants and will be killed with borax. This compound is useful where complete absence of weeds is desired.

A water soluble form known as Ammiate is available.

CHEMICALS

SODIUM CHLORATE

A mixture of sodium chlorate and water is used for this purpose. They are non-selective, however, and vegetation which have been dried are inflammable. Chlorate will prevent all plant growth and certain weeds such as bindweed, Canada thistle, etc., will be dried and dead. The soil, however, will not produce any growth after a treatment.

A mixture of calcium chlorate and water is used. Elimination of plant growth by action of this material depends upon the proportion used. The mixture is neither explosive nor inflammable under conditions where chlorate and water are mixed. The mixture should consist of 1 part calcium chlorate and 9 parts water and be applied at a rate of 10 to 20 lbs. per acre.

A mixture of calcium chlorate and potassium chlorate is not recommended for general use as it has been reduced by the action of the mix to the same effect on treated soil is the same as that of chlorate alone.

CYANAMID

Calcium cyanamid, a common weed killer, is used. It has a very powerful killing properties. Granular form, applied to the soil, will control weeds for several years in tobacco seed beds.
CHEMICAL WEED CONTROL

BORAX

A crude grade of borax has herbicidal properties when applied to soil. The chemical goes into solution slowly, in the soil, and thus makes the soil unsuitable for plant growth for a period of 6 months to several years, depending upon the type of soil and rainfall. Borax is not selective, but grasses are more tolerant of this chemical than most other plants and will be the first plants to appear in soil treated with borax. This compound is useful in driveways, and other areas where complete absence of vegetation is desired.

A water soluble form known as polybor is also available.

CHLORATES

Sodium chlorate and potassium chlorate are effective herbicides. They are non-selective, however, and are highly explosive. Clothing and vegetation which have been wet by the spray solution and then dried are inflammable. Chlorates may be used as soil treatments to prevent all plant growth and are used for the control of perennial weeds such as bindweed, Canada thistle, and quack grass. Treated soil, however, will not produce crop plants for one or more years after treatment.

A combination of chlorate and borax is useful for quick and lasting elimination of plant growth. The mixture is spread dry and the action depends upon the presence of sufficient soil moisture. The mixture is neither explosive nor inflammable and, thus, can be used under conditions where chlorate alone would not be advisable. The mixture should consist of 1 part of chlorate and 9 parts borax, and is applied at a rate of 10 to 20 pounds per square rod.

A mixture of calcium chloride and sodium chlorate has been available for several years under the name of “Atlacide.” The effectiveness of this mixture is due to the chlorate content, but the fire risk has been reduced by the addition of calcium chloride. The after-effect on treated soil is the same as that produced by a similar amount of chlorate alone.

CYANAMID AND CYANATE

Calcium cyanamid, a common nitrogen fertilizer, has contact weed-killing properties. Granular and powdered grades are available. The granular form, applied to the soil before seeding, has been used for several years in tobacco seedbeds. Both forms are used extensively
by asparagus growers for weed killing purposes and as a source of nitrogen for the crop. Granular cyanamid is applied to the soil when weed seeds are germinating and is effective for a period of 3 to 5 days, then is broken down into harmless compounds.

The powdered grade usually is applied by means of a power duster. The chemical is a contact herbicide which is effective only when weeds are small and covered with a film of moisture. Heavy dew followed by a warm, bright day, is needed for satisfactory results with this form of cyanamid. Vine killing and defoliation are other uses for cyanamid.

Both forms of cyanamid are heavy, black substances and somewhat disagreeable to handle. The fertilizing value of cyanamid reduces the cost to a point where it is feasible to use the material for weed-killing purposes in crops, such as asparagus, where cyanamid has a selective action.

Potassium cyanate is related to cyanamid and is used for selective weed control in onions. This compound is a white, granular substance which is soluble in water and is applied as a spray. It is effective on many young, broad-leaved weeds but does not kill older weeds.

Ammonium, sodium, and potassium thiocyanates have residual herbicidal properties when applied to soil, but the quantities needed for weed control make it impossible to grow crop plants in treated soil for a period of several weeks to several months.

2,4-DICHLOROPHENOXYACETIC ACID (2,4-D)

(Hormone weed killer)

The pure acid is relatively insoluble in water and does not appear in most retail outlets. It is effective, however, as a weed control chemical when used as a soil treatment, or in a suitable solvent.

The available 2,4-D preparations are of three forms: sodium salt, amine salt and ester. The sodium salt may be sold as a dry powder containing 70 to 80 percent of actual acid or as a liquid containing 10 to 20 percent acid. The amine salts are sold as liquid preparations and may contain 14 to 40 percent of actual acid. The esters (several are available) are likewise liquids and may contain from 10 to 40 percent actual acid. The sodium and amine salts produce a true solution when made up in water as finished sprays, while the esters form a milky suspension.

Dosage suggestions are always made on the acid-equivalent basis, and the quantity of a product that should be used must be calculated from the data found on the label. The products will indicate the type of product, volume, and the percentage of 2,4-D acid equivalent in the material, and the percentage of 2,4-D acid equivalent in the material. These percentages are relatively easy when the percentage of 2,4-D acid are known.

2,4-D formulations are contact herbicides, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentration. However, all are sensitive to the effects of 2,4-D in soil applications, especially when the compound is applied in concentrated form to soil, but these compounds exhibit different properties. Some grasses and other weeds are killed by contact with 2,4-D, while others are not injured by 2,4-D in any concentra...
from the data found on the label of the product. All reputable products will indicate the type of compound, the weight per unit of volume, and the percentage composition. Manufacturers usually state the amount of 2,4-D acid equivalent per gallon. Dosage calculations are relatively easy when the required rate per acre, weight and percentage of 2,4-D acid are known.

2,4-D formulations are considered selective on broad-leaved plants, but these compounds exhibit considerable variation on many species of plants. Some grasses and other narrow-leaved plants may be killed by contact with 2,4-D, while some broad-leaved plants are apparently not injured by 2,4-D in any form. The roots of most plants, however, are sensitive to the chemical and some caution must be observed in soil applications, especially at high rates per acre.

Best results are usually obtained from 2,4-D applications that are made when plants are in a state of rapid and vigorous growth. Seedlings of nearly all species of weeds are easily killed and the period just before flowering is often a susceptible stage of growth, especially in the case of resistant perennial weeds such as Canada thistle and sow thistle.

The quantity of 2,4-D that should be used depends upon a number of factors, chief of which are whether it is a pre-emergence or post-emergence treatment, type of weed to be killed, and crop susceptibility. Pre-emergence applications require from 1 to 5 pounds per acre for satisfactory control. Post-emergence applications range from ¼ to 2 pounds per acre. The amount for post-emergence use depends upon the crop, the weed, and the formulation. In most applications of 2,4-D, the amount of water used is not an important factor. It is important, however, to secure uniform distribution of a quantity of 2,4-D acid equivalent which is suitable for weed control, without injury to crop plants.

Small quantities of 2,4-D may cause serious injury to susceptible plants and there have been cases of a complete loss of a crop, owing to drift from spray or dust applications. Drift can be reduced by using low spraying pressures and adjusting spray booms at as low a position as the crop receiving treatment will permit. Spraying during a high wind should be avoided, and valuable plants should be shielded from drift. Application of 2,4-D dusts is not advisable in Michigan because of the numerous types of crops grown in every locality and the difficulty in confining dust to the area being treated.

None of the 2,4-D formulations are corrosive to spray equipment,
but because of the harmful effects of small traces of the chemical and the difficulty in cleaning tanks, hose lines, and booms, it is suggested that 2,4-D should not be used in sprayers that may later be used to spray orchards, vineyards, or truck crops.

2,4-D, at the rates generally used for weed control purposes, is not toxic to man or livestock.

For small-scale spraying, a solution containing 0.1 percent 2,4-D acid equivalent is considered to be of standard strength and is applied at a rate of 1 gallon per square rod. Resistant plants, however, may require a concentration of 2 or possibly 4 times this amount. Ester formulations are sometimes more effective on resistant species than other formulations.

2,4,5-TRICHLOROPHENOXYACETIC ACID (2,4,5-T)

This chemical is similar to 2,4-D but is more effective on wild raspberry, dewberry, blackberry, and certain other woody vegetation. It is used at the same rates as 2,4-D and may be more useful in brush control.

ISO-PROPYL-N PHENYL-CARBAMATE (IPC)

This material has selective action on certain plants. It will kill annual grasses, cultivated grains and, under some conditions, perennial grasses. IPC will also kill or injure some broad-leaved plants. The chemical is a white, crystalline powder not soluble in water. IPC is applied as a dry chemical or wettable powder which exerts a toxic action on the roots of grasses. Some residual action is produced, but decomposition is rapid and no further effects are found in most soils after a period of 2 to 4 weeks.

An application of 2 to 5 pounds per acre may give control of annual grasses but considerably more is required for noticeable effects on perennial forms such as quack grass.

IPC does not seem to be poisonous to animal life, but no controlled feeding experiments have been reported, and it is suggested that livestock be kept away from treated areas for two weeks, following treatment.

PETROLEUM PRODUCTS

Many oil refinery products have contact herbicidal properties. Some are general-purpose herbicides, effective upon above-ground parts of plants, while others are selective, but none are translocated in the plants. Oils generally have enough this reason, may be used in control.

The lighter grades of fuel oils, weeds in uncultivated areas being a condition which is a fire hazard and such fires are difficult.

Naphthas of the Stoddard so 5 to 15 percent, are excellent family (carrots, parsnips) are other crop plants and annual dard solvent. Ragweed and in the annual weed group, ground line.

Stoddard solvent is an excellent small seeded, or rapidly germ effect. It may be applied through without reducing the stand of vegetation.

The rate of application for 8 and crop situation where it is field is desired, 75 to 100 gallons; in some cases, however, the oil is applied over the row, and satisfactorily.

Other naphthas and similar merged water weeds. Chlor an emulsion in lakes and iri of many types of water weed other small animal life. Li water to be harmed and the herbicide to evaporate or

Various petroleum product and pentachlorophenols. This much more soluble in oil that to make a concentrate which applications or used as a base sions of the toxicant.

PHENO

Di-nitro-ortho-secondary-buto nolic compound are available referred to as “dinitros” or DN
plants. Oils generally have excellent penetrating properties and, for this reason, may be used in conjunction with other herbicides.

The lighter grades of fuel oils are useful to control grass and annual weeds in uncultivated areas but have the disadvantage of setting up a condition which is a fire hazard. Oil-sprayed vegetation ignites readily and such fires are difficult to extinguish.

Naphthas of the Stoddard solvent series, with an aromatic content of 5 to 15 percent, are excellent herbicides. Members of the parsley family (carrots, parsnips) are tolerant of these materials, but most other crop plants and annual weeds are killed by contact with Stoddard solvent. Ragweed and beggar's tick, however, are exceptions in the annual weed group. Perennial weeds are killed only to the ground line.

Stoddard solvent is an excellent pre-emergence material for use on small seeded, or rapidly germinating crops because it has no residual effect. It may be applied the day before the crop plants emerge, without reducing the stand of desirable plants.

The rate of application for Stoddard solvent depends upon the weed and crop situation where it is used. When complete coverage of the field is desired, 75 to 100 gallons an acre is generally needed. In some cases, however, the oil is sprayed in a 4- to 8-inch band directly over the row, and satisfactory kill can be obtained with 30 to 50 gallons.

Other naphthas and similar compounds have the ability to kill submerged water weeds. Chlorobenzene and xylene, when sprayed as an emulsion in lakes and irrigation ditches, have given a quick kill of many types of water weeds. They are, however, toxic to fish and other small animal life. Livestock will not drink enough treated water to be harmed and the emulsions soon break down, permitting the herbicide to evaporate or settle to the bottom.

Various petroleum products are used as carriers for the dinitros and pentachlorophenols. These two types of compounds are often much more soluble in oil than they are in water, thus, it is possible to make a concentrate which may be dispensed in low-volume spray applications or used as a base for making water suspensions or emulsions of the toxicant.

PHENOLIC COMPOUNDS

Di-nitro-ortho-secondary-butyl-phenol and various salts of this phenolic compound are available for herbicidal use, and commonly referred to as “dinitros” or DNOSBP. They may be selective or non-
selective, depending upon the type of carrier, the quantity of effective ingredient and the nature of the crop plant under consideration. They may also be used as pre-emergence treatments, especially in large seeded crops and those propagated by roots, bulbs, corms, and tubers. Perennial crops may be given pre-emergence treatments for the control of annual weeds.

Pentachlorophenol (PCP) and sodium salts of this compound have been used successfully in a number of crops as pre-emergence treatments. Pentachlorophenol is soluble in certain oils, but is not soluble in water and must be used as an oil spray or an emulsion. The sodium salts are soluble in water and may be used as selective sprays in crops such as onions, or pre-emergence treatments in other crops.

Concentrated phenolic compounds are toxic to animal life and may cause skin irritation.

SALT (SODIUM CHLORIDE)

Common table salt will kill all vegetation when applied in sufficient quantity. Salt also has selective weed-killing properties when used in beets, onions, and a few other crops. Beets are tolerant of salt, while many young broad-leaved weeds are killed by contact with salt. Lamb’s quarters, purslane and large weeds of most species are not killed.

Large amounts of both salt and water are required for successful weed control. A limitation of this method is the fact that mineral soils may be adversely affected by large amounts of salt. Muck soils will tolerate up to 1000 pounds of salt per acre.

SULFURIC ACID

A technical grade of this chemical has been used for weed control purposes for many years. Dilute solutions, 2 to 10 percent by volume, have selective action on small grains, onions, and certain coniferous seedlings. Selectivity seems to be based on the waxy nature of the foliage of these plants which prevents actual contact with the spray solution. Grasses and a few species of broad-leaved weeds, such as lamb’s quarters, are not generally killed by this treatment.

The rate of application depends upon the crop being treated, but dilutions are made from commercial, concentrated sulfuric acid with a specific gravity of 1.84, one gallon of which weighs 15.3 pounds. Spray solutions are usually made up on a volumetric basis, but the concentrated acid is generally sold on the pound basis, in 90-, 900- and 1700-pound containers. It takes up 300 gallons of 2-percent weeding young onions.

Sulfuric acid, in concentrated form, but the dilute spray solution on metals makes it necessary to have tanks, or inexpensive equipment for two seasons’ use. Pumps may be used with impeller paddle pumps, a requirement for continued use of the acid.

The following precautions should be followed when using sulfuric acid:

1. Always pour concentrated acid into water; do not use acid in galvanized metal tanks, or inexpensive equipment.
2. Do not use acid in the spray solution on metals makes it necessary to have tanks, or inexpensive equipment for two seasons’ use. Pumps may be used with impeller paddle pumps, a requirement for continued use of the acid.
3. Avoid contact of acid with animal life.
4. Wear rubber gloves when handling acid.
5. Keep a container of bicarbonate of soda near each acid container in case the skin is burned by acid, wash with bicarbonate of soda.

TRICHLORACETIC ACID

(Sodium or Ammonium)

TCA has shown some promise in its ability to kill quack grass and June berries may be injured by application of this compound on grass and certain coniferous plants growing. Beets are not generally killed by application of acid which will give seasonal control of weeds, and may be applied as a spray during the growing season, or as a post-emergence treatment by tumbling the plants in a solution of acid with an aqueous solution.

Rates of application depend upon the crop being treated, but preliminary results indicate that rates of 1 to 2 pounds of TCA per acre will be needed.
and 1700-pound containers. 90 pounds of concentrated acid will make up 300 gallons of 2-percent acid spray solution, such as is used in weeding young onions.

Sulfuric acid, in concentrated form, does not attack iron or steel, but the dilute spray solution is corrosive to these metals. This action on metals makes it necessary to use acid-resistant spray pumps and tanks, or inexpensive equipment which may be discarded after one or two seasons' use. Pumps of brass, or other resistant metals, rubber-impeller paddle pumps, and lead-coated or wood spray tanks are required for continued use of dilute acids spray.

The following precautions should be observed in handling sulfuric acid:

1. Always pour concentrated acid into water, never the reverse process.
2. Do not use acid in galvanized equipment.
3. Avoid contact of acid with shoes and cotton clothing.
4. Wear rubber gloves when handling concentrated acid.
5. Keep a container of bicarbonate of soda available to neutralize acid which may be accidentally spilled on clothing and skin. In case the skin is burned by acid, wash quickly with water and apply bicarbonate of soda.

TRICHLOROACETATE (TCA)

(Sodium or Ammonium Salt of Trichloroacetic Acid)

TCA has shown some promise for the control of perennial grasses such as quack grass and June grass. This chemical is soluble in water and may be applied as a spray or spread dry as fertilizer is spread. Experimental work is in progress to determine dosage requirements, time and method of application, and crop tolerance for TCA.

Preliminary results indicate that grains, legume crops, and strawberries may be injured by applications of TCA to soil in which these plants are growing. Beets and potatoes seem tolerant of quantities which will give seasonal control of annual grasses. Raspberries, tree fruits, and asparagus, while not killed by similar treatments, may show some burning of foliage and probably should not be treated with TCA during the growing season, except for small spots where losses due to grass competition are already apparent.

Rates of application depend upon a number of factors, but the data now available indicate that from 40 to 100 pounds, acid equivalent, per acre will be needed for satisfactory grass control. Some
Regrowth is probable from the lower rates, and crop damage is more severe with higher rates. Applications in fall or early spring have shown some promise, but more data are needed before a time can be suggested.

Phenyl Mercury Acetate (PMA)

Several formulations of this compound, an organic mercury, have selective herbicidal properties for certain annual grasses. Research in some areas has indicated that these compounds will kill young crab grass seedlings in a lawn without injuring bluegrass and some other lawn grasses. Successful treatment requires three to five applications at rather close intervals (3 to 5 days), and the dosage must be regulated carefully to avoid injury to lawn grasses.

The fact that all mercury compounds are poisonous to man and livestock, and the slight difference in toxicity levels for crab grass and desirable grasses, limits the usefulness of PMA for grass control purposes. Climatic and soil factors affect the results obtained. The use of organic mercury compounds must be considered as still in the experimental stages and no suggestions for usage can be offered. Careful attention to the manufacturer's directions is essential for successful use of these materials.

Equipment

The type of equipment that is needed depends largely upon the acreage and type of crops grown. For the home gardener or commercial grower, with five acres or less of land, a 5-gallon knapsack type sprayer is suitable. One man can spray up to one acre per day of row crops with a knapsack sprayer. For this purpose, a brass sprayer should be purchased because of the light weight, longer life, and possibility of using corrosive solutions without damage to the sprayer.

A power sprayer will be useful on many farms for spraying fields, road sides, fence rows and turf. Sprayers now are available with auxiliary gasoline motors or, without motors, for use on the power take-off or pulley of most farm tractors. Sprayers built for use on motor vehicles are also available. Jeep mounted sprayers (Fig. 1) are especially useful on soft, wet soil and on rough terrain.

Special spray booms, designed for weed control work have been developed and may be obtained from many sources. Such booms may also be constructed on the average farm if pipe cutting and threading facilities are available. The capacity of the pump, the crop land to be sprayed. A shorter head than on level land. Under most conditions, should not exceed 20 feet in an 16-foot boom to be the most effective.

Nozzle spacing on the boom for the volume of spray to be used and height of the crop. For general work, between nozzles and a boom. Crops planted in 14- to 16-inch are given a greater modification in the boom area.

Spray nozzles designed to be used have been found more satisfactory in the pattern delivered by the type. These nozzles are now available in the technical data supplied by the manufacturer. Select the size to be used in a very definite relationship to the delivery per minute exists, it

Fig. 1. A jeep-mounted power take-off of jeep and boom mounted sprayer is obtained by mounting the boom onto the facilities.
facilities are available. The length of the boom depends upon the capacity of the pump, the crop to be treated, and the character of the land to be sprayed. A shorter boom is required on rough, rolling land than on level land. Under most conditions in Michigan, a spray boom should not exceed 20 feet in length and many farmers find a 12- or 16-foot boom to be the most practical length.

Nozzle spacing on the boom depends upon many factors, such as the volume of spray to be applied, tractor speed, row spacing and height of the crop. For general usage, a spacing of 18 to 20 inches between nozzles and a boom height of 20 to 24 inches is satisfactory. Crops planted in 14- to 16-inch rows obviously will require some modification in the boom arrangement.

Spray nozzles designed to give a flat, fan-shaped spray pattern have been found more satisfactory for weed control than the cone-shaped pattern delivered by the typical insecticide or fungicide spray nozzle. These nozzles are now available in a wide range of sizes, and the technical data supplied by the manufacturer will make it possible to select the size to be used under a particular set of conditions. Because a very definite relationship between nozzle opening and spray delivery per minute exists, it is necessary to know the tractor speed,
gallons per acre wanted, and pump pressure before a nozzle size can be selected. All dealers in spray equipment have charts which can be used to determine the proper nozzle for use under various conditions. Nozzles to be used for low-volume spraying have a small opening, and a screen with openings no larger than that of the nozzle is essential to prevent frequent stoppage of nozzles.

The term "low-volume spray" is usually used to describe applications in the range of 5 to 20 gallons per acre, although 30 to 40 gallons may also be considered as a low-volume application. At the 5- to 20-gallon rate, a nozzle opening corresponding to a .020- to .025-inch drill size is required. These low-gallonage nozzles are most efficient at spraying pressures of 20 to 40 pounds per square inch. Rates between 30 and 60 gallons may be applied with nozzles with openings of .032- to .046-inch diameter. A nozzle with an .059-inch opening is satisfactory for volumes of 50 to 100 gallons per acre. Variations in rate of delivery of any nozzle may be obtained by changing the pressure developed by the pump and the speed of the tractor or other vehicle. See Table 1 for selecting a nozzle that will deliver from 5 to 128 gallons per acre.

Equipment used for weed spraying should have a pressure gage, a pressure regulator, and a quick-acting shut-off valve. There should also be a screen on the intake side of the pump, as well as screens on the pressure side between the nozzles and the pump.

Numerous spray pumps are now available, but they may be classified into four major groups. The large-capacity sprayers are generally equipped with ordinary piston-type pumps and are used for large-scale operations, especially where the water supply is abundant and high-volume application is made at pressures of 100 p.s.i. or greater.

Paddle pumps, rubber or fiber blades rotating on a shaft inside a metal housing, are satisfactory for certain types of herbicidal applications. They operate best at the lower pressures and generally cannot be used to apply the solvent type of oil sprays.

Many of the newer, low-volume sprayers are equipped with gear pumps. The pumps are compact, relatively inexpensive, and are satisfactory for all types of spray solutions. Water which is free from sand or other abrasive material is necessary to insure long life of gear pumps.

Some sprayers have been built which use various types of centrifugal pumps and have given good service. Such pumps, however, are somewhat more expensive than other types and the differential is offset by the lower maintenance cost.

Where brush control by some sort is essential, a spray gun is advisable. Various types of guns require the use of a gun. In lawn work or other spraying near valuable plants which are worth two or three pounds, the spray boom should be used or covering. This safety device reduces the amount of spray falling on ornamental plants.

When spray applications are made with crops whose resistance to herbicides is essential. With crops which is sensitive to 2,4-D, which is sensitive to 2,4-D, water which has been used for any purpose in crop plants is not acceptable.
somewhat more expensive than paddle or gear pumps. This cost differential is offset by the longer life of the centrifugal pump.

Where brush control by spraying is contemplated, a spray gun of some sort is essential. A spraying pressure of 200 to 400 pounds is advisable. Various types of guns are available, and selection is largely up to the individual operator. Crop and turf spraying will not require the use of a gun.

In lawn work or other spray operations where 2,4-D is to be used near valuable plants which are susceptible to injury by this compound, the spray boom should be provided with some sort of hood or covering. This safety device, along with low spray pressure, will reduce the amount of spray drift and thus reduce the risk of injury to ornamental plants.

When spray applications of a number of herbicides are made on crops whose resistance to herbicides is variable, care in cleaning spray equipment is essential. With the exception of 2,4-D and related compounds, it is a relatively easy matter to wash out residues from herbicidal applications. Two or three rinsings of pump, tank, hose and boom with clean water will suffice. It is practically impossible, however, to remove all traces of 2,4-D from spray tanks and the minute amounts left by the most careful washing may be sufficient to ruin a crop which is sensitive to 2,4-D. For that reason, it is suggested that a sprayer which has been used to apply 2,4-D should not be used for any purpose in crop plants or fruits which are subject to injury by this chemical.

TABLE 1—Delivery in gallons per acre for two types of fan-type nozzles at different pressures. Data based on nozzle spacing of 20 inches, boom height 18 to 20 inches and tractor speed of 4 miles per hour

<table>
<thead>
<tr>
<th>Nozzle number</th>
<th>Pressure, in pounds per square inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monarch*</td>
</tr>
<tr>
<td>25</td>
<td>6.4</td>
</tr>
<tr>
<td>32</td>
<td>5.0</td>
</tr>
<tr>
<td>39</td>
<td>16.7</td>
</tr>
<tr>
<td>46</td>
<td>14.3</td>
</tr>
<tr>
<td>59</td>
<td>20.8</td>
</tr>
<tr>
<td>99</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Similar nozzles are available from other manufacturers.
The use of aircraft for spray and dust applications of herbicides, is practiced in some sections of the United States and Canada. In Michigan, however, the acreage devoted to a particular crop is seldom great enough to make airplane spraying feasible. The great difficulty in confining the dust or spray to a specified area also poses somewhat of a problem in this state. Many farmers will have fields of one crop which will tolerate a specified herbicide, along side other crops which may be killed or injured by that herbicide. Because of the diversity of crops and their differing susceptibilities to herbicides, it seems that applications of herbicides by means of aircraft is not likely to become widespread in this state.

SUGGESTIONS FOR THE USE OF CHEMICALS TO CONTROL WEEDS

ASPARAGUS

In newly established asparagus beds, annual weeds and grasses become a problem, while in older beds, many other weeds including perennial grasses, seriously interfere with the production of asparagus. The control of these weeds by chemical means, without injuring crowns and spears, is not simple.

Cyanamid, a nitrogen-carrying fertilizer, gives satisfactory control of most of the young broad-leaved weeds, if applied at the proper time. The granular form is applied at the rate of 200 to 400 pounds per acre, in a band over the row, early in the season. The powdered form is applied during the cutting season at a rate of 75 to 100 pounds per acre, when the foliage is wet from dew or rain. This treatment is effective on small weeds and should be repeated during the season as required to control weeds.

Some perennial weeds, such as Canada thistle and bindweed, may be controlled by spot-spraying, using the ester form of 2,4-D at the rate of 2 pounds per acre. Grasses in older beds can be controlled by the use of TCA. For such use apply ½ lb. TCA per square rod.

The disk ing operation at the end of the cutting season, made by many growers, tends to destroy buds and may cause injury to the asparagus crowns. A spray application of a contact herbicide, in place of disk ing, will often give satisfactory weed control and avoid mechanical injury to the asparagus. Stoddard solvent, 80 to 100 gallons per acre, can be used for this purpose and will kill most annual weeds except ragweed. Selective formulations of the dinitrophenols or pentachlorophenates may also be used at this time.

Weed control in both rec ing importance, especially when the problem is complicated by a short beet seed is rather short and PCP, at the rate of 5 to 15 pounds containing 5 percent of the preparation has no residual results as pre-emergence testing, however, and is suggested.

Post-emergence sprays for results. A solution of common salt applied at the rate of 150 to 200 pounds per free weeds. This treatment is effective on purslane, and wild mustard, before the beets have two leaves developed more than three quantities of salt may have Small patches of quack grass or sprayed in the fall or winter with ½ parts Stoddard solvent can be 1

CARROTS

Carrots and parsnips, where germinate and frequently compete with annual weeds. This weed is such an extent that stands are poor. Costly hand weeding Transplanted celery is often poor. It and grasses. Other common pests in wet seasons. Removal by ordinary tillage operations.
BEETS

Weed control in both red beets and sugar beets is of considerable importance, especially when these crops are grown on muck soil. The problem is complicated by the fact that the germination period for beet seed is rather short and young beet seedlings are sensitive to many chemicals. Many pre-emergence, residual, treatments reduce the stand of beets, and selective sprays are often unsatisfactory. Lamb's quarters and annual grasses are especially difficult to control by chemical sprays. The need for weed control measures in beets has not been met successfully by chemical methods.

Stoddard solvent can be used at any time before actual emergence. The preparation has no residual effect and will kill most weed seedlings. For good weed control, 40 to 80 gallons per acre of the undiluted petroleum are required.

PCP, at the rate of 5 to 10 gallons per acre of an aromatic oil containing 5 percent of the phenolic compound, has given promising results as pre-emergence treatment. The method requires further testing, however, and is suggested for trial purposes only.

Post-emergence sprays for beets have not given entirely satisfactory results. A solution of common salt, 2 pounds per gallon of water, applied at the rate of 150 to 200 gallons per acre, will control many young weeds. This treatment is not effective on lamb’s quarters, purslane, and wild mustard. The use of salt spray is not advisable before the beets have two to three true leaves nor after weeds have developed more than three to five leaves. The continued use of large quantities of salt may have injurious effects upon mineral soil.

Small patches of quack grass in fields intended for beets should be sprayed in the fall with ½ pound TCA per square rod. This will control quack grass and reduce the possibility of injury to beets which might exist following spring treatment.

CARROTS AND RELATED CROPS

Carrots and parsnips, when planted in early spring, are slow to germinate and frequently emerge in a soil which is already covered with annual weeds. This weed growth may shade the crop plants to such an extent that stands are reduced and subsequent growth is poor. Costly hand weeding is often required to save the crop.

Transplanted celery is often crowded by growth of purslane (pursley) and grasses. Other common annual weeds may become serious pests in wet seasons. Removal of these weeds cannot be accomplished by ordinary tillage operations.
All members of the parsley family are tolerant of certain petroleum products and can be weeded with these chemicals. Pre-emergence, contact, sprays may be used in these crops, but selective sprays are so satisfactory that they are generally preferred.

Stoddard solvent, applied at any stage of growth of carrots and parsnips, will control 95 percent of the annual broad-leaved weeds and grasses which are common in Michigan. The rate of application ranges from 40 to 80 gallons per acre, depending upon the method of application. When the spray is confined to a 6-inch band directly over the row, 40 gallons are sufficient, but the larger quantity is needed for complete coverage of the soil surface. Parsley, dill and caraway may be sprayed in the same manner as carrots, but should not be sprayed when in flower. Carrots and parsnips that have developed roots more than ½ inch in diameter may develop an objectionable flavor if sprayed with petroleum products.

Celery seedbeds can be weeded by spraying with Stoddard solvent, but transplanted celery sometimes develops a condition known as “black heart” following petroleum sprays. Some growers, however, have used this method of weed control in celery with excellent results. It is suggested that, in such use, the spray, 40 to 80 gallons per acre, be directed to the side of the celery plants. Treatment should be made before the celery is more than 4 inches tall.

Ragweed, beggar’s tick and some mustards are resistant to Stoddard solvent and must be removed by hand or cultivation. Perennial weeds and grasses may be killed to the ground by this treatment, but regrowth will occur.

Fields infested with nut grass can be planted to carrots and sprayed 2-3 times with Stoddard solvent. This will control nut grass while the crop is growing, and if followed for two seasons will permit use of the field for other crops in which nut grass cannot be readily controlled.

CORN

Ragweed, wild mustard, cocklebur, smartweed and annual grasses are the most common weeds found in corn fields. Perennial weeds that are most troublesome are Canada thistle, sow thistle, bindweed, horse nettle and quack grass. Under average conditions, these weeds can be controlled by three or four cultivations. Cultivation alone may not control these weeds in wet seasons.

Post-emergence spraying with 2,4-D, at the rate of ½ to ½ pound, acid equivalent, per acre will control broad-leaved annual weeds.

The spray will be most effective after the spray application of annual grasses.

The pre-emergence use of Stoddard solvent, per acre has given control of annual and broad-leaved weeds with excellent results, however, poor results have been obtained with pre-emergence treatments in celery as an experimental procedure. More information is secured.

Corn is sometimes injured with such injury include rolling of brace roots and lodging of the plant. Corn is not generally affected by spraying.

BERRIES

Cultivated blueberry plants may develop a condition known as “black heart” following petroleum sprays. Young blueberries may be sprayed for control purposes. Older plants may not be injured by such sprays. Several chemicals are available for use in blueberry plantings. Annual broad-leaved weeds in young vineyards. Older vineyards are usually infested with bluegrass and quack grass.

The only satisfactory weed control method is cultivation and hand hoeing. Use of oil in the row, but this is not satisfactory. Grape vines should be at least 12 inches in diameter before they are used for weed control.

The grape plant is extremely susceptible to injury from spraying. It should not be used in or near blueberry plantings.
The spray will be most effective when applied to small weeds. Cultivation after the spray application, usually will be required to control annual grasses.

The pre-emergence use of 2,4-D at the rate of 2 pounds, acid equivalent, per acre has given control in some seasons, of both annual grasses and broad-leaved weeds without injury to corn. In other seasons, however, poor results have been obtained with this method of control. Pre-emergence treatments in corn, therefore, should be considered as an experimental procedure and used only on a limited scale until more information is secured.

Corn is sometimes injured when sprayed with 2,4-D. The symptoms of such injury include rolling of leaves, brittleness of stalks, malformation of brace roots and lodging. When 2,4-D is used at the rate of \(\frac{3}{4} \) to \(\frac{1}{4} \) pound per acre, some injury may be observed, but the yield of corn is not generally affected.

BLUEBERRIES

Cultivated blueberry plantings usually become infested with annual grasses in the early life of the planting. Later, various perennial weeds may become a problem.

Young blueberries may be injured by most chemicals used for weed control purposes. Older plants are hardier and more tolerant of chemicals. Several chemicals are being tried for such purposes, but no suggestions for grower usage can be made at the present time.

GRAPES

Annual broad-leaved weeds and grasses are the chief problem in young vineyards. Older vineyards frequently become matted with bluegrass and quack grass.

The only satisfactory weed control measures for use in grapes are cultivation and hand hoeing. Dinitro compounds at 1–1 1/2 lbs. per acre in 5-10 gals. of oil have been used for temporary control of weeds in the row, but this treatment will not kill perennial weeds. Grape vines should be at least 3 years old before dinitro compounds are used for weed control.

The grape plant is extremely sensitive to 2,4-D and this chemical should not be used in or near a vineyard.
RASPBERRIES

Broad-leaved weeds do not cause much trouble in raspberries, especially if the hill-system of growing is employed. In some locations, quack grass and Kentucky bluegrass become established in older beds. Young broad-leaved weeds can be controlled by using 2,4-D at a rate of ¼ to ½ pound, acid equivalent, per acre. The spray should be directed toward the ground to avoid contact with raspberry leaves and should not be applied when the plants are in flower. Abnormal fruit and leaves may result if the material comes in contact with the plants.

Quack grass and Kentucky bluegrass may be killed by the use of TCA. However, some injury to raspberry plants may occur and it is suggested that TCA be used only in old plantings. For best results, TCA should be applied in the fall (November), after the old fruiting canes have been removed and the leaves have dropped. At this time, new fruiting canes are dormant while the quack grass is usually green. Thirty pounds per acre, applied as a spray, gives satisfactory control. The spray should be directed toward the base of the canes and limited to an 18-inch strip.

STRAWBERRIES

The control of weeds in strawberries is an annual problem in which much labor is used in hand weeding, hoeing and cultivating. Annual broad-leaved weeds and grasses are the most troublesome in the first-year bed, while the fruiting bed often becomes infested with perennial weeds and grasses. Proper preparation of the land before setting out the plants will eliminate many of these weeds.

2,4-D has been used satisfactorily on commercial plantings for the control of broad-leaved weeds in first-year beds. One-fourth to one-half pound per acre, 1 or 2 weeks after planting, will eliminate many of the young weeds. 2,4-D should not be used in fruiting beds.

Common chickweed can be kept under control in strawberry plantings with IPC. The material is available as a 50 percent wettable powder and should be applied as a spray. It can be used to advantage for spot applications at the rate of 15 pounds of the wettable IPC in 100 gallons of water per acre. Since all the facts about the material are not known it is suggested that it be applied as a spray and not as a dust.

For large scale applications use about 10 pounds of the wettable IPC in 100 gallons of water per acre. A sprayer that delivers 75 gallons or more per acre will work satisfactorily provided good agitation is maintained. September, October or December is the best time for the use of IPC in strawberry fields.

TOMATOES

The most troublesome weed in tomatoes is poison ivy. In some cases, broad-leaved weeds become so dense that they completely smoother the tomato plants.

Poison ivy on the trunks and branches of the plants may be controlled by spraying the trunks with Ammate. Three-fourths of a gallon of 50 percent Ammate in one gallon of water will treat one square yard of tomato plants. It should be applied to the foliage of the plants just before or after bloom.

Sandburs can be controlled by spraying the plants before they produce burs. The sprayer should deliver 10 gallons per acre at a rate of ½ gallon per square rod. This will also control the annual weeds.

In young orchards satisfactorily controlled by spraying a small area at the rate of 6 to 8 pounds of Stoddard Solvent (Stoddard solvent) of the type used for controlling wild mustard in small grains and flax. Tests have shown that some of these weeds. A 3- to 5-percent solution containing 2,4-D is sometimes a practical method of controlling wild mustard in small grains and flax.

Dinitro herbicides can be used in small grains and flax made with the grain crop. A rate of ½ to ¾ pound per acre
CHEMICAL WEED CONTROL

September, October and early November are suitable times for the use of IPC in strawberries.

TREE FRUITS

The most troublesome weeds in an orchard are sand burs and poison ivy. In some cases, broad-leaved annual weeds are a problem. Poison ivy on the trunks and around trees can be killed by spraying with Ammate. Three-fourths pound of this chemical in one gallon of water will treat one square rod of area. The spray should not be applied to the foliage of the tree, nor in sufficient volume to wet the soil. Ammate temporarily controls all weeds, grasses and crops, therefore, it should not be used where a cover crop is grown.

Sandburs can be controlled by spraying with Stoddard solvent before the plants produce burs. The solvent should be applied at the rate of ½ gallon per square rod. This treatment will also control many other annual weeds.

In young orchards satisfactory control of grasses can be obtained by spraying a small area at the base of each tree with a special grade of Stoddard Solvent (Standard Weed Killer F). Perennial grasses, such as quack and Bermuda, will make new growth following such treatment but two or more sprayings during a season can be made without injury to the trees. Two successive years of spraying will kill out most of the grass rhizomes. Enough oil to wet the grass should be applied at each spraying.

SMALL GRAINS AND FLAX

Weeds often become a serious problem in small grains and flax, even when good cultural practices have been used. Quack grass, field bindweed, thistle, wild mustard, and ragweed are among the most troublesome weeds. Tests have shown that spraying such fields with chemicals is sometimes a practical and effective method of controlling some of these weeds.

A 3- to 5-percent solution of sulfuric acid, applied at the rate of approximately 100 gallons per acre, has been used successfully for controlling wild mustard in small grains.

Dinitro herbicides can be used to control wild mustard and ragweed in small grains and flax, even when a legume seeding has been made with the grain crop. The dinitros should be applied at the rate of ½ to ¾ pound per acre. These preparations will require 75 to
100 gallons of water per acre. If a legume seeding is made with the grain, it is important that the dinitro be applied at an early stage when the grain is 6-8 inches high. Later spraying will result in some injury to the legume seeding, especially clovers.

2,4-D can be used in small grains to control wild mustard, ragweed and some other broad-leaved annual weeds. Serious injury may result, however, to legume seedlings. The amount of injury will depend upon time and rate of application, kind of legume and conditions prevailing at time of spraying. In general a rate of \(\frac{1}{4} \) pound acid equivalent per acre applied when the grain is 6-8 inches high can be used, however some injury to the seedlings should be expected. Heavier rates or later applications are more injurious. Sweet clover is injured most and red and white clover least. Field bindweed may be killed back to such an extent that it causes no trouble in the small grain crop. Thistles, although not completely killed, will not produce seeds.

If fields are badly infested with field bindweed the following plan is suggested. Remove the field from the regular rotation and plant to oats or barley for two years without a legume seeding. About one week or ten days before the grain heads out, spray with one-half pound of 2,4-D per acre. Some injury to the grain crops should be expected. After grain harvest, summer fallow twice and plan to spray again in September.

Low and high volumes have been equally effective, provided the proper amount of the chemical was used. Spraying should be done when the grain crop is 4 to 8 inches high, at the rate of \(\frac{1}{4} \) to \(\frac{1}{2} \) pound, acid equivalent, per acre. Heavier rates are needed for control of field bindweed, and the spray application is made at a later stage of growth. Under such conditions, some reduction in yield of grain may occur.

Flax is often injured by 2,4-D. The dinitro compounds at the rate of \(\frac{1}{2} \) to \(\frac{3}{4} \) pound per acre will control annual weeds in this crop.

When there are small, scattered patches of persistent perennial weeds present, it may be worth while to spray with 2,4-D or TCA at a much heavier rate to check weeds, even though the grain in that small area is killed or injured by the spray.

Chess, corn cockle, quack grass, wild buckwheat, and smartweed are not killed by any of these chemicals at rates which will not injure the grains.

Hay fields are often very weedy. It is therefore necessary to make a good job of weed control before being plowed and put into alfalfa. The dinitro compounds can be used on established stands of alfalfa without injuring the plant, but heavy rates are needed. The following plan is suggested: use 2,4-D in a rate of 1 pound per acre, the spray application is made at a later stage of growth. Under such conditions, some reduction in yield of grain may occur.

Flax is often injured by 2,4-D. The dinitro compounds at the rate of \(\frac{1}{2} \) to \(\frac{3}{4} \) pound per acre will control annual weeds in this crop.

When there are small, scattered patches of persistent perennial weeds present, it may be worth while to spray with 2,4-D or TCA at a much heavier rate to check weeds, even though the grain in that small area is killed or injured by the spray.

Chess, corn cockle, quack grass, wild buckwheat, and smartweed are not killed by any of these chemicals at rates which will not injure the grains.
CHEMICAL WEED CONTROL

ALFALFA AND CLOVER

Hay fields are often very weedy, probably because they are so far removed from a cultivated crop in the rotation. Special effort should, therefore, be made to get a clean seedbed for the new seeding. When seedings are made with a grain crop, the new seedings frequently contain ragweed, foxtail, and tickle grass. Older seedings frequently contain downy brome, quack grass, yellow rocket, wild carrot, curled dock, buckhorn, catchfly, thistles and field sorrel. The older the stand, the weedier it becomes, therefore, hay fields should not be left too long before being plowed and put back to a cultivated crop.

The dinitro compounds can be used on very young seedings of legumes without injuring the stand, but the same chemical applied on established stands may cause serious damage. Alfalfa seedings are more resistant to the spray than clover. Mustards, yellow rocket, ragweed, lamb's quarters and pigweed are killed or effectively checked by the spray. The dinitro compounds should be used according to the directions of the manufacturers. These chemicals are most effective on weeds in the seedling stage. Perennial weeds, such as Canada thistle, dock and buckhorn are not seriously injured by dinitros. Small patches of these weeds should be sprayed with 2,4-D, 1 to 2 pounds per acre, even though legumes in the patches may be killed.

BEANS
(Field, lima, snap, and soybeans)

Weeds causing the most trouble in beans are ragweed, pigweed, velvetleaf and grasses. These weeds in field beans or soybeans interfere with harvest operations.

The bean plant is readily injured by contact with all herbicides now in use and no selective sprays can be suggested. Selective control by flaming has been accomplished in lima beans, but the equipment is large, expensive, and requires a skilled operator.

Control of annual weeds in beans can be accomplished by the use of certain types of pre-emergence treatment. The dinitros, used at the rate 1 to 2 pounds per acre, have given good weed control without permanent injury to beans. Some burning or yellowing of the first leaves may occur, but the plants recover and yields are not affected by the treatment. The spray should be applied soon after planting in order to allow time for it to decompose and become harmless before emergence of the beans.
Experimental trials of 2,4-D as a pre-emergence treatment have shown that beans will tolerate soil applications of 2,4-D. The foliage of beans grown under such conditions may develop characteristic symptoms of 2,4-D injury in the early stages of growth. Recovery usually occurs, however, and the only serious effect is a delay in maturity. 2,4-D-treated beans may be 1 or 2 weeks later than untreated beans. Soy and lima beans are more tolerant than other forms.

Pentachlorophenols can be used as pre-emergence sprays. The rate of application depends upon the formulation, but not more than 2 to 4 pounds per acre of the parent phenolic compound should be used.

Spot infestations of quack grass, bindweed and Canada thistle in bean fields should be treated with chemicals suitable for the control of these weeds. Such treatment, however, will destroy the beans in the treated areas. For bindweed and thistle 2,4-D at 2 pounds, acid equivalent, per acre should be used. Quack grass patches may be treated with TCA at the rate of 60 pounds, acid equivalent, per acre. These treatments may not eradicate the weed plants but will keep them from seeding or spreading over wider areas and follow-up treatments in succeeding seasons lead to eventual eradication.

PEAS

Weed control problems in peas are of two distinct classes. One of these is the control of annual weeds such as ragweed, smartweed and mustard. The other is the control of Canada thistle or other perennial weeds. Annual weeds are important because of the competition they offer during the growing season and because they make harvesting operations more difficult. Canada thistle infestation not only presents the problem of competition between peas and weeds but, because this weed approaches flowering at about harvest time for the peas, also makes canning operations difficult. The unopened buds of thistle are similar in size to shelled peas and are difficult to remove by mechanical methods.

Control of annual weeds can be accomplished on a selective basis. The dinitro compounds, applied before the peas are more than 4 to 6 inches in height, will kill most broad-leaved annual weeds without injuring the peas. The quantity of dinitro to be used depends upon the preparation available, and the manufacturers' directions must be followed. No important differences in response to the dinitro
Fig. 2. Effects of sulfuric acid spray on young onions. Upper portion sprayed with 2½-percent sulfuric acid solution, lower not sprayed.
sprays have been observed in varieties of peas tested. Light and dark green foliage types appear equally tolerant of the chemical.

The control of Canada thistle, bindweed and quack grass in peas is not possible on a selective basis. Spot infestations of these weeds should be treated, however, to prevent further spread of weeds. 2,4-D at the rate of 2 pounds, acid equivalent, per acre will give seasonal control of Canada thistle, and bindweed, thus preventing seeding and spread of these weeds. Peas in the treated areas, however, will be destroyed. TCA, at the rate of 60 pounds, acid equivalent, per acre can be used to control patches of quack grass, but the crop will be lost in treated areas.

ONIONS

Annual weeds and grasses often present a serious problem in producing onions, especially in wet seasons when cultivation is difficult.

Pre-emergence treatment can be made with dinitros, PCP, 2,4-D and cyanamid, but there is some risk of reducing the stand of onions. The dinitro compounds will give good weed control, but may remain in the soil long enough to affect the germination of onion seeds. PCP, sodium salt, in water will give good control when used under conditions of warm temperature. Yields may show less effect than the reduced stand of onions would indicate because the surviving plants produce larger bulbs. Results from the pre-emergence use of 2,4-D have been variable. Some trials have shown that the growth and yield of onions is not affected. Other trials, under different conditions, have resulted in a poor yield and small onions. The degree of weed control that can be expected on muck soil treated with 2,4-D is always less than that which can be expected from pre-emergence usage on mineral soils. Because of the unpredictable results, the pre-emergence usage of 2,4-D in onions must be considered as an experimental procedure only. Granular cyanamid, at a rate of 100 pounds per acre will control weeds, but it should be applied several days before crop emergence.

A 3-percent solution of sulfuric acid (3 gallons of acid in 97 gallons of water) as a pre-emergence contact spray, will give good control of weeds and will not injure the onion sprouts which are below the surface of the soil. This treatment, however, will not kill grasses. Stoddard solvent, at the rate of 40 gallons per acre, can be used to kill all weed seedlings. The petroleum product is volatile, has no residual action, and can be used as late as the day before onion emergence.

Post-emergence treatments of weed growth which is more than one to three true leaves. Early and may result in complete death. Dilute sulfuric acid, 2½ per cent, of water, will control many kinds of weeds. These chemicals do not give better weed control and better results may be made if weed growth is killed by the day before onion emergence.

In warm, dry weather, dinoseb, may kill broad-leaved weeds. These chemicals do not give good weed control and do not control grasses. The petroleum product is volatile, has no residual action, and can be used as late as the day before onion emergence.

Weed problems in potatoes which the crop is grown. In warm, dry weather and do not control weeds. These chemicals do not give good weed control and do not control grasses. The petroleum product is volatile, has no residual action, and can be used as late as the day before onion emergence.

Pre-emergence control of weeds, contact and residual type herbicides.
Post-emergence treatments in onions are generally required because of weed growth which is more rapid than that of the crop. Such treatments can be made when the young onion plants have developed one to three true leaves. Earlier treatments usually reduce the stand and may result in complete destruction of the crop.

Dilute sulfuric acid, 2½ percent (by volume), applied as soon as the onion plants have developed two true leaves, has given consistently better weed control and better yields of onions than any other selective herbicide used in this crop. This treatment on warm, bright days, may cause some wilting of the onions, but recovery is rapid and no serious injury is produced. A second spraying 2 to 3 weeks later may be made if weed growth occurs.

In warm, dry weather, dinitro and PCP, sodium salt, sprays will kill broad-leaved weeds. The onion plants may be severely burned, however, and careful attention to dosage of the herbicide is required. These chemicals do not give satisfactory weed control in cool, wet weather and do not control grasses under any conditions. Dinitro compounds should be used at a rate of ¾ to 1 pound in 100 gallons of water per acre.

Potassium cyanate, 1 to 2 percent, by weight in 60 to 100 gallons of water, will control many kinds of broad-leaved weeds. This compound must be used before these weeds have developed beyond the three to four-leaf stage. An application of a 1-percent solution when the onions are 2 inches high, followed by another spraying with a 2-percent solution when the two- to three-leaf stage of development has been reached, is suggested. A combination of pre-emergence treatment, with granular cyanamid, and one application of cyanate spray has given good results in some trials.

POTATOES

Weed problems in potatoes are dependent upon the type of soil in which the crop is grown. In upland soils, annual weeds seldom present a serious problem, but quack grass and other perennial weeds may cause considerable difficulty. On muck land, annual weeds such as smartweed, pigweed and lamb's quarters as well as perennial weeds, may become a serious problem. The fact that potatoes are rather slow in emerging often permits a heavy growth of weeds before the crop is above ground.

Pre-emergence control of weeds can be obtained by the use of both contact and residual type herbicides. For contact control, when weeds
are present before the potato plants appear; the dinitros, at 1 pound per acre; pentachlorophenate (PCP) 16 pounds per acre in water; sulfuric acid, 3-percent solution; and Stoddard solvent, 40 to 80 gallons per acre, all have given good results without injury to potatoes. These chemicals should be applied when the weeds are small, but they may be used as late as the time when the first leaves are breaking through the ground. Slight burning of the leaves at this time is not serious and will not reduce the yield.

Pre-emergence, residual, treatment may be made in potatoes as follows: 1) Dinitros in oil, at the rate of 1 to 2 pounds per acre, 2) pentachlorophenol in oil (PCP) at 2 to 4 pounds per acre, 3) granular cyanamid at 150 to 200 pounds per acre, and 4) 2,4-D at 2 pounds per acre. Treatments should be made shortly after planting in order to allow for breakdown of the chemical before the potatoes emerge.

Post-emergence weed control in potatoes does not seem advisable with the chemicals now available. 2,4-D has been suggested as a possible herbicide in this crop because potatoes are not killed by rates of application which are satisfactory for weed control purposes. Limited trials, however, have shown that considerable leaf modification may follow such treatment.

Because of the limited tolerance of potatoes to 2,4-D, it is possible to use a potato sprayer for other weed control purposes. The small amounts of 2,4-D remaining after weed control operations will not cause serious injury to the potato crop when the sprayer is used for applying insecticides and fungicides. Thorough cleaning of the sprayer after using 2,4-D is necessary and can be done by means of several rinsings with clean water.

Small patches of quack grass in a field which is to be planted to potatoes in the spring can be treated with TCA at the rate of 60 pounds per acre, in early fall. This treatment will destroy most of the grass, and potatoes will generally germinate and grow in the treated areas. Some reduction in yield may occur. Spot treatment of patches of quack grass may be made during the growing season, but potatoes in the treated areas will be injured.

CUCUMBERS, MELONS AND TRANSPLANTED CROPS

Weed problems in these crops are not usually of a serious nature. Proper seedbed preparation and a small amount of hand hoeing will usually control most annual weeds. Early preparation of land, which will allow seeds to germinate, followed by spraying with dinitros, pentachlorophenols, sulfuric acid herbicides are of considerable weed-free soil. A period of 4 week and transplanting. When should be delayed as long as will appear when the soil is s

Michigan is one of the leading bulb crops. Weed control considerations are necessary. Pre-emergence treatments with dinitros and Stoddard solvent, 100 pounds, acid equivalent, per acre, are satisfactory for weed control purposes in other bulb crops. Other herbicides are suggested in the section on potatoes.

Post-emergence sprays have been suggested for the bulb crops. Dinitros are not recommended for such use, Stoddard solvent, at 40 pounds per acre, is suggested. The use of Stoddard solvent problem in pine seed. The slow growth of most crops is usually troublesome.

Pre-emergence, contact treatments. A 3-percent solution of 100 square feet, will kill most weeds and grass seedlings.

Post-emergence treatments such use, Stoddard solvent, at is suggested. The use of Stoddard solvent in pine seed will occur if the spray is applied to the cotyledons or after the se
pentachlorophenols, sulfuric acid, Stoddard solvent or other contact herbicides are of considerable value in getting crop plants started in weed-free soil. A period of 4 to 7 days should elapse between treatment and transplanting. When such treatments are made, cultivation should be delayed as long as possible because new weed seedlings will appear when the soil is stirred.

ORNAMENTALS

Michigan is one of the leading producers of tulips, gladiolus and other bulb crops. Weed control in these plantings often involves considerable hand work.

Pre-emergence treatments may be made with 2,4-D, cyanamid, dinitros and Stoddard solvent. 2,4-D is used at the rate of 2 to 5 pounds, acid equivalent, per acre in gladiolus, but should not be used in other bulb crops. Other herbicides are used at the rates suggested in the section on potatoes.

Post-emergence sprays have not been entirely successful in any of the bulb crops. Dinitros are used as selective sprays in gladiolus but must be applied in such a way as to avoid getting the tips of the leaves wet. 2,4-D can be used on gladiolus plants grown from "bulblets" but should not be used on flowering stock.

Tulips and daffodils should not be sprayed with 2,4-D.

NURSERY CROPS

The slow growth of most nursery stock seedlings makes considerable hand weeding necessary. Annual weeds and grasses are especially troublesome.

Pre-emergence, contact treatments may be made in nursery plantings. A 3-percent solution of sulfuric acid, at the rate of 1 quart per 100 square feet, will kill most broad-leaved weeds. Stoddard solvent, at the rate of 1 quart per 200 square feet will kill both broad-leaved weeds and grass seedlings.

Post-emergence treatments can be applied to conifer seedlings. For such use, Stoddard solvent, at the rate of 1 quart per 150 square feet is suggested. The use of Stoddard solvent will effectively reduce the weeding problem in pine seedling beds. No injury to the seedlings will occur if the spray is applied while the seed coats are still over the cotyledons or after the seedlings are one year old.
The growth of woody plants in abandoned fields, pastures and along creek banks, drainage ditches and under power lines is often a serious problem. 1 to 2 pounds of 2,4-D, ester formulation, in 100 gallons of water, applied as a spray to wet all the leaves will control willow, hazel, alder, box elder, poison ivy and grape. A similar amount of 2,4,5-T will be more effective on maple, oak, raspberry, blackberry and osage orange. A mixture consisting of equal amounts of 2,4-D and 2,4,5-T is sometimes more effective than either alone. Ash and hawthorne are not usually killed by either 2,4-D or 2,4,5-T. Most woody plants can be killed by spraying with Ammate at the rate of ¾ pound per gallon of water. Enough solution to thoroughly wet the leaves should be applied.

When brush is more than 4 feet in height, removal of old growth is necessary. This can best be done while the plants are still green. Sprouting can be prevented by spraying the cut stumps with a solution consisting of 3 to 4 pounds 2,4-D, ester, acid equivalent, in 100 gallons of kerosene or diesel oil. When new growth appears, the sprouts should be sprayed with either 2,4-D or Ammate as suggested for small brush.
LAWN

The growth of dandelion, plantain, chickweed and other common broad-leaved weeds spoils the appearance of many lawns. Crabgrass is often a problem in weed-infested lawns during late summer and fall.

2,4-D is the best chemical to use in treating lawns and turfs to control broad-leaved weeds. Sprays may be applied any time when weeds are growing, but most rapid killing is obtained when temperatures are above 60° F. during and following application. 2,4-D can be applied as a dilute solution (0.1%) at the rate of 1 gallon per square rod (Table 2). A concentrated low-volume spray may be used, and in this case, 1½ pounds of 2,4-D, acid equivalent, per acre should be used and may be applied in as low a volume as 5 gallons per acre. The effectiveness of 2,4-D in the control of dandelions is shown in Fig. 4.

When weeds are killed in infested lawns and turfs, bare spots will appear. Unless reseeding with grass is accomplished, other weeds

Fig. 4. Effects of 2,4-D on dandelions in turf. Lower right, unsprayed. (Photo—Dow Chemical Company)
Table 2—Dilution table for making up 2,4-D solutions for small sprayers

<table>
<thead>
<tr>
<th>Percent of 2,4-D in product</th>
<th>Teaspoons for 1 gallon of water</th>
<th>Tablespoons for 5 gallons of water</th>
<th>Ounces for 10 gallons of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$8\frac{1}{4}$</td>
<td>14</td>
<td>14^*</td>
</tr>
<tr>
<td>14</td>
<td>$5\frac{5}{8}$</td>
<td>$9\frac{1}{4}$</td>
<td>$9\frac{1}{4}$</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>$6\frac{1}{2}$</td>
<td>$6\frac{1}{2}$</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>38</td>
<td>$2\frac{1}{2}$</td>
<td>$4\frac{1}{4}$</td>
<td>$4\frac{1}{4}$</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>$3\frac{1}{2}$</td>
<td>$3\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Powders (spoon level)

<table>
<thead>
<tr>
<th></th>
<th>2%</th>
<th>4%</th>
<th>8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>$2\frac{3}{4}$</td>
<td>$4\frac{3}{4}$</td>
<td>$2\frac{1}{4}$</td>
</tr>
<tr>
<td>70</td>
<td>$2\frac{3}{4}$</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td>$2\frac{3}{4}$</td>
<td>$3\frac{1}{2}$</td>
<td>$1\frac{3}{4}$</td>
</tr>
</tbody>
</table>

*Fluid ounces
**Avoir. weight.

These quantities are approximate only because of differences in the nature of various trade name products, but will give satisfactory results under average conditions. The percent 2,4-D refers to the 2,4-D acid equivalent which should appear on the label.

and undesirable grasses may fill in the bare spots. Reseeding may be done 2 to 3 weeks after an application of 2,4-D. It is advisable to spray every year until the grass is well established so that weeds do not become a problem. 2,4-D should not be used on newly established lawns nor on bent grass.

Control of crabgrass may be obtained by the use of PMA, cyanate, dinitrophenol, and Stoddard solvent, but some risk of injury to lawn grasses is present. PMA, used as recommended by the manufacturers will kill young crabgrass. An overdose of this compound will injure lawn grasses and weed grass that is more than 2-3 inches tall is not usually killed. A 2-percent solution of potassium cyanate to which a wetting agent has been added, is effective on young grass seedlings. One gallon per 500 square feet should be applied before crabgrass has more than 3 true leaves. Some browning of lawn grasses may occur but is of a temporary nature and the grass will recover.

Dinitrophenol, 2 pounds per 100 gallons of water, will destroy young grass seedlings but will also cause considerable burning of desirable grasses. Injured grass recovers quickly if sufficient soil moist-

ture is present. Stoddard Solvent does not affect the roots and leaves of the grass.

Selective control of crabgrass can be obtained by the use of PMA (Permatran Crabgrass spray). One gallon is the usual dosage. The spray is effective if the grass has not been sprayed more than two or more times during the season. Proper fertilization, mowing a lawn free from crabgrass, and desirable grasses is not a substitute for proper lawn care may be for.

PERMA

Low fertility, lack of moisture, and absence of bluegrass and most common weeds are this variety of these grasses. Many of these weeds can be controlled with chemicals. However, this variety is more productive.

2,4-D and 2,4,5-T and Ammex are injurious to buttercup and many broad-leaved weeds that will be killed in the pasture will be injured themselves in a year or so, especially if the pasture legume is present. Stoddard Solvent is also injurious to many kinds of brush as discussed.
ture is present. Stoddard Solvent burns all grass to the ground line, but does not affect the roots and recovery is rapid.

Selective control of crabgrass, with little or no risk to lawn grasses, can be obtained by the use of a petroleum compound (sold as Standard Crabgrass spray). One gallon of this product on 500 square feet is the usual dosage. The spray should be applied as soon as crabgrass is observed in the lawn and the treatment repeated in 10 days if the grass has not all been killed. This schedule may be followed two or more times during the season if new crabgrass germination is brought about by rainfall or lawn watering.

Proper fertilization, mowing and watering will go far toward keeping a lawn free from crabgrass and broad-leaved weeds. The use of herbicides is not a substitute for proper care of a lawn. Instructions for proper lawn care may be found in Ext. Bul. 224.

PERMANENT PASTURES

Low fertility, lack of moisture and over-grazing cause most of the weed growth in bluegrass and white clover pastures in Michigan. The most common weeds are thistles, dandelion, buckhorn and mullein. Woody plants commonly present are black locust, hawthorne, sumac and brambles. Many of these plants can be controlled by spraying with chemicals. However, this procedure should be co-ordinated with other good management practices if the pasture is to be made more productive.

2,4-D and 2,4,5-T and Ammate are not poisonous and can be used in pastures where animals are grazing. 2,4-D, applied at the rate of 1 to 2 pounds, acid equivalent, per acre, will kill bull thistle, dandelions, buckhorn and many broad-leaved annual weeds. Any white clover in the pasture will be injured considerably but usually re-establishes itself in a year or so, especially if conditions of moisture and fertility are favorable. If the pasture is largely white clover, or some other legume, a blanket spray of 2,4-D should not be made.

2,4,5-T and Ammate can be used for spot spraying of the more resistant kinds of brush as discussed for woody plants.
Table 3—List of herbaceous and woody plants, classified as to their reaction to 2,4-D and 2,4,5-T

HERBACEOUS. Reaction to 2,4-D.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beggars’ tick</td>
<td>Bindweed</td>
<td>All grasses</td>
</tr>
<tr>
<td>Bull thistle</td>
<td>Canada thistle</td>
<td>Asters</td>
</tr>
<tr>
<td>Burdock</td>
<td>Chickweeds</td>
<td>Black medic</td>
</tr>
<tr>
<td>Cocklebur</td>
<td>Cravvy</td>
<td>Bouncing bet</td>
</tr>
<tr>
<td>Crop plants (Broad leaved types)</td>
<td>Curled dock</td>
<td>Butter-and-eggs</td>
</tr>
<tr>
<td>Gum weed</td>
<td>Daisy fleabane</td>
<td>Buttercup</td>
</tr>
<tr>
<td>Hemp</td>
<td>Dandelion</td>
<td>Catch lily</td>
</tr>
<tr>
<td>Horse weed</td>
<td>Dog fennel</td>
<td>Cockle</td>
</tr>
<tr>
<td>Lamb’s quarters’</td>
<td>Evening primrose</td>
<td>Ground cherry</td>
</tr>
<tr>
<td>Mustard (most species)</td>
<td>Goat’s beard</td>
<td>Horse nettle</td>
</tr>
<tr>
<td>Pigweed</td>
<td>Goldenrod</td>
<td>Hound’s tongue</td>
</tr>
<tr>
<td>Plantain (buckhorn)</td>
<td>Hawkweed</td>
<td>Knapsack</td>
</tr>
<tr>
<td>Ragweed</td>
<td>Heal-all</td>
<td>Knotweed</td>
</tr>
<tr>
<td></td>
<td>Hoary alyssum</td>
<td>Mallow</td>
</tr>
<tr>
<td></td>
<td>Horsebaill</td>
<td>Milkweed</td>
</tr>
<tr>
<td></td>
<td>Moneywort</td>
<td>Ox-eye daisy</td>
</tr>
<tr>
<td></td>
<td>Mullein</td>
<td>Smartweed</td>
</tr>
<tr>
<td></td>
<td>Sorrel</td>
<td>Spurge</td>
</tr>
<tr>
<td></td>
<td>Sow thistle</td>
<td>Tansy</td>
</tr>
<tr>
<td></td>
<td>Speedwell</td>
<td>Velvet leaf</td>
</tr>
<tr>
<td></td>
<td>St. John’s wort</td>
<td>Wild buckwheat</td>
</tr>
<tr>
<td></td>
<td>Stinging nettle</td>
<td>Wild lettuce</td>
</tr>
<tr>
<td></td>
<td>Water hemlock</td>
<td>Yarrow</td>
</tr>
<tr>
<td></td>
<td>Wild carrot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wild garlic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wormwood</td>
<td></td>
</tr>
</tbody>
</table>

WOODY PLANTS. Reaction to foliage spray of 2,4-D and 2,4,5-T

<table>
<thead>
<tr>
<th>Group 1. Killed by 2,4-D</th>
<th>Group 2. Killed by 2,4,5-T</th>
<th>Group 3. Not usually killed by 2,4-D or 2,4,5-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alder</td>
<td>Aspen</td>
<td>Ash</td>
</tr>
<tr>
<td>Cherry</td>
<td>Bittersweet</td>
<td>Black locust</td>
</tr>
<tr>
<td>Elderberry</td>
<td>Brambles</td>
<td>Buttonbush</td>
</tr>
<tr>
<td>Elm</td>
<td>Currant</td>
<td>Hawthorn</td>
</tr>
<tr>
<td>Grape</td>
<td>Dogwood</td>
<td>Poisonous sumac</td>
</tr>
<tr>
<td>Hazel</td>
<td>Hickory</td>
<td>Yew</td>
</tr>
<tr>
<td>Peach</td>
<td>Maple</td>
<td>Wormwood</td>
</tr>
<tr>
<td>Pear</td>
<td>Oak</td>
<td>Yellow poplar</td>
</tr>
<tr>
<td>Poison ivy</td>
<td>Osage orange</td>
<td>Zelkova</td>
</tr>
<tr>
<td>Poison sumac</td>
<td>Prickly ash</td>
<td>Zelkova</td>
</tr>
<tr>
<td>Shad bush</td>
<td>Sassafras</td>
<td>Zelkova</td>
</tr>
<tr>
<td>Spirea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stag-horn sumac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet fern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walnut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chemical Weed Control

Table 4—Control measures for common weeds where crops are not present

<table>
<thead>
<tr>
<th>Weed</th>
<th>Chemical</th>
<th>Rate per acre</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual grasses</td>
<td>Stoddard solvent</td>
<td>80 gallons</td>
<td>Apply when plants are small</td>
</tr>
<tr>
<td>including sand bur</td>
<td>TCA</td>
<td>20-40 pounds</td>
<td></td>
</tr>
<tr>
<td>Annual, broad-leaved weeds</td>
<td>2, 4-D</td>
<td>1 pound</td>
<td>Not effective on smartweed and wild buckwheat</td>
</tr>
<tr>
<td>Wild carrot</td>
<td>2, 4-D</td>
<td>1 pound</td>
<td>Fall application gives best results. Flowering plants resistant</td>
</tr>
<tr>
<td>Burdock</td>
<td>2, 4-D</td>
<td>1 pound</td>
<td>Apply before seed stalk appears</td>
</tr>
<tr>
<td>Bindweed</td>
<td>2, 4-D</td>
<td>2 pounds</td>
<td>Repeat treatments usually needed</td>
</tr>
<tr>
<td>Quack grass</td>
<td>TCA</td>
<td>40-100 pounds</td>
<td>Do not apply near trees or shrubs</td>
</tr>
<tr>
<td>Thistles</td>
<td>2, 4-D</td>
<td>2 pounds</td>
<td>Bull thistle is easy to kill, but Canada thistle may require repeat treatments</td>
</tr>
<tr>
<td>Poison ivy and</td>
<td>2, 4-D, ester</td>
<td>2 pounds</td>
<td>Do not use in orchards</td>
</tr>
<tr>
<td>poison sumac</td>
<td>Ammate</td>
<td>75 pounds</td>
<td>Ammate kills everything hit by spray. Perennial grasses recover</td>
</tr>
<tr>
<td>Brambles</td>
<td>2, 4, 5-T</td>
<td>2 pounds</td>
<td>Apply when plants are in full leaf stage</td>
</tr>
<tr>
<td>Nut grass</td>
<td>Stoddard Solvent</td>
<td>60 gallons</td>
<td>Apply when plants are 3-4 inches tall, repeat as needed during season</td>
</tr>
<tr>
<td>Wild garlic</td>
<td>2, 4-D ester</td>
<td>2 pounds</td>
<td>Apply in diesel oil before bulblets develop. Repeat in full.</td>
</tr>
<tr>
<td>Crop</td>
<td>Chemicals</td>
<td>Amount per acre</td>
<td>When to use</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Asparagus</td>
<td>Cyanamid, granular</td>
<td>200-400 lb.</td>
<td>Pre-emergence</td>
</tr>
<tr>
<td></td>
<td>Cyanamid, defoliagent</td>
<td>75-100 lb.</td>
<td>During cutting season</td>
</tr>
<tr>
<td></td>
<td>Dinitro, selective grade</td>
<td>½ to ¾ lb.</td>
<td>End of cutting season</td>
</tr>
<tr>
<td></td>
<td>Stoddard solvent</td>
<td>40-80 gal.</td>
<td>End of cutting season</td>
</tr>
<tr>
<td>Beets</td>
<td>PCP (5% in oil)</td>
<td>5-10 gal.</td>
<td>Pre-emergence</td>
</tr>
<tr>
<td></td>
<td>Stoddard solvent</td>
<td>50 gal.</td>
<td>Pre-emergence</td>
</tr>
<tr>
<td></td>
<td>Sodium chloride</td>
<td>200-400 lb.</td>
<td>Post-emergence</td>
</tr>
<tr>
<td>Carrots</td>
<td>Stoddard solvent</td>
<td>40-80 gal.</td>
<td>Post-emergence</td>
</tr>
<tr>
<td>Corn</td>
<td>2,4-D</td>
<td>2 lb.</td>
<td>Pre-emergence</td>
</tr>
<tr>
<td></td>
<td>2,4-D</td>
<td>½-¾ lb.</td>
<td>Post-emergence</td>
</tr>
<tr>
<td>Grains not seeded to legumes</td>
<td>2,4-D</td>
<td>¼-½ lb.</td>
<td>When crop is 4-8 inches tall</td>
</tr>
<tr>
<td>Grains seeded to legumes</td>
<td>Dinitro, selective</td>
<td>½-¾ lb.</td>
<td>When crop is 4-8 inches tall</td>
</tr>
<tr>
<td>Lawn</td>
<td>2,4-D</td>
<td>1 lb.</td>
<td>Spring or fall</td>
</tr>
<tr>
<td>Onions</td>
<td>Sulfuric acid</td>
<td>2-3 percent</td>
<td>Post-emergence</td>
</tr>
<tr>
<td></td>
<td>Cyanate</td>
<td>8-12 lb.</td>
<td>Post-emergence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-20 lb.</td>
<td>Post-emergence</td>
</tr>
<tr>
<td></td>
<td>PCP, sodium salt</td>
<td>4-8 lb.</td>
<td>Post-emergence</td>
</tr>
<tr>
<td>Pastures</td>
<td>2,4-D</td>
<td>2 lb.</td>
<td>Spring or fall</td>
</tr>
<tr>
<td></td>
<td>2,4,5-T</td>
<td>2 lb.</td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td>Ammate</td>
<td>75 lb.</td>
<td>Spring</td>
</tr>
<tr>
<td>Peas</td>
<td>Dinitro, selective</td>
<td>½-¾ lb.</td>
<td>When crop is 4-8 inches tall</td>
</tr>
<tr>
<td>Strawberries</td>
<td>2,4-D</td>
<td>½-¾ lb.</td>
<td>2 weeks after planting</td>
</tr>
<tr>
<td></td>
<td>IPC</td>
<td>10-15 lb.</td>
<td>Fall</td>
</tr>
</tbody>
</table>