CORN HYBRIDS COMPARED in the 1994 season By: Keith Dysinger, Dale D. Harpstead, James Lempke, and Michael Allen, and David Main FILE COPY DO NOT DEMOVE ybrid corn trials are conducted each year by the Department of Crop and Soil Sciences, Michigan Agricultural Experiment Station, in cooperation with MSU Extension, seed corn companies, and farmers Many hybrids are offered for sale in Michigan. They differ in yield capacity, maturity, lodging resistance, and other characteristics. Choosing corn hybrids that most nearly match the management practices and local environment is an important part of profitable corn production. By planting the hybrids best suited to the individual farm location, a grower can obtain superior yields with little or no increase in overall production costs. Seed of hybrids with the best performance records in Michigan will generally cost no more than seed of hybrids with lower performance ratings. The highest yielding hybrids in the 1994 trials produced 35 bushels more per acre than the average of 444 hybrids tested (Table A) and 89 bushels more than the lowest yielding hybrids. Eleven trial loca- ### Table A Average, Highest and Lowest Grain Yield, Moisture Content, Test Weight and Stalk Lodging at 11 Locations in 1994 | | | | Bushe | ls per | Acre | Perce | ent Moi | sture | Tes | t Weig | ht | Perce | nt Lo | dging | |--------------|----------|-------------------|---------|--------|------|-------|---------|-------|------|--------|-----|-------|-------|-------| | County - | Location | No. of
Hybrids | Ave. | High | Low | | Monroe | - Early | 73 | 196 | 244 | 148 | 19 | 23 | 16 | 59 | 63 | 55 | 1 | 5 | 0 | | | Late | 75 | 212 | 251 | 147 | 22 | 28 | 20 | 58 | 62 | 55 | 1 | 2 | 0 | | Branch | - Early | 73 | 196 | 220 | 156 | 21 | 25 | 17 | 55 | 59 | 52 | 1 | 3 | 0 | | | Late | 75 | 204 | 236 | 165 | 25 | 29 | 22 | 55 | 59 | 53 | 1 | 2 | 0 | | Cass | - Early | 73 | 181 | 213 | 137 | 20 | 26 | 15 | 56 | 60 | 52 | 1 | 7 | 0 | | | Late | 74 | 197 | 233 | 157 | 24 | 31 | 20 | 54 | 58 | 52 | 1 | 2 | 0 | | Early - Late | Averages | Zone 1 | 191 204 | 226 | 147 | 20 | 25 | 16 21 | 57 | 61 | 53 | 1 1 | 5 2 | | | Kent | - Early | 70 | 202 | 234 | | | 25 | | | 62 | 54 | - | 7 | 0 | | Kelle | Late | 70 | 212 | | 155 | 20 | 25 | 16 | 58 | | 53 | 2 | | 0 | | Ingham | - Early | 70 | 148 | 247 | 170 | 25 | 30 | 22 | 55 | 58 | | 2 | 5 | | | - mynum | Late | 70 | 153 | 185 | 106 | 22 | 27 | 18 | 53 | 56 | 50 | 3 | 9 | 0 | | Saginaw | - Early | 70 | 196 | 195 | 114 | 27 | 35 | 21 | 52 | 55 | 49 | 2 | 6 | 0 | | Daginam | Late | 70 | 209 | 219 | 150 | 21 | 27 | 17 | 57 | 61 | 55 | 1 | 4 | 0 | | Early | Date | 10 | 182 | 241 | 168 | 25 | 33 | 21 | 55 | 58 | 52 | 1 | 3 | 0 | | | Averages | Zone 2 | 191 | 213 | 137 | 21 26 | 26 | 17 | 56 | 57 | 53 | 2 | 7 5 | 0 | | Huron | - Early | 66 | 126 | 149 | 100 | 17 | 21 | 15 | 57 | 61 | 53 | 3 | 10 | • | | | Late | 43 | 139 | 160 | 106 | 19 | 25 | 17 | 55 | 57 | 52 | 3 | | 0 | | Montcalm | - Early | 66 | 207 | 242 | 94 | 23 | 31 | 19 | 54 | 59 | 53 | | 8 | 0 | | | Late | 43 | 214 | 258 | 136 | 28 | 35 | 24 | 55 | 58 | 53 | 1 | 5 | 0 | | Mason | - Early | 66 | 168 | 208 | 97 | 20 | 25 | 16 | 57 | 60 | 54 | 1 2 | 6 | 0 | | | Late | 43 | 172 | 228 | 115 | 24 | 30 | 20 | 55 | 58 | 53 | 2 | 5 | 0 | | Early | | | 167 | 200 | 97 | 20 | 26 | 17 | 56 | 60 | 53 | 2 | 7 | 0 | | - Late | Averages | Zone 3 | 175 | 215 | 119 | 24 | 30 | 20 | 55 | 58 | 53 | 2 | 5 | | | Alpena | | 47 | 170 | 217 | 58 | 20 | 25 | 17 | 57 | 61 | 52 | 4 | 50 | • | | Grand Tra | verse | 47 | 152 | 189 | 109 | 31 | 38 | 25 | 54 | 57 | 52 | 1 | 8 | 0 | | Average Z | | | 161 | 203 | 84 | 26 | 31 | 21 | 55 | 59 | 52 | : | 29 | 1 | | Average-A | 11 Zones | - | 183 | 218 | 129 | 23 | 28 | 19 | 56 | 59 | 53 | 2 | | 0 | tions containing 20 tests were harvested for grain yield. Average yield of all hybrids grown in Zone 1 was 198, Zone 2 was 187, Zone 3 was 170, and Zone 4 was 161. The average moisture for the early maturity hybrid group was 4 percent less than the late hybrids in Zone 1 and Zone 3 and 5 percent in Zone 2. Stalk breakage averaged 8 percent for the hybrids with the highest amount of stalk lodging, 2 percent for the average and 0 percent for the lowest (Table A). #### **Entries** All seed companies are invited to enter hybrids in the trials each year. A fee is charged to cover some of the direct expenses. Table 7 presents a list of all hybrids planted in the 1994 trials. At the 13 locations, 297 hybrids from 37 seed companies were tested for either grain or silage as 1463 entries. Company names used in association with hybrid numbers refer to the brand. The numbers are the companies' designations. ### **Methods** Three locations have been identified in each of four maturity zones. These zones are based on growing degree days established from long-term weather records. Hybrids to be tested in each zone are entered in all locations representing that zone. Hybrids tested at each location are assembled into an early and late group according to maturity ratings provided by the seed companies. Two-row plots are used. Plots are 22 feet long with a 30-inch row spacing. At most locations planting rates are set at 28,300 seeds per acre and thinned to a uniform stand at each location. High yielding, irrigated plots in Cass and Montcalm counties were planted at 31,000. The remaining trials in Mason County and all Zone 4 trials are planted at 26,400 plants per acre. Thinning was completed at the 12–18 inch stage of plant height. The field research layout is a four-replication randomized complete block design. This means that each hybrid entry is measured in four separate locations in each field. The hybrids performance from the four plots is averaged together to report the values shown. All hybrids were grown under similar conditions at each location. They are grown in farmers' fields with equal fertilizer, population, date of planting, and other management practices. Trials in Cass, Montcalm, and Mason counties were irrigated. From seed packaging through harvest and data processing, each hybrid is identified only by a code number to assure that an unbiased estimate is made of each hybrid's potential. The code is deciphered after the data have been processed. Stands are counted and thinned in June and July prior to tasseling. MICHIGAN STATE Michigan State University is an Affirmative Action/Equal Opportunity Institution. Extension programs and materials are open to all without regard to race, color, national origin, sex, disability, age or religion. All information in these materials is for educational purposes only. References to commercial products or trade names does not imply endorsement by the MSU Extension or bias against those not mentioned. This bulletin becomes public property upon publication and may be printed verbatim with credit to MSU. Reprinting cannot be used to endorse or advertise a commercial product or company. ■ Produced by Outreach Communications. Revised 1:95-TCM-IG-Price 50 cents, single copy free to Michigan residents. File 22.13 (Field Crops-Corn) Lodging measurements are made at harvest counting all plants broken below the ear. Plots are harvested mechanically for both grain and silage. Moisture content and field weight were determined from shelled grain samples collected in automated test equipment mounted on a plot picker- sheller. In 1994 the data collection equipment was automated, further making it possible to measure test weight on each plot. Test weights are reported at harvest moisture. Grain yields are reported at a standard 15.5 percent moisture. Silage yield estimates are based on an air-dried sample. Further evaluation by means of an in-vitro silage digestibility analysis was conducted by the Department of Animal Sci- ### **Growing Conditions** All yield trials were planted between April 23 and May 13. Planting was timely. The monthly weather data for each test location is shown in Table B. The 1994 growing season was very favorable for corn grain production. Growing degree day patterns were superior to those recorded in 1993 and significantly warmer than the disastrous 1992 season. The most apparent weather related problems in this year's corn production was an extended dry period in July in southeast Michigan and excess rainfall in August and September in the Thumb area. In general fall weather conditions were excellent for the maturity of adapted corn hybrids. Dry-down in the field progressed normally and greatly facilitated harvest. Under most conditions the grain moisture at harvest was lower than normally would be expected. Harvest was completed between October 11 and November 11. In 1994 Michigan farmers grew an estimated 2,150,000 acres of corn for grain with a state average of 117 bushels, an all-time record yield for Michigan. The previous record of 115 bushels per acre was set in 1990. Total corn production is estimated at more than 250 million bushels, up 6 percent from 1993. Silage acreage was estimated at 300,000 acres with yields averaging about 8 tons per acre. ### Silage Six locations containing nine tests were harvested for silage. The 47 hybrids entered in Zone 4 were only harvested as silage in Delta county. Trials conducted in Kent, Ingham, and Huron counties contain two maturity groups with yield data presented in Table 5. Additional silage trials were conducted in Alpena and Missaukee counties in 1994 (Table 6). The results obtained from the 1994 silage digestibility trials are also presented in these same tables. This is the fourth year that digestibility analyses have been made. Chopped silage (fodder plus grain) samples were weighed. A representative sample collected for use in determining moisture content (air dried) was finely ground with sub samples taken for in-vitro analyses. Results of four analyses are presented. They are: DMD=Dry matter digestibility. This is a measure of energy available from the corn forage. The higher the DMD,
the greater the energy content. It is determined by a laboratory method which incubates a sample of the corn forage with microbes from the rumen of a cow. Thirty hours is used to represent the average retention time of feed in the rumen. Differences among hybrids in DMD are approximately equal to difference in total digestible nutrients of TDN. A high DMD is - 2. FD=Fiber digestibility. This is a measure of the degree of fermentation of fiber by ruminant animals. It is determined as the disappearance of neutral detergent fiber during an in-vitro rument fermentation. High fiber digestibility has been found to increase intake of ruminants as it decreases the filling effect of the feed and provides energy to microbes in the rumen and increasing microbial protein production. A high FD is desirable. - 3. NDF=Neutral detergent fiber. This is a measure of the fiber content of the corn forage. Fiber must be fermented by microbes in the gastrointestinal tract to be utilized by ruminants. It is much less digestible than non-fiber constituents of the forage. Forages with high levels of NDF have lower energy. It is also a measure of the gut filling properties of the forage and high NDF decreases forage intake. A low NDF content is desirable. - 4. **CP=Crude protein.** Forages are generally supplemented with high protein concentrates such as soybean meal to increase the protein content of ruminant diets. Corn hybrids with high protein require less supplementation and therefore lowered feed costs. A high protein content is desirable. *All analyses were determined by wet-chemical methods. ### **How to Use This Bulletin** One-, two-, and three-year averages are presented for all hybrids tested during 1994, 1993, and 1992 wherever the data are available. One-year results are less reliable than two- or three-year averages and should be interpreted with more caution. Confidence in corn performance data increases with the number of years and locations of testing. The yield, harvest moisture, and test weight results from the four maturity zones are presented as individual tables. The average hybrid performance over three locations is shown as the first section in each table. Individual location values are shown in adjoining sections of each table. This is the first year that individual hybrid test weight values have been The tables report the following information about the hybrids tested: - Average moisture content at harvest. - 2. Test weight at harvest moisture. - 3. Average yield (in bushels) of shelled corn at 15.5 percent moisture. - 4. Average percent of stalk lodging (plants broken below the ear at harvest). - 5. Recent stand of target population. Stalk breakage can be caused by corn borers and/or stalk rot Hybrids are recorded in the tables in order of their approximate maturity in the current growing season (early to late), based on grain moisture at harvest. Two or more plots of the same hybrid in the same field may produce somewhat different results because of uncontrolled variability in the soil and other environmental factors. Replication and randomization of the entries are two methods used to reduce these errors. Because these methods do not eliminate all of these variables, the magnitude of differ- ence necessary for statistical significance has been calculated for yield and moisture content. The value calculated as the "least significant difference" or "LSD" is the amount that an individual hybrid would have to differ from the experiment average to be significantly different from that average. Hybrids with yields significantly better than the average grain yield at each locatable. Other agronomic information relative to each trial is given at the bottom of the pounds per acre of nitrogen, P2O5 and K₂O applied during the season. tion are marked with an asterisk (*) in each table. Fertilizer amounts are shown as total ### **How to Choose a** Hybrid #### Adaptation The map on page 1 shows the locations of the trials, and it divides Michigan into four generalized maturity zones. Local variations in weather, soil type and fertility, time of planting, and other conditions all affect adaptation. Corn hybrids are often adapted to more than one zone. In the selection of a hybrid there is no real substitute for observing individual characteristics while plants are growing. The best time to compare plants is usually in late August or early September as they approach maturity but before a killing frost has occurred. Each year, at a limited number of locations, demonstration plantings | Table B | | |--|---------| | Temperature, Precipitation, and Growing Degree day 1994 Growing Season | Summary | | | | | MAY | | | JUNE | | 100 | JULY | 7.19 | 1 | AUGUST | 1000 | SI | PTEMBER | 2 | | SEASON | | |----------------|--------------------|---------------------|---------------------|----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|-----------------------|---------------------|---------------------|----------------------|-----------------------|-----------------------|-------------| | COUNTY | | OBS. | NORM | DEV. | OBS. | NORM | DEV | | ZONE 1 | TEMP | 57.2 | 58.3 | -1.1 | 71.3 | 67.8 | +3.5 | 72:9 | 71.7 | +1.2 | 67.7 | 69.9 | -2.2 | 64.4 | 62.6 | +1.8 | 66.7 | 66.1 | + | | | PPT | 1.11 | 3.04 | -1.93 | 3.56 | 3.30 | +.26 | 2.16 | 3.73 | -1.57 | 3.05 | 3.20 | 15 | .93 | 2.62 | -1.69 | 10.81 | 15.89 | -5. | | | GDD | 339 | 353 | -14 | 622 | 542 | +80 | 708 | 658 | +50 | 562 | 616 | -54 | 460 | 432 | +28 | 2691 | 2601 | +90 | | BRANCH | TEMP
PPT
GDD | 55.5
.82
310 | 57.8
3.03
342 | -2.3
-2.21
-32 | 69.5
6.60
586 | 67.2
3.73
535 | +2.3
+2.87
+51 | 70.7
1.57
641 | 70.8
4.01
646 | 1
-2.44
-5 | 65.7
4.86
501 | 69.2
3.40
602 | -3.5
+1.46
-101 | 63.4
1.74
432 | 62.4
3.03
427 | +1.0
-1.29
+5 | 65.0
15.59
2470 | 65.5
17.20
2552 | -1.
-82 | | CASS | TEMP | 55.1 | 59.2 | -4.1 | 68.9 | 68.4 | +.5 | 70.8 | 71.9 | -1.1 | 65.9 | 70.1 | -4.2 | 63.0 | 63.3 | 3 | 64.7 | 66.6 | -1. | | | PPT | 1.17 | 3.12 | -1.95 | 6.23 | 3.95 | +2.28 | 6.24 | 3.79 | +2.45 | 5.29 | 3.16 | +2.13 | 2.40 | 3.01 | 61 | 21.33 | 17.03 | +4. | | | GDD | 319 | 381 | -62 | 576 | 564 | +12 | 645 | 670 | -25 | 507 | 628 | -121 | 424 | 454 | -30 | 2471 | 2697 | -226 | | ZONE 2
KENT | TEMP
PPT
GDD | 56.6
2.63
329 | 57.4
2.86
335 | 8
23
-6 | 69.2
7.33
581 | 67.1
3.68
530 | +2.1
+3.65
+51 | 71.3
8.06
665 | 71.2
2.95
654 | +.1
+5.11
+11 | 67.2
7.32
542 | 69.5
3.14
610 | -2.3
+4.18
-68 | 64.0
1.09
447 | 61.9
3.24
412 | +2.1
-2.15
+35 | 65.7
26.43
2564 | 65.4
15.87
2541 | +10. | | INGHAM | TEMP | 55.4 | 57.5 | -2.1 | 67.6 | 67.0 | +.6 | 69.9 | 70.7 | 8 | 65.1 | 69.0 | -3.9 | 62.1 | 62.0 | +.1 | 64.0 | 65.2 | -1. | | | PPT | 1.22 | 2.73 | -1.51 | 7.33 | 3.54 | +3.79 | 3.91 | 3.02 | +.89 | 6.62 | 3.12 | +3.50 | 6.15 | 2.50 | +3.65 | 25.23 | 14.91 | +10. | | | GDD | 310 | 338 | -28 | 547 | 530 | +17 | 620 | 640 | -20 | 490 | 598 | -108 | 412 | 418 | -6 | 2379 | 2524 | -145 | | SAGINAW | TEMP | 55.5 | 57.8 | -2.3 | 66.4 | 67.4 | -1.0 | 69.7 | 71.4 | -1.7 | 65.7 | 69.4 | -3.7 | 62.3 | 61.9 | +.4 | 63.9 | 65.6 | -1 | | | PPT | 1.76 | 2.47 | 71 | 7.08 | 2.94 | +4.14 | 3.52 | 2.56 | +.96 | 4.31 | 3.30 | +1.01 | 2.26 | 2.83 | 57 | 18.93 | 14.10 | +4 | | | GDD | 301 | 340 | -39 | 506 | 538 | -32 | 615 | 660 | -45 | 505 | 608 | -103 | 415 | 411 | +4 | 2342 | 2557 | -215 | | ZONE 3 | TEMP
PPT
GDD | 53.0
2.59
259 | 55.2
2.58
298 | -2.2
+.01
-39 | 65.6
5.53
487 | 64.9
2.88
479 | +.7
+2.65
+8 | 68.9
5.94
591 | 69.3
2.93
602 | 4
+3.01
-11 | 64.6
3.69
467 | 67.8
3.01
569 | -3.2
+.68
-102 | 61.9
2.36
396 | 61.0
2.67
387 | +.9
31
+9 | 62.8
20.11
2200 | 63.6
14.07
2335 | +6. | | HONTCALM | TEMP | 54.5 | 57.7 | -3.2 | 66.4 | 67.1 | 7 | 69.5 | 71.0 | -1.5 | 64.6 | 69.3 | -4.7 | 60.8 | 61.6 | 8 | 63.2 | 65.3 | -2. | | | PPT | 2.05 | 2.88 | 83 | 5.47 | 3.43 | +2.04 | 7.89 | 2.50 | +5.39 | 7.91 | 3.84 | +4.07 | 2.07 | 3.12 | -1.05 | 25.39 | 15.77 | +9. | | | GDD | 313 | 351 | -38 | 514 | 536 | -22 | 600 | 646 | -46 | 480 | 603 | -123 | 387 | 414 | -27 | 2294 | 2550 | -256 | | MASON | TEMP | 52.1 | 54.4 | -2.3 | 65.9 | 63.6 | +2.3 | 68.9 | 68.5 | +.4 | 64.9 | 67.2 | -2.3 | 62.8 | 60.2 | +2.6 | 62.9 | 62.8 | +. | | | PPT | 1.09 | 2.48 | -1.39 | 2.42 | 2.93 | 51 | 6.34 | 2.18 | +4.16 | 4.48 | 3.79 | +.69 | 2.53 | 3.25 | 72 | 16.86 | 14.63 | +2. | | | GDD | 218 | 273 | -55 | 505 | 450 | +55 | 592 | 587 | +5 | 480 | 552 | -72 | 425 | 365 | +60 | 2220 | 2227 | -7 | | ZONE 4 | TEMP | 53.5 | 52.0 | +1.5 | 64.5 | 61.7 | +2.8 | 67.2 | 66.6 | +.6 | 64.6 | 64.9 | 3 | 60.2 | 57.2 | +3.0 | 62.0 | 60.5 | +1. | | | PPT | 1.47 | 2.78 | -1.31 | 3.23 | 3.12 | +.11 | 5.53 | 3.11 | +2.42 | 6.19 | 3.23 | +2.96 | 1.58 | 3.08 | -1.50 | 18.00 | 15.32 | +2. | | | GDD | 276 | 251 | +25 | 468 | 413 | +55 | 552 | 534 | +18 | 474 | 496 | -22 | 368 | 317 | +51 | 2138 | 2011 | +127 | | GRAND TRAVERSE | TEMP
PPT
GDD | 54.6
1.44
299 | 53.5
2.48
273 | +1.1
-1.04
+26 | 65.5
2.10
495 | 63.7
3.15
454 | +1.8
-1.05
+41 | 69.1
4.15
607 | 68.8
2.88
587 | +.3
+1.27
+20 | 65.8
4.52
507 | 67.3
2.93
552 | -1.5
+1.59
-45 | 63.4
1.87
422 | 59.3
3.60
348 | +4.1
-1.73
+74 | 63.7
14.08
2330 | 62.5
15.04
2214 | +1. | | DELTA | TEMP
PPT
GDD | 52.5
1.38
261 | 53.6
3.57
285 | -1.1
-2.19
-24 | 63.3
2.80
441 | 62.7
3.72
438 | | 65.4
2.62
503 | 67.4
3.63
559 |
-2.0
-1.01
-56 | 62.3
5.06
406 | 65.5
3.86
513 | -3.2
+1.20
-107 | 59.7
3.74
346 | 57.0
3.60
319 | +2.7
+.14
+27 | 60.6
15.60
1957 | 61.2
18.38
2114 | -2.
-157 | TEMP = Temperature(°F) PPT = Precipitation (inches) GDD = Growing Degree Days calculated at base 50°F, with 50°F and 86°F cutoffs OBS = Totals observed in 1994 NORM = Normals calculated over 30 year period (1951-1980) DEV = Deviation of observed from normal Data provided by: MSU-AGRICULTURAL WEATHER METEOROLOGY OFFICE # 1994 GROWING SEASON WEATHER SUMMARY uring late April and early May, seasonable conditions allowed planting to proceed at near normal rates. By mid-May, however, upper air "jet stream" steering currents took on a northwest to southeast configuration across the Great Lakes region, bringing a series of cool, dry Canadian-origin air masses into Michigan. Precipitation with this pattern was much below normal while solar radiation levels were abnormally high. The dry air and mostly fair skies characteristic of these air masses allowed nighttime temperatures to drop into the 30s, with scattered frost reported at many locations. This upper air pattern continued through mid-June, resulting in abnormally dry soils (upper levels), moisture stress for shallow-rooted crops, and generally slow growth rates. The prolonged early dryness caused serious problems for moisture-activated herbicides incorporated at or before planting. The jet stream shifted to a southwest to north- east average configuration by late June, with warm, tropical-origin air transported into the region on southerly winds. A series of thunderstorms resulted, bringing torrential rains and flooding to central sections of Lower Michigan and generally beneficial rains elsewhere. During a 3-week period ending in mid-July, more than 15 inches of rain fell in spots from west central Lower Michigan eastward to Saginaw Bay and the Thumb (this is the near the entire normal May-September total for these areas). One contrasting exception was the southeastern and south central Lower Peninsula, where a few spots remained abnormally dry for much of the remainder of the growing season. Following near average conditions in August, a warmer and drier than normal pattern developed in September and generally continued into November. In addition, the first killing freeze of the fall did not occur at many locations until early November, extending the growing season 1-3 weeks beyond its normal termination. Mean temperatures for the August-November autumn period were among the warmest 10% of years since 1985 while precipitation totals were ranked historically in the lowest 1/3. The mild, dry fall was among the most favorable for agricultural activities in recent memory, allowing crops set back by previous heavy rain to catch up phenologically and leading to rapid grain drydown rates following maturation. Mean temperatures and growing degree day totals for the season (May through September) were generally near to below normal statewide, with greatest departures from normal in the central Lower Peninsula. Rainfall totals ranged from below normal in the extreme north and south to much above normal in central sections. Jeff Andresen Extension Specialist Michigan State University ### Corn Hybrids Compared... Continued from Page 1 of each hybrid are planted at the front of the test field. At or shortly after pollination each hybrid is identified and labeled. The public is invited to observe these plots and to examine the plant and ear characteristics important in their production operations. In 1994 these demonstration plantings were grown at five locations. No yield results are taken from the demonstration planting or included in the data reported. #### **Planting Rate** The number of seeds sown per acre in Michigan has increased steadily over the past several years. Increased planting rates are not a guarantee of increased yields. High plant populations (28,000 or more per acre) should be considered only for fields consistently producing more than 125 bushels per acre. With high plant populations, rainfall deficiencies and other growing season stresses frequently result in no increase in yield and may actually result in decreased yield compared with a more modest plant population of approximately 24,000 plants per acre. Lodging an harvest losses are often greater at higher populations. #### Maturity Hybrids are listed in the tables in order of maturity (early to late), based on moisture content of the grain at harvest. This is usually a reasonably accurate measure of relative maturity in most years in Michigan. Early—maturing hybrids are generally lower in moisture content than later maturing hybrids. Differences among hybrids in rate of drying in the field also affect moisture content at harvest but usually do not greatly disturb the relative maturity ratings as determined by moisture content. One percent more moisture at harvest reflects a delay in maturity of about two days. One estimate of corn maturity is when a black layer of cells forms at the base of the kernel. At this time, kernel moisture will be between 32 and 35 percent. ### For Grain It is better to choose an early hybrid (below average moisture content) than a late hybrid for grain. Data in the tables show that good yields do not totally depend on later maturity. On the average early maturing hybrids in 1994 produced about ten bushels per acre less than the later maturing group. The late maturing groups averaged 4–5 percent high harvest moistures. Even the 10 bushel yield advantage of the late maturing group only provided a break—even return per acre when drying costs were assessed against two dollar corn. Advantages of early—maturing hybrids are: - They usually mature before killing frosts. - Adapted early hybrids generally yield as much or more than late hybrids in most areas of Michigan. - Early hybrids with lower moisture content at harvest reduce drying costs and market discounts for moisture. - Mature, dry corn makes better livestock feed. - Harvest can take place earlier in the fall when weather conditions are most favorable. Early harvest may reduce corn losses resulting from broken stalks and dropped ears. - Fall tillage of corn stubble may be possible with early hybrids on land not subject to erosion. #### For Silage A good rule of thumb for selecting a superior silage hybrid is to choose one that also has the potential for high grain production. High dry-weight production per acre is a better reason for choosing hybrids for silage than tons of green weight. Corn for silage should reach the early dent stage well before frost in an average year. The early dent stage (when most of the kernels have dented) is the best time to begin silage harvest. Dry matter production continues to increase until maturity. #### Other Considerations Choose early hybrids for late plantings, low soil fertility, sandy and muck soils, and for corn that it is to be followed by a winter grain or cover crop. Experience has shown that when corn is grown under no–till operations a significant advantage results from the use of earlier maturity hybrids. This probably relates to the slower spring soil warm–up encountered under no–till operations. Some degree of "crop insurance" can be obtained by choosing two or three hybrids that differ slightly in their maturity. If one hybrid encounters unfavorable weather at a critical growth stage, another may be less affected and produce a good crop. Even though you have been growing a hybrid that has given good results, you may be able to improve your average corn production by trying one or more hybrids with better records in these trials. Well tested new hybrids are worth consideration. It may be advisable to try a new hybrid in a strip in the same field with your present hybrid. #### Ways to Reduce Stalk Lodging Several stalk-rotting fungi may cause broken stalks at harvest and create a major problem in corn production. Stalk rot occurs when fungi increase rapidly after the plant has matured or when the plant dies prematurely. The highest incidence of stalk rot occurs in years when corn matures early and harvest is delayed. Infection and disease development are favored by warm, humid weather and abundant rainfall during the latter part of the growing season. Hybrid resistance to stalk rot is only one of several factors that determine the extent of stalk breakage. There are no clear—cut cases of specific hybrids that can consistently be depended upon to resist stalk rot under all conditions of soil fertility, plant population, plant stress, and maturity. A major part of the difference in resistance to lodging appears to be mechanical: stiffer stalks do not break as soon when disease attacks. The most effective practice to reduce losses from stalk rot is to harvest as soon as possible after maturity. Stalk breakage continues to increase rapidly when harvest is delayed. Early hybrids that mature in September will have more stalk breakage than late—maturing hybrids if harvest occurs in November and December. There may be little or no advantage to planting the early—maturing hybrids if harvest is delayed. To avoid problems, choose high-yielding, early-maturing hybrids, plant early and harvest early. #### Ways to Avoid Moldy Corn in 1995 - Plant early. - Plant early- to medium-maturing hybrids. - Harvest early—during October. Weather problems and harvest losses increase with later harvest. - Plan for adequate artificial drying. Drying in the field or in the crib is slow and undependable in Michigan. Ready access to drying facilities will permit more timely harvest and prevent high pre-harvest loss, a major factor in reduced corn profits. Most corn seed production operations did not experience unusual production problems in 1994. Seed quality can be expected to be good for most hybrid combinations. A higher than normal demand is expected to continue for early and
mid-season maturity hybrids. Fortunately, seed yields were generally high and adequate seed supplies are anticipated for 1995 planting. gronomists have long known that the rate of corn growth and development is highly dependent on temperature. Seasonal accumulation of growing degree day units (GDD), a temperature- derived index, is a simple way to quantify the amount of heat needed for a given corn hybrid to reach maturity. In general, the higher the yield potential of a corn hybrid, the greater the number of accumulation GDDs in a given season. Therefore, in order to help maximize potential yields, growers must choose a hybrid for their location which has an acceptable chance of reaching maturity before the end of the growing season. In addition, an equally important factor is grain moisture at harvest. Because the highest yielding hybrids generally take the longest to mature, they may also have the highest grain moisture content at harvest, thus costing the grower extra money for drying costs. GDDs are calculated according to the seed industry standard, i.e. the difference of the daily mean temperature and the base temperature of 50F. Remember that prior to taking the difference, the maximum temperature needs to be set down to 86F if it is above 86F and the minimum temperature set up to 50F if it is below 50F. GDDs are normally summed on a daily basis from the day of planting through physiological maturity, defined as black layer formation. Most seed companies rate the maturity of their own hybrids by GDD accumulations as well as relative maturity units. A recent Michigan State University bulletin (E-2471), "Using Climatological Information for Corn Hybrid Selection in Michigan," provides corn growers with background climatological information that may help in making hybrid selections (most hybrids have listed GDD ratings for maturity ... ask your seed dealer or representative). The bulletin provides the total number of GDDs accumulated from 5 hypothetical spring planting dates (at 10 day intervals from April 20 through June 1) through the date of nor- mal first killing fall freeze. The dates are based on data from 20 climatological stations across Michigan for the period 1961-1990. Results from the study indicate that seasonal GDD accumulations in Michigan are highest in the southwest and southeast corners of the Lower Peninsula, with a rapid dropoff north of an east-west line from Muskegon to Bay City. In addition, the climatological importance of early planting in Michigan cannot be overemphasized as the month of May was found to account for 12-16% of the total growing season GDD accumulation (approx. 300-400 GDDs) across the state. Late planted crops (especially full season hybrids) are thus much more likely to have problems reaching physiological maturity (or drying down to acceptable moisture levels) prior to harvest. If you are uncertain about the length of your own growing season and the number of GDDS normally accumulated, I strongly urge you to obtain a copy of MSU Extension Bulletin E-2471 from your local extension office. With some help from your seed dealer and the numbers given in this bulletin, you should be able to make realistic hybrid selections with the climatological risk of your own choosing. ### TEST WEIGHT AS A MEASURE OF CORN QUALITY CORN GROWING **DEGREE DAY** Test weight has been used since the early 1900s as an index of quality in corn. It is a measure of the weight per bushel at 15.5% moisture content. Kernel moisture has a direct effect on test weight. High moisture causes a kernel to expand and occupy a greater volume of space. As a mature kernel dries, it becomes more compact and has more weight per unit of volume, hence a higher test weight. It is important to recognize that an immature kernel may not shrink uniformly upon drying. When this happens, a dry but misshapened kernel may not achieve the higher density or weight per unit of volume. Aside from the effect of moisture, test weight is decreased by damage from frost, mold, weathering, or almost any other factor that interrupts normal kernel development and delays harvest or damages the grain. Test weight is also used as a first indicator of grain quality for corn to be used in dry milling operations. It is considered to be a reasonable indicator of grain with relatively smooth uniform kernels. High test weight also indicates kernels contain a high percentage of hard flint-like starch or endosperm and a correspondingly reduced amount of the soft, floury starch fraction. The hard, flinty portion of the kernel is the most valuable fraction in a dry milling operation. In the 1994 crop, test weights, on the average, are relatively high. This is to be expected in a season where most corn hybrids reached physiological maturity and enjoyed an extended fall season. The 1994 season is in contrast to the 1992 season in which neither of these conditions prevailed. The Federal Grain Standards allow minimum test weight values in grades 1, 2, 3, 4, and 5 of 56.0, 54.0, 52.0, 49.0, and 46.0, respectively. Corn with test weights below those for No. 2 are often discounted at the elevator. Although dis- counts may vary among elevators and from year to year, recent discount schedules for corn under the Agricultural Stabilization and Conservation Service storage program compared to those from local elevators are given below: | Test Weight | Discounts—Cer | nts per Bushe | |------------------|---------------|---------------| | root weight | Programs | Elevator | | 53.5 or 53.0 lbs | 1 | 1 | | 52.5 or 52.0 lbs | 2 | 2 | | 51.5 or 51.0 lbs | 4 | 4 | | 50.5 or 50.0 lbs | 6 | 6 | | 49.5 or 49.0 lbs | 9 | 8 | | 48.5 or 48.0 lbs | 12 | 10 | | etc., etc. | | | L.O. Copeland and D.D. Harpstead Extension Specialist Michigan State University ### **Plots Require Specialized Equipment** Specialized equipment makes the testing of large numbers of hybrids possible. From planting to harvest, specially constructed machines are used in this program. Prior to planting, seed is packaged up in accordance with a computer generated field plan. This field plan becomes the permanent record for all field activities during a season. In the field the hybrids being planted change every 25 feet. As the planter moves across the field, two rows of two different hybrids are being planted simultaneously. Grain harvesting is done with a two-row combine designed for plot harvest. Twenty two feet of row are taken for yield. Field weights are recorded at the end of each plot. The forward motion of the combine is stopped briefly to allow the grain handling system to clear before proceeding. This clearing operation is critical to the accuracy of the data collection system. Harvest normally proceeds at two- to two-and-a-half plots per minute. The data from this operation is recorded both on a computer chip for storage and on hard copy as backup. From the chip the data can be transferred directly into a computer for analysis and printed out in table format. Portability is another key factor in the corn testing program. All operations are done at the 12 locations with one set of equipment. It is essential to be able to move from one location to another in a safe and efficient manner. ### Average of Monroe, Branch & Cass County EARLY trials One, two, three year averages — 1994, 1993, 1992 EARLY TRIAL (106 DAY RELATIVE MATURITY OR EARLIER (BASED ON COMPANY RATING) | HADDID | | | ISTURE | - TEST | BOSHE | LS PER | | * 21V | LK LOO | | | ROE C | | | BRANC | | UNTY | | | COU | | |--|---|--------------------------------------|------------------------------|--------------------------------------|---|-----------------------|--------------------------|---------------------------------|-------------|---------------------------|---|--|--|----------------------------------|----------------------------|------------------------------------|---|----------------------------------|----------------------------|-----------------------------------|---| | HYBRID
(Brand-Variety | | | Yr Y | | 1994 | Yr | yr | 1994 | Yr Y | r 1 | | T B/A | | H20 | | B/A | | H20 | TEST | | SL S | | CARGILL
PIONEER
CALLAHAN
DEKALB
CROW'S | 3777
3723
C7435
DK471
180 | 16.6
16.7
16.9 | | - 60.7
9 58.1
- 56.0
- 56.9 | 159.5
186.4
197.3
192.1
173.7 | 180
185 | 184 | 2.4
1.1
0.9
1.2
3.8 | 2 3 - | 2 | 17 6
16 6
17 5
17 5
17 5 | 3 168
1 189
9 208
9 *219 | 2 98
1 99
1 94
0 99
4 100 | 18
17
18
18
18 | 59
56
53
54 | 166
192
193
196
175 | 1 100
1 97
1 84
2 92
3 93 | 15
17
16
16
16 | 60
58
57
58 | 145
179
191
161
166 | 4 1 1 1 1 2 5 1 | | DEKALB
GOLDEN HARVEST
NORTHRUP KING
PAYCO
GOLDEN HARVEST | N4242
614 | 17.1
17.3
17.4
17.7
17.8 | 18 -
17 1
18 - | - 56.5
9 59.1
- 58.3 | 212.6
196.3
189.8
175.1
189.2 | 181
182

180 | 186 | 1.4
1.5
1.2
2.1
0.7 | 2 - 1 - 1 - | 1 | 17 5
16 5
18 6
18 6
17 5 | 1 197
2 181 | 1 100
1 98
3 99
4 98
1 100 | 18
19
19
18
18 | 55
55
58
56
55 | *216
189
205
186
199 | 2 97
3 98
0 100
1 93
0 99 | 16
17
16
17
17 | 56 *
59
58 | 197
199
167
157
187 | 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | GOLDEN HARVEST | 3752
DK512
Ex702
DK485
1033 | 18.4 | 18 - | - 55.4
- 58.4
- 55.7 | 190.1
203.8
165.5
195.3
178.0 | | | 1.8
0.9
0.9
1.7
0.7 | 2 - | | 18 6
18 5
18 6
18
5
18 6 | 9 *214
1 172
9 201 | 2 100
1 100
2 100
3 95
1 99 | 19
19
19
19
19 | | 202
*211
174
196
184 | 2 99
0 98
1 99
1 97
1 100 | 17
18
18
18
18 | 55
59
55 | 177
186
151
189
164 | 2 1 0 1 1 0 | | AYCO
OP FARM | H-2390
RK617
531
TFsx1097A
92-70X | 18.5
18.5
18.6
18.6
18.8 | 19 2
18 -
18 2 | 56.9
0 57.4
57.0 | 188.0
194.3
195.6
171.2
171.1 | | 175
189 | 0.9
1.3
0.8
0.3
0.5 | 1 - | 1 | 18 6
17 6
18 5
17 6
18 5 | 1 186
9 200
0 179 | 0 100
2 100
1 100
0 100
0 92 | 19
20
20
20
20
19 | 54 | 190
*209
*211
163
180 | 1 100
0 100
1 97
1 98
1 100 | 18
18
18
18
19 | 56
57
58 | 178
188
177
172
155 | 1 2 10
1 0
1 0 | | AIRYLAND
ENK
OUNTRYMARK | C7337
STEALTH-1198
RK646PT
432
STEALTH-1203 | 18.9
19.1
19.2
19.3
19.3 | 18 -

19 2 | 56.9
58.4
56.1 | 190.2
195.5
172.7
189.2
171.5 | ::: | | 1.4
2.0
1.9
2.1
2.4 | 1 - | • | 18 6
18 5
18 6
19 5
19 5 | 9 197
0 183
8 178 | 3 100
3 96
2 97
4 100
3 100 | 20
21
21
20
20 | 56
55
56
54
54 | 195
201
187
196
166 | 1 100
2 99
1 94
0 96
3 94 | 19
19
19
20
19 | 57
59
56 * | 182
189
148
194
175 | 0 10
1 9
2 9
2 10
2 9 | | YPERFORMER
IONEER
IONEER | 204
HY9385
3525
3573
TR1050 | 19.4
19.4
19.4
19.4
19.5 | 20 -
21 2
19 2
20 2 | 56.0
57.2
56.3 | 188.1
193.4
219.8
210.3
190.2 | 206
197 | 210
199
176 | 0.7
1.3
0.6
1.8
2.5 | 2 | 1 | 18 60
19 50
19 60
19 50
18 60 | 3 199
3 *239
3 *219 | 1 94
2 100
1 100
1 98
3 98 | 21
20
20
20
20
21 | 56
54
56
54
55 | | 0 96
1 100
1 99
2 99
3 99 | 19
19
20
20
19 | | 203 | 1 9 0 10 2 9 | | JPP
ACORN
DLDEN HARVEST | 5230
XR1623
LG 2522
Ex692
4277 | 19.6
19.6
19.7
19.7
19.9 | 20 - | 57.4
58.2
57.4 | 195.7
182.2
179.9
168.4
195.8 | 178 | | 3.2
1.8
0.9
0.6
1.2 | 1 - | | 19 50
19 60
19 60
21 50 | 1 180
1 174
1 177 | 5 95
1 99
1 88
1 100
1 100 | 20
20
20
21
20 | 55
55
57
56
56 | 194
186
174 | 3 96
2 93
1 90
0 100
1 100 | 20
20
20
20
20
20 | 57 | | 1 9 1 10 1 10 1 10 | | ERRA
AYCO
ALLAHAN
AIRYLAND | TR1031
734
C7249
STEALTH-1405
1059 | 19.9
20.1
20.2
20.2
20.2 | 20 21 21 2: | 56.5 | 175.9
201.7
193.2
195.2
163.3 | | 182 | 2.5
0.6
1.0
3.0
1.2 | 3 - 1 - 1 | • | 18 58
19 57
20 58
20 58
18 66 | 7 200
3 180
3 197 | 2 100
0 96
1 99
1 98
0 100 | 22
21
21
21
21
21 | 54 1
56
55 | 180
216
202
208
156 | 1 95
1 90
1 97
1 100
1 100 | 20
20
21
20
21 | 54
56 * | 167
188
197
181
144 | 1 1 7 2 | | AIRYLAND
EKALB
EADER | 7200
STEALTH-1407
DK569
X3654
N5220 | 20.2
20.3
20.3
20.3
20.3 | | 54.8
54.8
57.5 | 203.1
208.4
222.3
170.8
212.4 | ::: | | 1.5
1.4
1.2
1.3
1.3 | | | 19 6 | 8 198
7 *244 | 1 98
2 95
1 100
0 94
1 99 | 21
21
21
21
21 | 54 | *211
*220
*214
176
200 | 3 98
2 96
1 98
2 88
2 96 | 21
22
20
21
20 | 55 1 | 207 | 1 1 2 0 | | DP FARM
ALLAHAN
EADER | 711
TFsx2103
C7245
SX499
6002 | 20.3
20.3
20.4
20.4
20.4 | 21 2 | 56.7
55.7
56.4 | 188.3
193.1
186.7
192.6
201.6 | | 191 | 2.1
1.3
1.4
0.4
0.6 | 1 | 1 | 20 6
20 5
21 5 | 7 168
0 201
7 192
7 158
8 *210 | 1 100
2 100 | 21
21
22
20
22 | 56
54
55 | | 2 99
1 97
1 100
0 99
1 100 | 20
20
19
20
20 | 55
56
57 | *197
175
173
*202
183 | 3 2 1 1 1 1 | | DP FARM
ECK'S
ALLAHAN
YCOGEN | TFsx2104
5070
C7446X
5480
V1055 | 20.6
20.7
20.7
20.7
20.7 | 21 | 55.4 | 192.8
178.0
185.1
185.3
213.5 | | ::: | 0.8
1.0
0.3
2.8
0.7 | 1 : | . 9 | 19 5
19 5
22 5
20 5
21 5 | 205 | 0 100
0 100
1 100
1 100
1 99 | 23
21
21
22
22
22 | 54
55
54
54
55 | 192
176
189
182
207 | 1 98
2 84
0 97
2 99
1 100 | 20
22
19
20
19 | 56
55
55
57
58 | 188
153
191
165
209 | 1
1
0
1
6
0 | | ARGILL
ONEER
IDERSONS | DK560
RK696
5547
3463W
PSX300 | 20.8
21.0
21.1
21.2
21.3 | | 21.0 | 193.7
185.8
185.3
190.9
197.4 | | | 1.3
2.6
1.2
0.4
1.6 | | | 20 59
20 59
21 59
21 58
19 59 | 198
148
3 *220 | 1 100
3 100
1 100
0 99
2 98 | 22
22
22
23
23
22 | 54
52
56
56
55 | 200
187
*209
184
207 | 2 99
2 95
1 96
0 95
0 99 | 20
21
21
20
23 | 54
56 *
57 | 179
173
199
168
191 | 1
3
2
0 1
2 1 | | CK'S
JPP
RIES
JPP | RX623
5101
XR1704
GSF-5208
XR1688 | 21.3
21.3
21.4
21.8
22.0 | 21 24 | 56.5 | 189.6
206.5
188.2
173.5
197.3 | 184 | 187 | 1.0
0.8
1.2
0.8
1.3 | 2 | | | *212
*211
189 | 1 98
0 99
1 100
1 89
2 91 | 22
23
23
23
23
23 | 55
55
55
54
55 | 186
212
186
164
197 | 0 99
1 98
2 100
1 72
1 90 | 21
22
22
23
24 | 55 *
55
56 | 180
195
167
168
188 | 2 1 1 1 1 1 | | ATRYLAND ADER N-TECH CK'S | C7348
STEALTH-1205
X4154
1064
5202 | 22.4
22.4
22.4
22.8
23.6 | 23 24 21 | 56.5 | 202.1
201.2
193.1
211.0
199.0 | 181
192 | 188 | 0.9
1.4
0.7
0.9
0.8 | 2 1 - | | 21 60
22 58
23 55
21 55
22 57 | 203
194
*211 | 1 100
2 99
1 98
1 99
0 96 | 23
24
23
24
24
24 | 56 1 | 204
212
192
215
200 | 1 99
1 98
1 94
0 99
0 98 | 24
22
21
23
25 | | 207 | 1 1 1 1 1 2 | | JPP
IDD | 1074
XR1677
XR1727 | 23.6
23.8
23.9 | 25 2 | 54.4 | 202.3
210.6
193.1 | 194 | 196 | | 1 | 1 | 20 57 | *213
*235
*222 | 1 94
0 100
0 100 | 24
25
25 | 55 | 207
209
190 | 1 95
1 93
1 99 | 25
26
25 | 52
55 | 187
187
168 | 0 1 0 | | /erage | | 19.9 | 20 2 | | 191.1 | 182 | 187 | 1.3 | 2 | 2 | 19 59 | 196 | 1 98 | 21 | 55 | 196 | 1 97 | | | 181 | | | ange | | 16.6
to
23.9 | 17 19
to to
25 2 | 53.6
to
7 60.7 | 159.5
to
222.3 | 169
to
206 | 175
to
210 | 0.3
to
3.8 | to to | 1 0 4 | 16 5!
to to
23 6: | 148
to
3 244 | 0 88
to to
5 100 | 17
to
25 | to
59 | 156
to
220 | 0 72
to to
3 100 | 15
to
26 | to
60 | 137
to
213 | 0 to 7 10 | | | | | | | | | The second second second | | | NAME OF PERSONS ASSESSED. | THE RESERVE AND ADDRESS OF THE PARTY. | | | | | | | | | 12 | | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE YIELD IN 1994 PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION **ROW WIDTH** FERTILIZER SOIL TEST: pH 7.1 166 (very high) 455 (very high) MONROE May 5 October 24 Pewamo Clay Loam Alfalfa 29,300 28,650 30" 154-64-152 BRANCH May 4 October 25 Locke Fine Sandy Loam Corn 28,500 27,300 30" 161-38-120 + 2 Ton Lime 5.6 85 (high) 160 (medium) FARM COOPERATORS: John Stanger, Dundee; Neil Carpenter, Quincy COUNTY EXTENSION DIRECTOR: Dale Brose, Monroe; Marie Ruemenapp, Coldwater EXTENSION AGR'L AGENTS: Paul Marks, Monroe; Natalie Rector, Marshall, Calhoun County COUNTY AG & NAT RES AGENT: Ned Birkey, Monroe PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND **AVERAGE POPULATION ROW WIDTH** FERTILIZER. SOIL TEST: pH IRRIGATION October 18 Oshtemo Sandy Loam Corn 30,100 28,570 30" 212-40-130+zinc 151 (very high) 328 (very high) CASS April 23 FARM COOPERATORS: Dave and Melvin Cripe, Cassopolis COUNTY EXTENSION DIRECTOR: Dan Rajzer, Cassopolis ### Average of Monroe, Branch & Cass County LATE trials One, two, three year averages — 1994, 1993, 1992 LATE TRIAL (107 DAY RELATIVE MATURITY OR LATER (BASED ON COMPANY RATING) | HABBID | | * HC | ISTU | | TEST | BUSHE | ••••• | | | | | | | * . | | TECT | | x x | | TEST | ••••• | × | |--|---|--|-------|----------------|--------------------------------------|---|------------------|------------------|---------------------------------|-------------------------|----------------------------------
--|---|--|----------------------------------|----------------------------|-----------------------------------|--|----------------------------------|----------------------------|------------------------------------|---------------------------| | HYBRID
(Brand-Variet | | 1994 | Yr | Yr | WGT
1994 | 1994 | Yr 2 | Yr . | 1994 | | H20 | | B/A | | H20 | TEST | B/A | X X
SL STD | H20 | WT | B/A | SL | | VIGORO
RENK
AMCORN
MYCOGEN
ICI SEEDS | V1084
RK714
Ex 537
6060
8570 | 20.8
20.9
21.0
21.0
21.5 | 22 | | 55.3
57.4
57.4
57.6
55.9 | 190.5
188.1
168.8
178.1
192.8 | 178 | | 0.9
1.3
0.4
0.1
0.7 | 1 | 20
20
20
20
20
22 | 57
60
60
60 | 205
189
165
190
198 | 1 96
1 100
0 96
0 95
1 100 | 22
22
22
23
23
22 | 55
55
57
56
54 | 197
193
174
172
196 | 1 90
1 100
1 83
0 84
0 95 | 21
21
21
20
20 | 54
57
56
57 | 170
183
168
173
185 | 1 0 0 1 | | DEKALB
HYPERFORMER
CARGILL
CIBA
CROW'S | DK580
HY9424
5677
4394
435 | 21.7
21.8
21.9
22.0
22.1 | | | 56.0
56.8
56.1
55.5
54.5 | 215.8
200.3
220.0
226.0
197.4 | 191
199 | | 0.8
0.4
0.8
0.1
0.9 | 1 :: | 22
20
21
21
21 | 59
58
58 | 223
204
222
221
191 | 1 98
0 98
1 99
0 96
2 98 | 23
23
23
23
23
24 | | 211
198
*220
*233
213 | 1 99
0 98
1 90
0 98
0 99 | 20
23
22
23
21 | 56
56
54 | *214
199
*219
*224
189 | 1 0 1 0 0 | | RENK
CARGILL
HYPERFORMER
ICI SEEDS
NORTHRUP KING | RK802PT
SX269
HS9408
N8541
X6133 | 22.1
22.2
22.2
22.2
22.2
22.2 | | 27 | 55.5
56.4
55.9
56.1
57.3 | 185.8
184.5
214.5
200.8
204.9 | 181 | 183 | 0.5
1.1
0.7
0.0
0.6 | 1 1 | 21
21
22
21
22 | 58 | 192
177
217
198
217 | 1 99
0 98
1 98
0 93
0 97 | 23
23
23
23
23
23 | 56
55
56
56
56 | 189
187
*236
212
200 | 0 95
1 99
1 100
0 95
0 96 | 23
23
22
23
23
22 | 53
54
54
55
56 | 177
189
191
192
197 | 1 2 0 0 1 | | PIONEER
STINE
CARGILL
BECK'S
ASGROW | 3394
1076
6303
5305
RX699 | 22.2
22.2
22.3
22.5
22.7 | :: | 26 | 56.5
54.9
55.2
55.7
57.2 | 227.7
195.5
200.3
221.3
210.8 | 208 | 206 | 0.0
0.9
0.5
0.4
0.3 | | 21
22
21
21
22 | 57
57 | *227
217
198
*233
216 | 0 100
1 100
0 99
0 91
0 100 | 22
24
25
23
23 | 53
54
54 | *233
185
198
211
213 | 0 100
0 98
1 97
1 98
0 100 | 23
21
21
24
23 | 54
55
55 * | *224
185
206
*220
204 | 0 1 0 0 0 0 0 | | CIBA
CIBA
RENK
DAIRYLAND
HYPERFORMER | 4225X
4494
RK835
STEALTH-1209
HX45101 | 22.7
22.7
22.7
22.8
22.9 | :: | | 58.8
56.8
56.0
55.6
54.1 | 223.7
215.2
206.4
220.7
197.2 | | | 0.1
0.6
0.7
0.4
0.3 | | 22
21
21
20
23 | 60
59 | *244
*239
214
*227
203 | 0 100
1 100
1 97
1 99
0 97 | 24
24
24
24
23 | 59
56
55
55
55 | 211
199
202
217
202 | 0 96
0 90
0 95
0 97
1 84 | 23
24
23
25
25
22 | 54
54 * | *216
*208
203
*219
187 | 0
0
1
0 | | CALLAHAN
NORTHRUP KING
RENK
AMCORN
PAYCO | C7252
N5901
RK812
Ex 583
814 | 23.1
23.1
23.1
23.2
23.2 | 25 | 28 | 55.2
57.0
54.1
55.1
55.7 | 217.0
191.0
211.6
223.8
212.0 | 189 | 192 | 0.6
0.1
0.7
0.4
0.5 | 1 1 | 22
21
21
21
21
22 | | 220
202
213
235
229 | 1 99
0 99
1 95
0 100
0 100 | 24
25
25
25
25
25 | 56
53
55 | 235
192
211
222
208 | 0 99
0 98
0 97
0 96
1 99 | 24
24
24
23
23 | 56
53 *
55 * | 196
179
211
214
199 | 1
0
0 1
1
0 1 | | MCORN
DEKALB
SUTWEIN | 5930
5830
DK591
2434
HY9487 | The second second | | | 54.5
56.0
54.0
55.2
54.6 | 215.8
202.0
217.1
205.7
215.5 | ::: | | 0.4 | :: ::
:: ::
: : : | 21
22
24
22
20 | 57
58
55
57
57 | 224
212
221
199
225 | 1 99
0 93
2 100
1 100
2 100 | 25
23
24
24
26 | 54 * | 219
200
220
209
217 | 0 95
0 95
1 100
1 98
0 96 | 24
25
23
24
24 | 54
53 *
55 * | 204
194
211
209
204 | 1 0 0 0 0 | | ROW'S
ROW'S
ARGILL | V1105
401
445
6327
V414W | 23.6
23.6
23.7 | 25 25 | 28 | 55.2
54.0
56.0
54.8
57.3 | 185.9
214.6
215.6
216.1
185.7 | 197
200 | 199 | 0.7
0.8
0.4 | 1 .! | 20
21
22
22
22
23 | 57 ·
59 · | | 1 96
1 100
1 100
0 100
1 100 | 25
25
24
26
24 | 53
55 * | 175
203
221
208
186 | 0 90
1 97
0 98
0 100
2 100 | 25
25
25
24
24
24 | 52 *
54
54 | 172
212
196
203
183 | 1
0
2
0 1
0 1 | | RI STATE
UTWEIN
YCOGEN | 572
633
2474
6220
574 | 23.7 | 26 | 28 | 55.2
55.5
54.2
55.0
54.8 | 220.6
197.2
220.0
211.1
205.2 | 194 | 194 | 0.7
0.3
0.7
0.5
0.6 | 1 1 | 21
24
22
22
22 | 58 | 217
186
*231
*228
189 | 1 100
0 98
1 100
0 100
1 99 | 26
25
26
26
26
24 | 56
53
54 | *231
203
214
196
*220 | 0 100
0 100
1 100
0 92
0 100 | 23
24
24
25 | 55
52 5
53 5 | plan
202
*215
*210
206 | 0
1
1 | | YCOGEN
AYCO
AYCO
OP FARM
YPERFORMER | 6970
754
834
TFsx2108
HY9490 | 23.9
23.9
23.9
24.0
24.2 | | | 55.3
54.1
55.3
54.4
56.1 | 210.0
195.0
226.0
195.2
198.3 | | ::: | 0.9
0.5
0.6
0.3
0.4 | | 23
24
21
22
24 | 56
58
58 | *235
211
*234
206
189 | 1 100
0 96
1 98
1 100
0 99 | 25
26
25
25
25
24 | 53 | 197
179
*227
209
217 | 1 96
1 98
0 97
0 97
0 98 | 24
22
26
26
26
24 | 53 | 198
195
*217
171
189 | 1 0 1 | | ERRA
ENK
INYARD | TR1070
TR1091
RK886
V417W
2494 | 24.2
24.2
24.3
24.4
24.5 | 26 | 28 | 55.5
55.0
56.1
54.9
54.6 | 195.2
206.4
210.5
161.3
194.7 | 184 | 187 | 1.2
0.8
0.6
0.4
0.5 | 1 1 | 24
23
22
24
22 | 58
58
55 | 213
219
217
161
212 | 1 100
2 97
0 94
0 100
1 85 | 25
25
26
25
26 | 54
55
55
55
55 | 181
218
210
165
192 | 0 98
1 98
1 98
0 100
1 79 | 23
24
26
24
26 | 53
55
55 | 192
183
205
159
180 | 2 0 1 1 1 1 0 | | UPP
RI STATE
NDERSONS | 3293
XR1739
628
PSX370
RX707 | 24.5
24.5
24.7
24.9
24.9 | | 28 | 55.3
55.1
55.1
54.7
54.4 | 224.5
176.9
185.6
212.0
219.7 | 200 | 203 | 0.6
0.4
1.1
0.7
0.6 | 1 2 2 | 23
23
22
25
23 | 57
57
56 | *251
198
187
216
*232 | 1 97
1 96
1 100
1 97
1 99 | 25
26
27
25
26 | 55
55
55
54
55 | 199
170
189
209
210 | 0 89
0 68
1 96
0 87
0 97 | 25
25
25
25
25
25 | 54
54
54 * | 224
163
181
211
217 | 0 0 1 1 0 | | CK'S
CK'S
RI STATE | X5154
EX1485
5405
685
8513 | 24.9
25.0
25.1
25.1
25.3 | :: | 28 | 54.0
55.5
54.0
55.2
55.0 |
203.2
194.1
220.6
218.6
213.4 | | 195 | 0.7
0.6
0.4
0.4
0.4 | 1 1 | 23
23
25
22
22
23 | STATE OF THE OWNER, TH | 215
217
199
*233
*231 | 1 93
0 86
1 99
1 90
0 100 | 27
25
27
25
25
28 | 54 | 198
196
230
213
214 | 2 94
1 80
0 97
0 88
0 99 | 26
28
24
28
25 | 53 *
54 * | 197
170
233
210
196 | 0 1 0 0 0 0 | | CI SEEDS
RI STATE
CI SEEDS | 7777
8481
750
8400
7460 | 25.6
25.6
25.9 | 26 | | 56.5
56.8
53.8
55.3
55.6 | 215.2
182.4
213.2
201.0
209.6 | 201 | | 1.0
0.1
0.1
0.5
0.1 | 1 :: | 24
24
23
24
24 | 58
58
56
57
58 | *231
191
219
212
212
219 | 2 100
0 97
0 99
1 97
0 99 | 26
27
27
27
27
27 | 54 | 195
173
211
187
212 | 1 99
0 97
0 95
0 97
0 93 | 26
26
27
27
27
29 | 52 * | 183
210
204
198 | 0 1 0 0 0 0 0 | | RI STATE
INYARD
YCOGEN | 903
770
V438W
7660
490 | 27.9
28.4
28.5
29.0 | : | | 55.2
54.9
55.4
55.2
54.3 | 212.4
184.3
159.2
195.1
211.1 | | | 0.1 | | 24
26
27
27
28 | 57
57
58
57
57 | 213
192
147
203
218 | 0 99
0 91
0 96
0 98
1 99 | 28
28
29
28
29 | 55
55
55
54 | 204
200
175
212
210 | 0 99
1 88
0 99
0 96
0 99 | 28
30
29
30
31 | 53
54
53
52 | 220
161
157
171
205 | 0 1 0 0 0 0 | | verage | | | 25 | 28 | 55.4 | 204.2 | 194 | 195 | 0.6 | 1 1 | 22 | 58 | 212 | 1 98 | 25 | 55 | 204 | 1 95 | 24 | 54 | 197 | 1 | | ange | | 20.8
to
29.0 | 22 to | 26
to
29 | 53.8
to
58.8 | 159.2
to
227.7 | 178
to
208 | 183
to
206 | 0.0
to
1.3 | 1 1
to to
2 2 | 20
to
28 | 55
to
62 | 147
to
251 | 0 85
to to
2 100 | 22
to
29 | 53
to
59 | 165
to
236 | 0 68
to to
2 100 | 20
to
31 | 52
to
58 | 157
to
233 | 0
to
2 1 | - | ===== | | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE YIELD IN 1994 PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION ROW WIDTH FERTILIZER SOIL TEST: pH P K MONROE May 5 October 24 Pewamo Clay Loam Alfalfa 29,300 28,650 30" 154-64-152 7.1 166 (very high) 455 (very high) BRANCH May 4 October 25 Locke Fine Sandy Loam Corn 28,500 27,300 30" 161-38-120 + 2 Ton Lime 5.6 85 (high) 160 (medium) FARM COOPERATORS: John Stanger, Dundee; Neil Carpenter, Quincy COUNTY EXTENSION DIRECTOR: Dale Brose, Monroe; Marie Ruemenapp, Coldwater EXTENSION AGR'L AGENTS: Paul Marks, Monroe; Natalie Rector, Marshall, Calhoun County COUNTY AG & NAT RES AGENT: Ned Birkey, Monroe PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION ROW WIDTH FERTILIZER SOIL TEST: pH P IRRIGATION April 23 October 18 Oshtemo Sandy Loam Corn 30,100 N 28,570 30" 212-40-130+zinc 6.0 151 (very high) 328 (very high) 2 inches CASS FARM COOPERATORS: Dave and Melvin Cripe, Cassopolis COUNTY EXTENSION DIRECTOR: Dan Rajzer, Cassopolis ### Average of Kent, Ingham & Saginaw County EARLY trials One, two, three year averages — 1994, 1993, 1992 EARLY TRIAL (100 DAY RELATIVE MATURITY OR EARLIER (BASED ON COMPANY RATING) | | | | OISTL | IRE | TEST | | LS PEI | ACRE | | LK LOO | | | | COUNT | | | NGHA | | UNTY | | | AGINA | | | |--|--|--------------------------------------|----------------|----------------|--------------------------------------|---|-------------------|------------------|---------------------------------|--|---|----------------|---|---|--|----------------------------------|----------------------------------|-----------------------------------|-----------|-----------------------------|----------------------------------|--|---------------------------------|---| | HYBRID
(Brand-Variet | | 1994 | Yr | 3
Yr | WGT
1994 | 1994 | 2
Yr | 3
Yr | 1994 | Yr Y | | | EST
WT B/ | A S | X
STD | | TEST | B/A | X
SL | %
STD | %
H20 | WT E | | X X
SL STD | | VIGORO
DEKALB
CALLAHAN
CROW'S
PIONEER | V875
DK401
C7525
165
3861 | 17.0
17.9
18.1
18.1
18.7 | :: | :: | 58.6
57.0
58.0
58.4
57.0 | 161.9
166.3
163.3
154.0
184.1 | ::: | | 1.3
3.5
4.9
1.7
1.5 | 2 | | 16
17
17 | 61 17
59 18
60 17
61 17
58 20 | 3 11 16 16 16 | 2 100
5 99
7 88
3 100
1 98 | 18
20
20
19
20 | 56
55
55
55
55
54 | 138
136
137
121
144 | 2 4 6 2 3 | 97
95
83
92
95 | 17
18
18
18
18 | 57
59
59 | 75
82
76
66
06 | 0 100
1 99
2 94
0 100
0 100 | | GOLDEN HARVEST
GRIES
NORTHRUP KING
VIGORO
PAYCO | H-2292
GSF-Ex185
N2933
V925
Ex4241 | 18.8
18.8
18.8
18.9
19.0 | •• | :: | 56.4
56.1
57.9
57.3
59.1 | 168.3
139.5
172.3
167.0
171.2 | | | 2.6
1.1
1.8
2.3
1.7 | 3 - | | 19
18
18 | 58 18
58 15
59 19
59 18
61 18 | 500 | 1 100
1 98
2 97
2 97
3 96 | 20
20
19
20
20 | | 140
114
136
126
145 | 7 1 2 2 1 | 99
99
87
90
88 | 18
18
19
19
19 | 58
60
58 | 76
50
91
89
81 | 0 100
1 100
1 100
3 100
1 100 | | PIONEER
CALLAHAN
CARGILL
ICI SEEDS
CROW'S | 3723
C7634X
2497
8746
170 | 19.0
19.1
19.1
19.4
19.4 | 21 | 22 | 56.3
56.2
57.3
56.5
57.7 | 193.8
157.3
155.9
177.6
192.0 | 188 | 182 | 0.6
1.1
4.1
2.1
2.1 | 1 : | | 18
18
19 | 58 *21
58 16
60 17
57 20
58 *21 | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 100
2 98
3 100
2 100
3 98 | 20
21
21
18
19 | 54
56 | 150
136
128
121
154 | 1 8 4 2 | 95
89
98
93
91 | | | 69
67
10 | 1 100
0 99
2 100
0 100
2 98 | | NORTHRUP KING
PAYCO
PAYCO
CARGILL
DEKALB | N3030
444
413
3777
DK474 | 19.6
19.6
19.7
19.8
19.8 | 20
21 | :: | 55.7
55.9
55.3
59.2
56.0 | 177.9
173.1
178.8
184.9
198.4 | 173
179 | | 3.6
5.1
3.2
3.2
1.8 | 3 - 3 - | • | 19
19
19 | 59 19
57 20
55 19
62 *21
59 *22 | 5 4 3 | 95
98
99
100
99 | 20 | 52 * | 144 | 68342 | 91
93
90
92
95 | 20
20
20
21
20 | 57 1
58 1
59 1 | 98
84
83
96
00 | 1 98
4 100
4 100
2 100
0 97 | | BAYSIDE
NORTHRUP KING
CIBA
TERRA
ICI SEEDS | 1794
N4242
4214
E981
8751 | 19.9
20.0
20.1
20.1
20.2 | 21 | 21 | 56.0
56.5
57.3
56.3
57.1 | 179.7
191.8
202.7
171.4
193.3 | 185 | 178 | 4.1
1.4
1.6
1.8
1.9 | 1 | 2 | 19
19
19 | 58 19
58 *21
59 *23
57 19
59 *22 | 2 4 6 3 2 | 98
100
99
94
100 | 20
22
21 | 54 *
54 * | 143
161
171
141
156 | 3 2 2 3 3 | 86
96
93
81
94 | 21
21
20
20
20 | 58 *2
58 *2
58 1 | | 4 98
0 100
3 100
1 93
1 100 | | MYCOGEN
DAIRYLAND
CALLAHAN
DEKALB
GOLDEN HARVEST | AG3965
STEALTH-1400
C7435
DK471
H-2331 | 20.2
20.3
20.4
20.4
20.4 | 21 21 21 | 22 | 54.3
55.6
54.8
55.2
54.9 | 202.0
194.1
192.5
176.0
193.7 | 191
188
187 | 185 | 1.0
1.6
1.5
2.2
2.8 | 1 - 2 - 2 | | 20
19
20 | 55 *22
58
*21
57 21
58 20
57 20 | 1 3 | 91
88 | 21 23 | 51 * | 157
173
134 | 3 1 4 | 89
94
89
81
97 | 20
19
20 | 57 *2
57 *2
56 1
55 1
56 *2 | 11
94
90 | 1 100
0 95
0 93
2 94
0 98 | | PAYCO
DEKALB
PIONEER
PIONEER
CALLAHAN | 614
DK493
3751
3752
C7537X | 20.4
20.5
20.6
20.6
20.7 | 21 21 | 22 | 56.6
55.3
54.6
56.3
56.1 | 189.0
199.7
180.0
199.2
179.7 | 178
190 | 170 | 2.3
1.2
1.1
1.7
2.4 | 1 : | 3 | 20
21
19 | 58 20
59 *22
55 19
58 *21
57 18 | 3 (9 9 | 97
99
99 | 21
21
22 | 52
53 * | 159
161
133
161
154 | 1 2 3 | 89
94
82
97
93 | 21 | 58 *2
56 *2
57 *2
58 *2
57 1 | 15
08 | 0 96
2 96
0 99
0 98
1 96 | | TRELAY
VIGORO
AMCORN
ASGROW
STINE | 5202
V974
LG 2465
XP4923
994 | 20.7
20.7
20.8
20.9
20.9 | | :: | 55.5
54.3
56.3
56.6
55.4 | 176.4
185.4
167.3
179.4
182.7 | | | 2.1
2.0
1.5
3.0
1.9 | | | 20
21
19 | 66 19
66 *21
58 18
58 20
57 19 | 3 6 7 5 | 93
97
77
100
92 | 21 22 | 51
54
55 | 137
152
123
144
147 | 3 3 3 | 94
87
65
98
97 | 22 | 56 1
57 1 | 98
91
93
87
10 | 1 96
2 96
1 92
1 100
0 98 | | HYPERFORMER
MYCOGEN
MYCOGEN
GRIES
TOP FARM | HY9262
4970
5270
GSF-4100
TFsx1097A | 21.0
21.0
21.0
21.1
21.1 | | | 56.1
55.5
55.9
58.3
55.1 | 155.7
187.3
163.3
152.5
187.9 | ::: | 168 | 2.4
1.6
3.8
0.9
1.0 | | 2 | 20
20
20 | 61 1 | 03 | 3 85
1 96
4 94
1 86
1 100 | 22
22
21
22
22
22 | 54 | 134
*166
142
106
*166 | 3 2 3 1 1 | 82
96
95
64
100 | 21
21
22
21
21 | 57
57
60 | 154
193
176
167
194 | 2 85
1 99
4 100
1 79
0 100 | | AMCORN
CIBA
GOLDEN HARVEST
ASGROW
CROW'S | 4747
4273
H-2349
RX502
180 | 21.2
21.2
21.2
21.3
21.3 | | | 54.9
56.1
55.1
56.2
53.2 | 181.5
195.5
178.4
175.5
189.1 | 183 | | 1.1
1.0
2.9
3.3
3.2 | 2 | | 20 | 57 *2 | 92 | 1 97
0 100
4 100
1 99
1 100 | 22
21
23
23
23
23 | 52
54 | 141
*165
146
141
*160 | 1 2 5 9 5 | 98 | 21
21
21
21
21
21 | | 199
196
198
194
192 | 1 9
1 9
0 100
0 100
4 100 | | AMCORN
ASGROW
PIONEER
COUNTRYMARK
DEKALB | LG 2482
RX444
3769
432
DK485 | 21.4
21.4
21.4
21.5
21.5 | 22 | | 55.4
53.8
54.8
55.1
54.3 | 194.5
186.3
179.5
184.0
196.9 | 178 | ::: | 1.0
2.8
1.3
1.9
1.8 | A CONTRACTOR OF THE PARTY TH | | 21
20
19 | 57 *21
56 20
56 20
57 *21
56 *22 | 01 104 1 | 3 99
4 98
2 99
4 100
1 96 | 23
23
24
24
24
24 | 51
51 | *159
155
139
136
*175 | 0 3 1 2 4 | 87
84
92
96
91 | 21
21
20
22
21 | 57 56 | 213
203
196
197
196 | 0 100
1 99
1 100
0 100
0 98 | | TRELAY
CALLAHAN
BLANEY
GUTWEIN
PAYCO | 5200
C7633X
2100
2088
531 | 21.5
21.6
21.8
21.8
21.8 | 21 | 22 | 54.5
55.5
55.2
54.3
55.9 | 204.5
183.3
187.2
200.2
199.4 | 196 | 189

185 | 1.5
1.3
1.4
1.5
0.9 | | 3 | 20
20
21 | 58 *23
57 20
57 *21
56 *22
58 *22 | 6 6 | 91
97
98 | 23
22
24
23
24 | | 135
157
165 | 3 2 2 3 2 | 96
78
87
99
93 | 22
23
21
21
21
22 | | 13
89
16 | 0 99
1 99
1 95
0 100
0 99 | | STINE
AMCORN
BAYSIDE
CALLAHAN
DAIRYLAND | 993
4420
95
C7337
STEALTH-1200 | 21.8
21.9
22.0
22.2
22.3 | 21 | 23 | 55.7
54.3
55.3
54.6
55.0 | 208.4
169.4
177.6
188.9
186.5 | 196

186 | 180 | 1.0
1.4
2.0
1.4
1.0 | | 3 | 21
21
22 | 57 *22
56 18
57 19
54 21
57 *21 | 5 3 | 94
91
91
91
91
91
91
91
91
91
91
91
91
91 | 24 24 | 52 | 145
154
160 | 1 2 2 1 2 | 95
94
95
99
98 | 21 | 57 1
57 1 | 19
79
84
96
82 | 0 100
1 89
1 99
1 99
0 100 | | ANDERSONS
RUPP
PIONEER
VINEYARD | 5993
PSX300
Ex.4-239
3463W
V414W | 22.5
25.3
25.5
26.0
26.2 | 23 | | 53.6
55.4
53.4
54.3
57.7 | 172.5
192.6
194.6
190.4
175.5 | 180 | | 0.4
1.5
1.6
1.1
1.9 | 1 - | | 24
24
24 | 55 19
57 *21
54 20
55 *21
59 19 | 3 1
7 2
2 1
7 3 | 82
100
100
98
100 | 27
27
27 | 53
51 *
52 * | 140
157
160
161
135 | 2 2 | 78
84
94
94
82 | 26
27 | 59 1 | 08
16
98
95 | 0 95
0 97
1 100
0 99
1 99 | | Average | | 20.7 | 21 | 22 | 55.9 | 181.6 | 183 | 180 | 2.0 | | 2 | 20 ! | 8 20 | 2 2 | 97 | 22 | 53 | 148 | 3 | 91 | 21 | | 95 | 1 98 | | tange | | 17.0
to
26.2 | 19
to
23 | 21
to
23 | 53.2
to
59.2 | 139.5
to
208.4 | 161
to
196 | 168
to
189 | 0.4
to
5.1 | to t | 3 | to 25 | | o to | to
100 | 27 | | | to 9 | 64
to
100 | to 27 | to
61 2 | 19 | 0 79
to to
4 100 | | Least Significa | nt Difference
Variance | 4.0 | | | 1.6 | 8.7
5.0 | | | | | | 5 | 1 1 | 0 | | 7 | 1 3 | 11 9 | | | 1 5 | 1 2 | 8 5 | | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE YIELD IN 1994 PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION ROW WIDTH FERTILIZER SOIL TEST: pH KENT May 4 October 26 Spinks Loamy Sand Alfalfa Sod 28,500 27,600 30" 76-0-0 5.8 132 (very high) 320 (very high) INGHAM April 25 October 20 Capac Loam Soybeans 27,700 25,680 30" 160-10-107 5.9 113 (very high) 240 (high) PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION ROW WIDTH FERTILIZER SOIL TEST: pH P SAGINAW May 3 October 28 Charity Clay Dry Beans 28,500 27,940 30" 160-0-0 7.7 132 (very high) 528 (very high) FARM COOPERATORS: Gerald Kayser, Pleasant Acres Farm, Caledonia; Michigan State University, East Lansing COUNTY EXTENSION DIRECTOR: William Harrison, Grand Rapids; Joseph Lessard, Mason EXTENSION AGR'L AGENTS: William Steenwyk, Grand Rapids; John Knorek and Laura Rhodes, Mason FARM COOPERATORS: Paul Horny, Saginaw Beet & Bean Research Farm, Saginaw COUNTY EXTENSION DIRECTOR: James Thews, Saginaw EXTENSION AGR'L AGENT: Steven Poindexter, Saginaw ### SOUTH CENTRAL MICHIGAN ## Average of Kent, Ingham & Saginaw County LATE trials One, two, three year averages — 1994, 1993, 1992 LATE TRIAL (101 DAY RELATIVE MATURITY OR LATER (BASED ON COMPANY RATING) | | | % M | 10151 | URE | | | | R ACRE | | | LODG | | KEN | | UNTY | | | | M C | | | | | NAW C | | | |---|--|--------------------------------------|--------------------------|----------------|--------------------------------------|---|-------------------|-------------------|---------------------------------|--------------|------------|----------------------------------|----------------------------|-----------------------------------|-----------------------------------|-----------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------|------------------------------|----------------------------------|----------------------------|--------------------------------------|-----------------------------|---------------------------------| | HYBRID
(Brand-Variet | | 1994 | Yr | 2 3
Yr | TEST
WGT
1994 | 1994 | 2
Yr | 3
Yr | 1994 | Y | | H20 | | B/A | | | H20 | TEST
WT | B/A | | STD | H20 | | B/A | SL | X
STD | | ICI SEEDS
GOLDEN HARVEST
NORTHRUP KING
CIBA
HYPERFORMER | 8700 | 22.1
22.2
22.2
22.3
22.9 | 23 | 23 | 55.6
56.1
54.8
54.1
54.2 | | 7 176 | | 1.4
1.9
0.8
2.2
0.7 | } | | 22
22
24
22
22
22 | 57
57
55
56 | 222
188
191
195 | 3 | 98
95
100
97
98 | 23
23
21
21
23
23 | 52
54
54
54
52
51 | 132
134
147
126
144 | 2 | 96
92
92
92 | 22
22
21
22
24 | 57
56
55 | 203
195
192
173 | 0 | 100
100
100 | | *PIONEER
RENK
GOLDEN HARVEST
*PIONEER
DEKALB | 3573
RK617
H-2390
3525
DK512 | 23.0
23.3
23.5
23.6
23.8 | 25 | 27 | 54.1
54.3
54.7
55.2
53.4 | 204.8
193.6
169.0
215.2
201.3 | 204 | 193 | 1.5
2.8
1.3
0.9
1.3 | | | 23
22
24
23
25 | 55
57 | 209
172 | 5
3
0 | 97
99
100
99
99 | 23
25
23
24
24 | _ | 163
164
151
*174
166 | 3
1
1 | 94
95
100
100
99 | 23
23
23
23
23
22 | 56
56 | 209
184
*233 | 1
0
1 | 100
100
100
100
100 | | MYCOGEN
CROW'S
DAIRYLAND
RENK
DAIRYLAND | 5150cb
204
STEALTH-1203
RK646PT
STEALTH-1198 | 23.9
24.0
24.1
24.1
24.2 | | :- | 53.9
55.1
52.9
55.5
54.2 | 170.1
184.1
188.4
168.7
192.0 | | | 1.6
2.1
3.2
1.1
1.8 | | | 24
24
25
24
23 | 55
56
54
56
56 | 207
206
179 | | 98 | 25
25
23
25
26 | 54
51
54 | 137
147
*179
148
145 | 2 | 98 | 23
23
25
23
24 | 55
56
53
57
55 | 193
199
181
179
212 | 0 | 96
100 | | STINE
AMCORN
CIBA
TERRA
GOLDEN HARVEST | 92-70X
Ex 537
4372
TR1031
Ex692 | 24.2
24.3
24.3
24.3
24.4 | 25 | | 53.3
54.8
54.4
53.7
54.5 | 165.8
178.6
194.0
169.8
164.6 | 167 | | 0.6
0.8
3.0
2.4
0.7 | |
 | 24
24
24
24
25
| 54
56
56
54
56 | 170
196
212
184
180 | 2 | 91
90
98
96
00 | 24
25
26 | 51
52
53
52
52 | 140
141
159
141
134 | 1
0
3
1
1 | 93
94 | 23
25
23
23
23 | 55
56
55
55
56 | 188
199
211
184
180 | 1 | 99
91
99
100
100 | | AMCORN HYPERFORMER *PAYCO *CALLAHAN LEADER | LG 2522
HY9355
734
C7548X
X3654 | 24.5
24.6
24.7
24.9
25.0 | 26 | :: | 54.7
54.8
53.4
53.0
54.8 | 191.2
186.4
205.9
211.7
179.5 | 198 | | 1.3
0.8
1.0
1.5
0.7 | | | 24
23
25
24
24 | - | 203
197
*224
*237
199 | 1
2
2 1 | 93
99
91
00
92 | 26
26
27 | 53
52
50 | 158
156
160
161
147 | 1 | 98
100 | 24
25
24
24
25 | | 213
207
*234
*237
192 | 0 | 93
100
96
100
94 | | *CARGILL NORTHRUP KING *DAIRYLAND DAIRYLAND *GUTWEIN | 4277
N5220
STEALTH-1407
STEALTH-1405
Ex333 | 25.1
25.1
25.2
25.3
25.3 | 26 | :: | 54.3
54.9
53.0
53.6
52.7 | 209.3
200.5
220.9
184.4
208.4 | 184 | | 0.9
0.8
2.1
1.3
2.0 | 1 | | 24
25
24
25
24 | 54 | 222
220
*241
196
*234 | 3 1 | 99
95 | 26
26
25 | | 167 | 1
1
2
1 | 89
95 | 25
25
25
26
25 | 56
54
54 | *232
215
*241
197
*235 | 0 1 0 | 99
99
99
100
99 | | | HY9385
TR1050
TFsx2103
TFsx2104
4327 | 25.4
25.4
25.4
25.4
25.5 | 26
26

26
26 | 26

28 | 52.5
54.7
54.1
52.9
54.4 | 190.5
178.9
187.4
184.4
208.5 | 174 | 168

188 | 1.8
1.8
2.9
1.5
1.9 | 2 3 2 2 | 3

1 | 24
25
25
25
25
25 | 55
56
56
54
55 | 214
210
204
202
*237 | | 99 | 27
27
27 | 54
51
51 | 151
142
145
154
158 | 2
1
6
2
4 | 98
99 | 25
25
25
24
26 | 53
55
56
54
56 | 206
185
214
197
*231 | 1 1 | 100
95
100
100
99 | | RUPP
RENK
RUPP | DK569
Ex.4-223
RK696
XR1623
5230 | 25.5
25.5
25.7
25.7
25.8 | | :: | 52.8
55.1
52.6
55.0
53.5 | 200.2
188.4
175.6
199.2
185.6 | ::: | | 2.5
0.7
2.0
1.8
2.3 |
 | | | 56
54
57 | *229
206
196
*225
192 | 1 9 | 00
21 | 27
28
27 | 52
50
52 * | 163
154
141
167
162 | 2 1 2 3 3 | 100
92 | 24
25
24
25
25
25 | 53
57
54
56
54 | 209
206
189
206
203 | 1 1 | | | CALLAHAN PIONEER CALLAHAN | 5X499
C7245
3394
C7249
5677 | 26.0 | 27
29
28 | 27
30
29 | 54.4
53.6
54.9
54.2
54.2 | 200.2
179.5
201.0
195.4
201.2 | 170
195
184 | 167
185
176 | 1.0
2.1
0.7
1.6
1.9 | 3 1 1 2 | 3 1 1 1 | 26
25
26
25
27 | | 222
210
216
220
*234 | 2 10
3 10
0 1
3 1 | 00
98
97 | 27
28
29 | 52
52 *
51 | | 1 3 1 2 2 | 97
91 | 25
25
25
26
27 | 55
55
56
56
56 | 214
189
217
213
212 | 0 0 1 1 1 1 | 100
99
98
98
95 | | STINE
CARGILL
CARGILL | 375
1076
5x269
5547
C7446X | 26.3
26.5
26.7
26.7
26.8 | 27
28

27 | 30 | 54.1
52.8
54.0
54.4
53.3 | 182.3
204.2
191.7
196.9
201.5 | 189 | 180 | 2.2
1.1
1.3
0.8
1.6 | 1 2 | | 25
27
26
28
27 | 56 | 198
217
*225
206
*226 | | 00
99
97 | 26
28
26 | 52
51 *
52
52 *
51 | 167 | _ | 99 | 26
27
26
26
27 | 55
55 | 196
*229
202
205
*229 | 3 1 | 100
100
100
100
100 | | HYPERFORMER
CIBA
ASGROW | 435
HY9424
4394
RX623
445 | 26.9
26.9
27.0
27.1
27.4 | 28

28
30 |

28 | 53.0
56.0
54.4
53.7
54.0 | 201.5
185.2
216.2
180.8
218.7 | 183 | 183 | 1.8
1.1
1.2
1.1
0.5 | 1 2 | 2 | 26 | 58
56
56 | 221
204
*237
212
*233 | 3 9
2 10
2 9
1 9
0 10 | 00
29
29 | 29
28
30 | 53
52 * | 131 | 2 1 2 1 | | | 55 | 215
215
*239
200
*229 | 0 1 | | | BAYSIDE
DAIRYLAND
MYCOGEN
RUPP | 102
STEALTH-1205
6970
XR1677
TFsx2108 | 27.5
27.5
27.8
27.9
28.0 | 28 | 30

31 | 52.1
53.0
53.3
51.4
53.5 | 175.4
193.3
188.5
203.4
197.5 | 184 | 178

191 | 2.1
1.0
1.7
1.2
1.5 | 1 1 | 1 | 27
27
26
26
27 | 54
55
53 | 183
210
220
*228
220 | 4 10
1 5
1 5
1 10
1 5 | 99
99
00 | 28
31
31 | 51
52
49 * | 137
149
136
168
157 | 2 1 2 2 | 96 | 26
28
28
28
28 | 54
53 | 206
*221
210
214
215 | 1 1
0 1
3 1
1
2 | 100
97 | | TERRA PAYCO MYCOGEN CARGILL | TR1070
754
6220
6327
x4154 | | | | 53.6
52.1
55.3
53.4
53.4 | 197.9
215.6
211.9 | | | 2.5
1.3
1.7
1.2
0.8 | | :: | 26
29
27
28
29 | 58
56 | 210
222
*247
*237
218 | | 00 | 28
31
30 | | 171 | 4
2
3
2
1 | 100 | 28
29
27
27
27
29 | 53
56
54 | *237
*221
*230
*227
*228 | 3 1
1 1
0
0 1 | 100
100
97 | | RENK
LEADER
CARGILL | RK812
X5154
6677
V417W | | | ===== | | | 197 | | | 1 | | | 55
54
57 | | 3 9
1 9 | 99
96
===== | 31
34
35 | 52
51
55
==== | | | 99 | 32
28
33 | 54
52
57 | *222
189
*228
168 | 0 1
1
0 1
0 1 | 93
100
100 | | Average | | | ==== | ==== | | | ===== | | | | | | | | | | ==== | ==== | | | | | ==== | | _ | === | | Range | | 22.1
to
32.0 | 23
to
32 | | 51.4
to
56.1 | 152.1
to
220.9 | to
204 | 167
to
196 | 0.5
to
3.2 | 2
to
5 | to
4 | 22
to
30 | to
58 | 170
to
247 | to 5 10 | 00 | to
35 | to
55 | 114
to
195 | | to
100 | 21
to
33 | 52
to
58 | 168
to
214 | to 3 1 | 100 | | | | | ==== | | | | ===== | | | ===: | | EEEEEE | ==== | | | | ==== | ==== | ==== | === | | EEEE | ==== | | | -== | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE YIELD IN 1994 320 (very high) KENT PLANTED May 4 October 26 HARVESTED SOIL TYPE Spinks Loamy Sand PREVIOUS CROP Alfalfa Sod PERFECT STAND 28,500 AVERAGE POPULATION 27,600 **ROW WIDTH** 30" **FERTILIZER** 76-0-0 5.8 SOIL TEST: pH 132 (very high) INGHAM April 25 October 20 Capac Loam Soybeans 27,700 25,680 30" 160-10-107 5.9 113 (very high) 240 (high) PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION ROW WIDTH FERTILIZER SOIL TEST: pH P SAGINAW May 3 October 28 Charity Clay Dry Beans 28,500 27,940 30° 160-0-0 7.7 132 (very high) 528 (very high) FARM COOPERATORS: Paul Horny, Saginaw Beet & Bean Research Farm, Saginaw COUNTY EXTENSION DIRECTOR: James Thews, Saginaw EXTENSION AGR'L AGENT: Steven Poindexter, Saginaw FARM COOPERATORS: Gerald Kayser, Pleasant Acres Farm, Caledonia; Michigan State University, East Lansing COUNTY EXTENSION DIRECTOR: William Harrison, Grand Rapids; Joseph Lessard, Mason EXTENSION AGR'L AGENTS: William Steenwyk, Grand Rapids; John Knorek and Laura Rhodes, Mason ### Average of Huron, Montcalm & Mason County EARLY trials One, two, three year averages — 1994, 1993, 1992 EARLY TRIAL (98 DAY RELATIVE MATURITY OR EARLIER (BASED ON COMPANY RATING) | | | % M(| DIST | Succession of | TEST | BUSHE | S PE | RACRE | % STA | LK L | THE PERSON NAMED IN | | HURO | N COU | INTY | | MO | NTCA | LM (| COUNT | TY | | MASO | ON CO | UNTY | | |---|---|--|----------------------|----------------|--------------------------------------|---|--------------------------|------------------|---------------------------------|-------|---------------------|----------------------------|----------------------------|-------------------------------------|-------------------------|-----------------------------|--|----------------------------------|------------------------------------
---|---------------------------------|----------------------------------|----------------------------|-------------------------------------|-----------------------|--------------------| | HYBRID
(Brand-Variet | | 1994 | | Yr | WGT
1994 | 1994 | 2
Yr | 3
Yr | CONTRACTOR STORY | Yr | | H20 | TEST | B/A | %
SL | | %
H20 | TEST | B/A | A Section 1 and | %
STD | %
H20 | TEST | | | STI | | DEKALB
DEKALB
PAYCO
STINE
CROW'S | DK381
DK401
344
870
165 | 16.7
17.3
18.1
18.2
18.5 | :: | | 56.8
56.7
56.1
59.0
57.9 | 158.3
156.1
153.3
135.1
154.6 | | | 2.2
2.2
1.1
1.3
2.1 | •• | :: | 15
15
15
16
16 | 57
56
56
59
56 | 113
111
120
100
109 | 3 6 2 3 5 | 98
95
92
96
90 | 19
19
22
20
21 | 57
57
57
57
59
58 | 194
199
180
150
195 | 1 1 0 | 96 | 16
18
17
19
19 | 57
58
56
60 | 168
158
160
155
160 | 3
0
1
1
0 | 6 6 8 | | PAYCO
ANDERSONS
PAYCO
AMCORN
TOP FARM | 253
HSX44011
413
3030
TFSX2194 | 18.5
18.6
18.6
18.7
18.7 | 19
19
19 | :: | 57.6
56.1
55.4
57.5
59.0 | 142.5
154.4
180.0
160.8
164.6 | 145
146
167 | ::: | 4.3
0.4
2.4
1.6
2.4 | 7 1 2 | :: | 16
16
16
16
17 | 57
56
56
58
60 | 100
101
128
125
119 | 7 0 2 2 5 | 84
99
98
89
98 | 20
22
21
21
21 | 57
56
55
58
58 | 164
189
*217
203
204 | 1 1 | 97
93
100
100
100 | 19
18
18
19
18 | 59
57
55
57
59 | *195
155 | 4 0 4 1 2 | | | CARGILL HORTHRUP KING HORTHRUP KING HORTHRUP KING | 2497
N2409
4120
DST 9026
N2555 | 19.0
19.0
19.1
19.1
19.1 | 20 | :: | 57.2
59.2
57.4
59.2
58.5 | 148.2
159.2
166.1
172.4
112.2 | 155 | | 1.2
1.7
1.0
2.1
0.9 | 1 | | 17
17
17
18
16 | 60
58
59 | 106
130
129
*139
117 | MINO EDIZ | The state of the state of | 22
20
21
21
21 | 57
58
56
59
57 | 184
189
190
*214
103 | 1 1 | 100
100
100
100
41 | 19
19
20
18
20 | 57
60
58
59
59 | 155
159
*180
165
117 | 1 0 2 4 0 | | | PAYCO
TOP FARM
MCORN
DIBA
PIONEER | Ex4241
TFsx1193
Ex 410
4202
3861 | 19.1
19.2
19.3
19.3
19.3 | 20 | | 59.3
56.1
58.8
56.4
57.2 | 162.9
122.5
165.9
171.9
179.1 | 131 | 162 | 1.5
2.6
2.1
1.2
1.4 | 2 2 | 2 | 18
17
18
17
16 | 57 | *140
116
*135
133
130 | 3 4 4 2 1 | 95
94
85
96
100 | 22
23
22
21
23 | | 184
132
198
*217
*220 | 0 4 1 1 2 | 86
68
99
98
100 | 18
18
18
20
19 | | 165
119
164
165
*188 | 1 0 2 0 1 | | | CIBA
COLDEN HARVEST
HYPERFORMER
PAYCO
CIBA | 4214
H-2292
HY9207
444
4144 | 19.4
19.4
19.4
19.4
19.5 | :: | | 57.9
56.6
58.7
55.5
58.0 | 183.9
169.1
147.9
169.9
163.1 | | | 2.2
0.7
4.5
6.5
1.7 | :: | :: | 17
18
17
17
17 | 58
57
59
57
59 | 130
117
126
130
124 | 4
1
10
10
3 | 96
97
98
92
93 | 22
21
22
21
22 | 56
58 | *233
197
158
*208
201 | 1 2 4 | 98
100
66
96
100 | 19
19
19
20
19 | | *189
*193
160
172
164 | 1 0 2 6 1 | | | EKALB
ENK
ARGILL
ENK
AYSIDE | DK474
RK424
2927
RK555
86 | 19.5
19.6
19.7
19.8
19.9 | 20 22 | 23
25 | 56.1
55.6
56.5
54.2
55.6 | 169.6
173.5
178.4
167.6
172.3 | 166 | 160
154 | 2.0
2.0
3.1
1.5
2.0 | 3 1 | 3 1 | 16
17
17
17
17 | 56
56
57
55
56 | 119
130
123
112
134 | 4 4 3 3 2 | 97
97
91
100
88 | 23
23
21
23
24 | 55 | *219
193
*222
194
202 | 1 | 98
100
100
100
89 | 20
19
21
20
19 | 57
56
54 | 171
*198
*191
*197
*181 | 1 2 5 1 3 | | | AYSIDE
ROW'S
EKALB
YCOGEN
AIRYLAND | 1794
170
DK446
3440
STEALTH-1195 | 20.0
20.0
20.0
20.0
20.0
20.1 | :: | :: | 56.4
55.3
55.7
57.0
56.3 | 177.5
177.4
165.6
152.2
158.7 | | | 3.2
2.4
2.0
2.0
1.6 | :: | :: | 17
17
15
17 | 57
56
56
60
56 | *144
119
111
121
122 | MAN 35 THE | 98
100
85
98
99 | 24
23
25
23
24 | | *220
*211
203
185
192 | 0 0 1 | 100
100
80
74
100 | 20
21
20
20
20 | | 169
*202
*183
151
163 | 3 1 0 0 | | | OLDEN HARVEST
CI SEEDS
ORTHRUP KING
ORTHRUP KING
AYCO | H-2331
8751
N3030
N2879
531 | 20.1
20.1
20.1
20.3
20.4 | 21 21 22 | 25 | 55.7
57.1
56.5
57.1
56.3 | 188.0
179.7
145.1
152.0
188.5 | 174
146
172 | 168 | 2.7
2.4
1.9
3.1
0.6 | 2 2 3 | 3 | 17
17
18
17
17 | 56
58
57
57
57 | 132
*137
119
115
*139 | 4 4 0 4 2 | 98
95
90
93
91 | 22
24
23
24
23
24
23 | 56 s
56
57 | *228
*215
154
192
*239 | 3 1 5 | 100
100
66
99
100 | 21
20
20
20
20
21 | 58
57
57 | *204
*188
163
149
*188 | 1 1 5 0 0 | | | ARGILL
EKALB
IONEER
MCORN
ICKSEED | 3777
DK471
3769
LG 2482
4990 | 20.6
20.6
20.6
20.8
21.0 | 21 | | 59.4
55.0
56.4
55.7
56.7 | 190.5
137.4
187.2
185.4
137.6 | 180 | | 1.4
2.1
2.0
0.5
0.8 | 2 | :: | 19
17
18
18 | 58
57
57 | *136
*149
*149
*143
130 | 3 3 4 0 2 | 99
94
100
91
88 | 22
24
25
24
24 | 54
56
55 | *238
121
*232
*225
160 | 2 0 1 | 100
40
100
100
71 | 21
20
19
21
21 | 54
57
55 | *198
143
*181
*189
123 | 1 2 2 0 1 | | | ERRA
LANEY
IONEER
TINE
ICKSEED | E981
2100
3752
951
5990 | 21.0
21.1
21.1
21.1
21.2 | 22
22
21
22 | 25 | 56.1
55.8
57.0
54.5
57.1 | 116.7
169.9
182.0
125.0
167.6 | 130
167
138
160 | 153 | 2.4
1.9
1.4
1.7
3.0 | 3 1 4 | 3 | 19
17
18
16
19 | 55
59 | 117
123
*141
125
124 | 52235 | 87
98
94
84
100 | 24
24
25
27
24 | 57
57
53 | 113
*225
*222
110
*214 | 0 | 44
94
100
51
100 | 20
22
20
21
20 | 56
55
55 | 162
*183
140 | 2 | 200 | | MCORN
YCOGEN
AYCO
OLDEN HARVEST
UTWEIN | LG 2465
4440
614
H-2349
2088 | 21.3
21.3
21.3
21.5
21.5 | 22 | :: | 55.5
53.7
55.4
56.4
55.1 | 142.2
171.3
144.1
182.0
190.9 | 172 | | 0.8
1.6
2.0
3.0
2.3 | - 3 | :: | 19
18
17
17
18 | 53
56
57 | 130
*135
112
116
*136 | 6 | 82
98
98
100
99 | 24
25
26
24
24 | | 183
198
157
222
242 | 1 | 76
95
54
100
100 | 21
21
21
23
23 | | *181 | 1 1 1 | THE REAL PROPERTY. | | UNG
IONEER
ING AGRO
SGROW
SGROW | 2496
3751
KGAG 18057
RX502
XP4923 | 21.6
21.7
22.0
22.1
22.1 | 23 22 | 26
25
 | 53.9
55.9
59.4
56.2
56.3 | 169.5
177.1
152.9
186.0
159.4 | 163 169 | 160
165 | 2.4
1.5
1.8
2.3
3.3 | 3 2 | 2 2 | 18
18
20
21
19 | 60
56 | 129
146
129
126
117 | 5 1 3 1 3 1 | 99 | 24 | 56 1
59
56 | 194
205
202
229
195 | 2 1 | 100
100
100
100
100 | 21
20
21
22
21 | 55 | *186
*180
128
*203
167 | 1 1 0 6 | | | YCOGEN
SGROW
AYSIDE
YPERFORMER
OP FARM | 4770
RX444
95
HY9262
TFsx2195 |
22.2
22.6
22.9
23.0
23.1 | :: | :: | 54.6
54.2
56.1
56.2
55.9 | 157.8
175.2
173.7
110.4
109.8 | | | 2.8
1.8
1.4
1.7
1.9 | :: | :: | 18
19
20
18
18 | 55
55
56
59
58 | 138 | 3 3 | 94
89
99
92
91 | 27 | 54 * | 192
206
200
99
94 | 200 | 72
98
100
45
36 | 24
23
23
22
21 | 54 | *179
*182
*183
97
113 | 1 1 2 1 | | | UPP | Ex.4-239 | A COLUMN TO THE REAL PROPERTY. | | | 54.1 | | | | 1.8 | | | | 54 * | | 4 1 | | | 54 * | | | 100 | 25 | | 167 | 1 | | | rage | | 20.2 | 21 | 25 | 56.5 | 161.7 | 158 | 161 | 2.0 | 2 | 2 | 17 | 57 | 126 | 3 | 95 | 23 | 56 | 192 | 1 | 89 | 20 | 57 | 168 | 2 | | | ange | | to
25.5 | 19
to
23 | 22
to
26 | 53.7
to
59.4 | 109.8
to
190.9 | 130
to
180 | 153
to
168 | 0.4
to
6.5 | 7 | to
3 | 15
to
21 | to
61 | 100
to
149 | to
10 1 | | to
31 | | 94
to
242 | 5 | | 16
to
25 | 54
to
60 | 97
to
208 | to
6 | | | st Significant | Difference | 1.1 | | | .8 | 18.7 | ESSER | | | ==== | | 1 3 | 1 | 9 | | | 1 7 | 1 | 13 | | | 1 | 1 2 | 11 8 | | - | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE YIELD IN 1994 PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND **AVERAGE POPULATION ROW WIDTH** FERTILIZER SOIL TEST: pH IRRIGATION HURON May 10 November 11 Kilmanagh Loam 28,500 27,360 150-120-9 6.8 73 (high) 216 (high) MONTCALM April 27 November 3 Montcalm-McBride Sandy Loam Potatoes 29,700 27,070 30" 137-0-120 5.5 534 (very high) 248 (high) 4.25 inches PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND **AVERAGE POPULATION ROW WIDTH** FERTILIZER SOIL TEST: pH IRRIGATION MASON May 6 November 2 Ogemaw Sandy Loam Snap Beans-rye cover 18,300 30" 130-4-60 6.5 311 (very high) 528 (very high) FARM COOPERATORS: Robert and August Oshe, Scottville COUNTY EXTENSION DIRECTOR: David Peterson, Scottville FARM COOPERATORS: William, Ron and Ed McCrea, Wil-le Farms, Bad Axe; Richard Crawford, Montcalm Research Farm, Entrican COUNTY EXTENSION DIRECTOR: Robert Johnson, Bad Axe; Donald Smucker, Stanton EXTENSION AGR'L AGENTS: James LeCureux, Bad Axe; George Atkeson, Stanton ### Average of Huron, Montcalm & Mason County LATE trials One, two, three year averages — 1994, 1993, 1992 LATE TRIAL (99 DAY RELATIVE MATURITY OR LATER (BASED ON COMPANY RATING) | ***************** | | | 0151 | | | | | R ACRE | | | LODG | | | ON CC | | 10.41 | | NTC | | COUN | | | MAS | ON COL | YTAL | 100 | |---|--|--------------------------------------|----------------------------|--------------------|--------------------------------------|---|--------------------------|-------------------|---------------------------------|----------|--------------|----------------------------|----------------------------|-------------------------------------|-----------------|---|----------------------------------|----------------------------|----------------------------------|---------|------------------------------------|----------------------------------|--|-----------------------------------|--------------|--| | HYBRID
(Brand-Variet | | | Yr | 3
Yr | WGT
1994 | 1994 | 2 | 3
Yr | | Y | 2 3
7 Yr | H20 | | B/A | SL | | H20 | | B/A | | X
STD | %
H2O | | T
B/A | SL | %
STD | | PIONEER
DAIRYLAND
DEKALB
STINE
MYCOGEN | 3723
STEALTH-1400
DK493
993
AG3965 | 20.5
20.7
20.8
20.8
20.9 | 22 | 25 | 57.0
55.7
56.3
55.7
55.7 | 184.1
149.2
188.4
181.3
181.1 | 177 | === | 1.1
1.5
2.1
1.4
2.2 | 1 | 1 1 | 18
17
17
17 | 57
55
57
56 | 140
122
*154
128 | 3 4 | 100
100
99
96
96 | 24
25
25
25
24
25 | 57
56
55
55 | 222
160
*233
221
224 | 1 1 1 | 99
64 | 20
21
21
21
22
20 | 57
56
57
56 | 165
179
*194 | 0 1 1 3 3 3 | 84
70
74
79 | | ICI SEEDS
RENK
COUNTRYMARK
MYCOGEN
RENK | 8746
RK657
432
5270
RK617 | 21.4
21.4
21.5
21.5
21.6 | 23 | 26 | 55.6
54.9
55.9
56.0
55.9 | 175.1
165.5
179.4
164.2
176.5 | 156 | | 2.5
1.6
0.7
4.3
1.9 | 1 :: | | 17
18
17
19 | 56
54
55
56
56 | 106
122
118 | 1 | ALCOHOLD NAMED OF | 24
25
25
25
25
25 | 56 | 222
214
*236
200
223 | 1 0 3 | 99
100
100
99
100 | 23
22
23
21
23 | 56
56
56
57
56 | 174
177
181
175
178 | 3 1 3 4 | 59
91
80
75
79 | | STINE
JUNG
RENK
TOP FARM
CROW'S | 994
2648
RK602
TFsx1097A
180 | 21.6
21.7
21.8
21.8
21.9 | 23 | 26 | 55.3
54.7
53.1
54.9
53.7 | 159.6
167.8
181.7
162.6
172.5 | 159
163 | 156
158 | 1.7
1.8
3.0
1.1
3.1 | 2 2 | 2 2 | 17
18
19
18
19 | 56
54
52
55
54 | 132
130
135
142
134 | 1 3 4 1 1 5 1 | 100
100
100 | 25
25
26 | 54
55
53
54
53 | 172
210
215
201
217 | 1 2 1 | 68
100
99
97
100 | 21
22
22
22
22
21 | 56
55
54
55
54 | 175
163
*196
145
167 | 2 2 3 1 3 | 70
79
82
74
72 | | CIBA
NORTHRUP KING
DEKALB
GOLDEN HARVEST
RUPP | DK512 | 22.2
22.5
22.6
22.7
23.4 | 22 | 26 | 55.8
56.1
54.6
56.3
57.0 | 175.6
182.1
183.7
165.8
166.3 | 170 | 161 | 0.9
1.3
2.8
1.1
0.8 | | 5.4 | 19
17
17
20
19 | 57
55
56 | 145
*156
*160
127
*158 | 1 2 6 1 3 2 | 98
00
98 | 27
28
25 | 55
56
54
57
56 | 197
219
221
212
188 | | 97 | 22
23
23
23
23
24 | 56
55
54
56
58 | *185
172
171
158
153 | 1 2 2 0 0 | 87
74
75
69
72 | | DAIRYLAND PICKSEED HYPERFORMER *PIONEER *PIONEER | STEALTH-1200
5993
HY9355
3573
3525 | 23.5
23.6
23.9
23.9
24.0 | 25
26
27 | 27

30
31 | 56.2
53.8
55.0
54.8
55.1 | 160.1
126.4
155.2
209.5
197.5 | 143
193
183 | 150
180
173 | 1.6
0.9
1.9
1.3
1.0 | 1 1 1 | 1 1 | 19
19
20
19
21 | 55 | 130
128
*150
*156
142 | 112212 | 89
00
99 | 29. | 54 | | 0 2 1 | 100
50
100
100
100 | 23
24
23
25
25
24 | ACT 100 100 100 100 100 100 100 100 100 10 | 159
115
125
*228
*192 | 2 1 1 1 1 | 83
68
60
81
75 | | TERRA
*CROW'S
CROW'S
JUNG
DAIRYLAND | TR1031
204
370
2596
STEALTH-1205 | 24.0
24.1
24.1
24.2
24.9 | 25
25
25
25
26 | 29
31 | 54.2
56.0
53.5
53.6
54.2 | 190.6
169.9
183.9 | 164
161
176
168 | 153
159 | 2.7
1.4
3.4
3.1
1.4 | Die Cont | 3 | 20
18
20
20
21 | 53
57
53
52
55 | 141
143
128
138
134 | 5 3 6 1 2 1 2 1 | 00 | 30
28
28 | | 229 | 1 1 2 | 100
98
99
100
99 | 23
24
25
25
25
25 | 57
54
54 | 179
*195
168
*185
167 | | 84
85
73
82
74 | | PAYCO
CARGILL
CARGILL | STEALTH-1203
734
4277
4327
KR1623 | 25.5 | 27 | 29

32 | 53.0
53.2
54.6
56.0
55.2 | 184.4
187.5
190.8 | 175
174
177 | 159

166 | 1.5
0.5
2.1
3.1
1.6 | 1 2 | 1 3 | 20 | 53 ± 53 ± 54 | | | 92
98
89 | 30
31
31 | | 239 | 0 | 99
74
100
99
95 | 26
25
26
27
26 | 56
55 | 176
*186
167
*187
176 | 1 | 78
70
82
72
70 | | ASGROW I
GUTWEIN I
PIONEER 3 | 2672
RX623
Ex333
3394 | 25.9
25.9
26.8 | :: | 31 |
54.2
55.0
53.4
56.0
54.5 | 183.2
193.8
195.5 | 179 | 167 | 1.6
1.7
1.1
0.9
1.7 | 2 | 1 | 20 21 | 55
53
55 | *149
*153
*150
138
*154 | 1 | 99
98
99 | 29
31
32 | | 243 | 1 1 0 | 100
99
99
99
99
100 | 26
27
26
27
28 | 53
57 | 146
174
*195
*206
172 | 1 3 1 1 0 | 70 70 70 70 70 70 70 70 70 70 70 70 70 7 | | | 6677
KR1727 | 29.7 | | | 54.1
54.2 | 161.1 | | | 2.4 | | | 25 | 53 | 142
135 | 4 1 1 | | | | 206
216 | | 83
100 | 29
30 | | 176
133 | 2 2 | 68 | | Average | | 23.6 | 25 | 28 | 55.0 | 175.2 | 169 | | 1.8 | 1 | 2 | | Section 1888 | 139 | 3 | THE RESERVE TO SERVE | | | 214 | | 94 | | | 172 | 2 | 74 | | Range | | 20.5
to
29.7 | | | 53.0
to
57.0 | 126.4
to
209.5 | 143
to
193 | 150
to
180 | 0.5
to
4.3 | 2 | 1
to
3 | 17
to
25 | 52
to
57 | 106
to
160 | 0
to
8 1 | 86
to
00 | 24
to | 53
to | 136
to | 0
to | 50
to
100 | 20
to | 53
to
58 | 115
to
228 | 0
to
5 | 5 to | | Least Significa Coefficient of | nt Difference
Variance | 1.1 | | | 1.2 | 14.8 | | | | | | 1 | 1 | 9 | | | 2 | 1 | 12 | | | 1 | 2 | 12 | ==== | === | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE YIELD IN 1994 HURON MONTCALM PLANTED May 10 April 27 HARVESTED November 11 November 3 SOIL TYPE Kilmanagh Loam Montcalm-McBride Sandy Loam PREVIOUS CROP Corn Potatoes PERFECT STAND 28,500 29,700 **AVERAGE POPULATION** 27,360 27,070 **ROW WIDTH** 30" **FERTILIZER** 150-120-9 137-0-120 SOIL TEST: pH 6.8 5.5 73 (high) 534 (very high) 216 (high) 248 (high) IRRIGATION 4.25 inches FARM COOPERATORS: William, Ron and Ed McCrea,Wil-le Farms Bad Axe; Richard Crawford, Montcalm Research Farm, Entrican COUNTY EXTENSION DIRECTOR: Robert Johnson, Bad Axe; Donald Smucker, Stanton EXTENSION AGR'L AGENTS: James LeCureux, Bad Axe; George Atkeson, Stanton MASON PLANTED May 6 HARVESTED November 2 SOIL TYPE Ogemaw Sandy Loam PREVIOUS CROP Snap Beans-rye cover PERFECT STAND 24,500 **AVERAGE POPULATION** 18,300 **ROW WIDTH** 30" **FERTILIZER** 130-4-60 SOIL TEST: pH 6.5 311 (very high) 528 (very high) IRRIGATION None FARM COOPERATORS: Robert and August Oshe, Scottville COUNTY EXTENSION DIRECTOR: David Peterson, Scottville ### Average of Alpena, Grand Traverse & Delta County trials One, two, three year averages — 1994, 1993, 1992 | ##RID | | | % MO | | | TEST | BUSHEL | | | % STA | | | | LPEN | | UNTY | | | RAVERS | | | | TA COU | | | |--|--|--------------------------------|------------------------------|--------------|----|------------------------------|---------------------------------|-----|-----|---------------------------|----|-----|----------------------|----------------------|-------------------------|----------------------------------|----------------------|----------------------|--------------------------|---------|--------------------------|----------------------|------------------------------|------------------------------------|----------------------------| | DERALB DK3506 21.9 55.9 14.1 | (Brand-Variety) | 12743 | | Yr | Yr | WGT
1994 | | Yr | Yr | | Yr | Yr | H20 | WT | B/A | SL STD | H20 | WT | B/A | SL | STD | | G WT | D WT | %
STD | | **PIONERER** 3905 23.6 | DEKALB DK3 DEKALB DK3 DAIRYLAND STE PIONEER 397 | 806
852
EALTH-1174
79 | 21.9
21.9
22.1
22.3 | :: | :: | 55.9
55.1
58.4
56.4 | 141.1
159.2
123.5
92.5 | ::: | ::: | 1.9
5.0
5.7
28.2 | :: | :: | 19
17
19
18 | 57
58
61
58 | 135
167
138
58 | 3 100
4 100
5 99
50 100 | 25
27
26
26 | 55
52
56
55 | 148
152
109
127 | 1 6 7 7 | 100
100
100
100 | 36
31
34
33 | 15.6
21.3
14.2
13.0 | 5.6
6.6
4.8
4.4
4.5 | 84
84
71
82
80 | | JUNG 2244 24,5 55.8 159.0 3.7 19 58 170 100 30 54 148 2 100 34 17.9 6. PAPCO 344 24,5 54.4 182.9 - 24.4 18.56 192.1 95 31 53 174.4 100 27 24.5 19.5 PAPCO 253 24.7 26.5 19.3 0 - 2.4 18.57 197.2 100 32 52 189 4 100 27 24.5 19.5 PAPCO 253 24.7 26.5 19.3 0 - 2.4 18.57 197.2 100 32 52 189 4 100 27 24.5 19.5 PAPCO 253 24.7 26.5 19.3 0 - 2.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 | PIONEER 390
MYCOGEN 137
PIONEER 390 | 05
76
07 | 23.6
23.8
23.9 | 26 | | 56.7
53.9
55.7 | 174.3
130.0
170.2 | | | 3.2
3.9
1.6 | | | 19
20
19 | 59
55
58 | *185
112
*179 | 3 100
6 94
1 100 | 28
28
29 | 54
53
53 | *163
148
*161 | 422 | 100
100
100 | 34
33
33 | 18.2
16.4
19.2 | 4.8
6.2
5.3
6.3
6.6 | 71
80
84
79
84 | | DAIRYLAND STEALTH-1285 25.2 26 55.1 46.9 121 2.0 2 - 21 57 154 2 100 29 53 139 2 100 31 19.0 52.5 4 77 PICKSEED 2620 25.2 27 27 57.1 166.4 173.1 170 | JUNG 224
PAYCO 344
DEKALB DK4 | 01 | 24.5
24.5
24.6 | :: | :: | 55.8
54.4
54.5 | 159.0
182.9
193.0 | ::: | ::: | 3.7
2.4
2.8 | :: | :: | 19
18
18 | 58
56
57 | 170
*192
*197 | 5 100
1 95
2 100 | 30
31
32 | 54
53
52 | 148
*174
*189 | 244 | 100
100
100 | 34
27
27 | 17.9
26.5
24.6 | 6.1
*7.1
*6.7
*6.8 | 84
85
85
79
90 | | CIBA 4030 25.4 54.7 159.8 2.4 20 56 170 2 100 31 53 149 3 100 35 19.1 *6. **PIONEER** 3893 25.4 55.8 151.1 3.3 20 56 170 2 100 31 53 188 1 100 34 19.6 6. **MYCOGEN** 4140 25.5 55.8 151.1 3.3 20 59 149 4 90 31 53 153 29 4 32 16.3 5. **JUNG** 2386 25.6 28 56.2 162.6 124 1.8 2 19 59 149 4 90 31 53 153 153 2 94 32 16.3 5. **JUNG** 25.7 29 54.7 168.5 136 5.3 3 20 56 177 3 91 31 53 153 2 94 32 16.3 5. **AMCORN** Ex 272 25.8 56.1 152.2 3.1 20 58 161 2 8 33 2 54 143 4 96 33 14.1 4. **AMCORN** Ex 272 25.8 56.1 152.2 3.1 20 58 161 2 8 33 2 54 143 4 96 33 14.1 4. **MOLERTIVER VAL WRY185** 26.0 26 55.7 151.1 121 4.6 3 21 55 158 3 98 31 53 144 4 100 33 17.2 4. **MOLERTIVER VAL WRY185** 26.0 26 55.7 151.1 121 4.6 3 21 55 158 3 98 31 53 145 4 100 33 17.4 4. **MOLERTIVER KING** M2409** 26.1 28 29 56.0 164.0 132 131 3.4 2 2 2 15 817 12 100 31 54 130 5 100 25 26.8 *6. **TRELAY** 1011 26.6 55.7 158.4 3.6 22 55 187 5 98 31 55 148 6 100 32 20.3 6. **MCOGEN** EXAGRATION SCARLES SEARCH STATES STAT | DAIRYLAND STEA
DEKALB DK3
PICKSEED 2620 | ALTH-1285
881
80 | 25.2
25.2
25.2 | 26

27 | 27 | 55.1
54.4
57.1 | 146.9
178.4
166.4 | 121 | 125 | 2.0
1.9
2.7 | 2 | :: | 21
18
19 | 57
57
60 | 154
*183
173 | 2 100
3 100
3 100 | 29
33
32 | 53
52
54 | 139
*173
*160 | 1 2 | 100
100
100 | 31
28
34 | 19.0
25.4
17.7 | 6.0
5.8
*7.1
6.0
5.8 | 84
84
82
87
80 | | AMCORN EX 272 | CIBA 4030
PIONEER 3893
MYCOGEN 4140 | 30
33
30 | 25.4
25.4
25.5 | :: | :: | 54.7
54.0
55.8 | 159.8
199.1
151.1 | ::: | | 2.4
1.6
3.3 | :: | :: | 20
21
20 |
56
55
59 | 170
*210
149 | 2 100
2 100
4 90 | 31
30
31 | 53
53
53 | 149
*188
153 | 1 2 | 100
100
94 | 35
34
32 | 19.1
19.6
16.3 | 6.0
*6.7
6.6
5.2
5.1 | 83
86
77
80
88 | | TRELAY 1011 26.6 55.7 158.4 3.6 22 56 169 1 96 31 55 148 6 100 32 20.3 6. KING AGRO KGAG 21050 26.7 55.5 161.2 4.9 22 56 *181 3 99 31 55 141 6 98 30 21.8 6. MYCOGEN 2440 26.7 55.5 161.2 4.4 21 56 166 3 96 32 55 154 6 99 31 21.3 6. AMCORN 3030 27.2 54.9 158.0 2.2 21 57 165 2 93 34 53 151 3 99 31 19.8 6. TERRA TR910 27.2 54.1 172.2 6.6 20 55 *186 8 100 35 53 158 6 100 30 21.1 6. *AMCORN LG 2388 27.2 54.4 175.7 2.0 20 56 *188 0 94 35 53 *164 4 100 28 24.4 *6. JUNG 2366 27.7 56.4 162.7 5.8 22 56 *179 4 96 34 57 146 8 100 27 22.8 6. RUPP Ex.4-229 27.7 55.4 162.4 3.9 22 56 *182 1 94 34 54 143 7 99 28 25.6 *7 TRELAY 2004 27.9 54.9 167.8 4.6 20 55 *185 1 100 36 52 152 2 100 28 25.5 *7 AMCORN LG 2409 28.2 53.3 168.3 1.6 20 55 *185 1 100 36 52 152 2 100 28 25.3 *7 PICKSEED 4990 29.0 32 33 53.9 164.4 132 128 4.0 2 2 23 55 *184 1 91 35 52 145 7 99 28 25.3 *7 PICKSEED 4990 29.0 32 33 53.9 164.4 132 128 4.0 2 2 23 55 *184 1 91 35 52 145 7 99 28 25.3 *7 RUPP Ex.4-238 30.0 54.8 179.5 2.4 23 55 *217 1 100 38 54 149 5 100 27 25.9 *6. CARGILL 2927 30.2 35 35 54.4 169.2 131 126 3.9 3 3 23 55 *193 3 100 37 54 146 5 100 27 25.9 *6. CARGILL 2927 30.2 35 35 54.4 169.2 131 126 3.9 3 3 23 55 *193 3 100 37 54 146 5 100 27 25.9 *6. AVERAGE 25.8 29 32 55.2 161.2 130 127 4.0 2 2 20 57 170 4 97 31 54 152 4 100 31 20.4 6 Range 25.8 29 32 55.2 161.2 130 127 4.0 2 2 20 57 170 4 97 31 54 152 4 100 31 20.4 6 | AMCORN EX A DAIRYLAND STEA HOLF RIVER VAL WRVS | 272
ALTH-1284
9185 | 25.8
25.8
26.0 | 26 | :: | 56.1
54.1
55.7 | 152.2
151.0
151.1 | 121 | | 3.1
3.4
4.6 | 3 | | 20
21
21 | 58
55
57 | 161
158
157 | 2 83
3 98
3 88 | 32
31
31 | 54
53
55 | 143
144
145 | 446 | 96
100
99 | 33
33
34 | 14.1
17.2
14.7 | 6.4
4.7
5.7
4.9
5.7 | 87
50
76
62
77 | | *AMCORN LG 2388 27.2 54.4 175.7 2.0 20 56 *188 0 94 35 53 *164 4 100 28 24.4 *6. JUNG 2366 27.7 56.4 162.7 5.8 22 56 *179 4 96 34 57 146 8 100 27 22.8 6. RUPP Ex.4-229 27.7 55.4 162.4 3.9 22 56 *182 1 94 34 54 143 7 99 28 25.6 *7. TRELAY 2004 27.9 54.9 167.8 4.6 22 56 *182 2 100 34 54 153 7 100 27 25.9 *6. AMCORN LG 2409 28.2 53.3 168.3 1.6 22 56 *182 2 100 34 54 153 7 100 27 25.9 *6. AMCORN Ex 410 28.3 55.3 164.2 2.7 22 56 *180 0 98 35 54 149 5 100 28 25.3 *7. PICKSEED 4990 29.0 32 33 53.9 164.4 132 128 4.0 2 2 23 55 *184 1 91 35 52 145 7 99 28 24.3 *6. *DEKALB DK446 30.0 54.8 179.5 2.4 23 55 *217 1 100 38 54 142 4 100 27 25.6 *6. RUPP Ex.4-238 30.0 53.9 171.2 2.9 24 54 *192 1 100 36 54 150 5 100 28 24.5 *6. CARGILL 2927 30.2 35 35 55 4.4 169.2 131 126 3.9 3 3 23 55 *193 3 100 37 54 146 5 100 27 25.6 *6. AVERAGE 25.8 29 32 55.2 161.2 130 127 4.0 2 2 20 57 170 4 97 31 54 152 4 100 31 20.4 6. RAPERAGE 25.8 29 32 55.2 161.2 130 127 4.0 2 2 20 57 170 4 97 31 54 152 4 100 31 20.4 6. 21.9 26 27 51.8 92.5 121 125 1.4 1 2 17 52 58 0 83 25 52 109 1 94 25 13.0 4. Range 21.9 26 27 51.8 92.5 121 125 1.4 1 2 17 52 58 0 83 25 52 109 1 94 25 13.0 4. Range 21.9 26 27 51.8 92.5 121 125 1.4 1 2 17 52 58 0 83 25 52 109 1 94 25 13.0 4. | TRELAY 1011
CING AGRO KGAC
MYCOGEN 2440 | 1
G 21050 | 26.6
26.7
26.7 | :: | :: | 55.7
55.5
55.3 | 158.4
161.2
159.8 | ::: | ::: | 3.6
4.9
4.4 | | | 22
22
21 | 56
56
56 | 169
*181
166 | 1 96
3 99
3 96 | 31
31
32 | 55
55
55 | 148
141
154 | 6 6 | 100
98
99 | 32
30
31 | 20.3
21.8
21.3 | *6.7
6.4
6.6
6.5
6.1 | 83
75
89
88
70 | | AMCORN Ex 410 28.3 55.3 164.2 2.7 22 56 *180 0 98 35 54 149 5 100 28 25.3 *7 PICKSEED 4990 29.0 32 33 53.9 164.4 132 128 4.0 2 2 23 55 *184 1 91 35 52 145 7 99 28 24.3 *6 *DEKALB DK446 30.0 54.8 179.5 2.4 23 55 *217 1 100 38 54 142 4 100 27 25.6 *6 RUPP Ex.4-238 30.0 53.9 171.2 2.9 24 54 *192 1 100 36 54 150 5 100 28 24.5 *6 CARGILL 2927 30.2 35 35 54.4 169.2 131 126 3.9 3 3 23 55 *193 3 100 37 54 146 5 100 27 25.9 *6 JUNG 2496 31.2 37 37 51.8 161.4 131 127 2.7 2 2 2 25 52 172 3 99 38 52 151 2 100 28 23.1 6 Average 25.8 29 32 55.2 161.2 130 127 4.0 2 2 20 57 170 4 97 31 54 152 4 100 31 20.4 6 Range 21.9 26 27 51.8 92.5 121 125 1.4 1 2 17 52 58 0 83 25 52 109 1 94 25 13.0 4 | AMCORM LG 2
JUNG 2366
RUPP Ex.4 | 2388
6
4-229 | 27.2
27.7
27.7 | :: | :: | 54.4
56.4
55.4 | 175.7
162.7
162.4 | ::: | ::: | 2.0
5.8
3.9 | :: | | 20
22
22 | 56
56
56 | *188
*179
*182 | 0 94
4 96
1 94 | 35
34
34 | 53
57
54 | *164
146
143 | 487 | 100
100
99 | 28
27
28 | 24.4
22.8
25.6 | 6.4
*6.8
6.1
*7.3
*6.9 | 91
87
79
82
86 | | CARGILL 2927 30.2 35 35 54.4 169.2 131 126 3.9 3 3 23 55 *193 3 100 37 54 146 5 100 27 25.9 *6 JUNG 2496 31.2 37 37 51.8 161.4 131 127 2.7 2 2 25 52 172 3 99 38 52 151 2 100 28 23.1 6 Average 25.8 29 32 55.2 161.2 130 127 4.0 2 2 20 57 170 4 97 31 54 152 4 100 31 20.4 6 Range 21.9 26 27 51.8 92.5 121 125 1.4 1 2 17 52 58 0 83 25 52 109 1 94 25 13.0 4 | AMCORN EX A
PICKSEED 4990
DEKALB DK44
RUPP EX.4 | 410
90
46 | 28.3
29.0
30.0 | 32 | 33 | 55.3
53.9
54.8 | 164.2
164.4
179.5 | 132 | 128 | 2.7
4.0
2.4 | | | 22
23
23 | 56
55
55 | *180
*184
*217 | 0 98
1 91
1 100 | 35
35
38 | 54
52
54 | 149
145
142 | 5 7 4 | 100
99
100 | 28
28
27 | 25.3
24.3
25.6 | 6.3
*7.2
*6.8
*6.8 | 8 | | Average 25.8 29 32 55.2 161.2 130 127 4.0 2 2 20 57 170 4 97 31 54 152 4 100 31 20.4 6 21.9 26 27 51.8 92.5 121 125 1.4 1 2 17 52 58 0 83 25 52 109 1 94 25 13.0 4 Range to | CARGILL 292
JUNG 249 | 06 | 31.2 | 37 | 37 | 51.8 | 161.4 | 131 | 127 | 2.7 | 2 | 3 2 | 25 | 52 | 172 | 3 99 | 38 | 52 | 151 | 2 | 100 | 28 | 23.1 | 6.4 | 5 | | 74 2 77 77 50 / 400 4 4/7 474 20 2 7 7 25 /4 207 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | 21.9 | 26 | 27 | 51.8 | 92.5 | 121 | 125 | | 1 | 2 | 20 | 57 | 170 | 4 97 | 31 | 54 | 152 | 4 | 100 | 31 | 20.4 | 6.1 | 8 | | | | | 31.2 | 37 | 37 | 58.4 | 199.1 | 143 | 131 | 28.2 | 3 | 3 | 25 | 61
1 | 217 | to to 50 100 | 38 | | | | 100 | to
36 | to
26.8 | 7.3 | t | * SIGNIFICANTLY BETTER THAN AVERAGE YIELD IN 1994 PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND **AVERAGE POPULATION ROW WIDTH FERTILIZER** SOIL TEST: pH ALPENA May 9 November 10 Selkirk Loam Navy beans 26,100 25,420 30" 118-78-162 6.3 178 (very high) 272 (high) EXTENSION AGR'L AGENT: Erwin Elsner, Traverse City **GRAND TRAVERSE** May 6 October 11 Karlin Sandy Loam Alfalfa Sod 24,550 24,430 30" 130-38-98 6.7 136 (very high) 192 (medium) FARM COOPERATORS: Allen Schiellard, Hubbard Lake; Richard Dennett, Buckley COUNTY EXTENSION DIRECTOR: Paul Wegmeyer, Alpena; James Wiesing, Traverse City PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND **AVERAGE POPULATION ROW WIDTH** FERTILIZER SOIL TEST: pH DELTA May 13 September 22 Onaway Fine Sandy Loam Corn 26,100 21,400 80-40-80 + 7 ton manure 113 (very high) 345 (very high) FARM COOPERATORS: Benny & Audrey Herioux, Bark River MSU COOPERATORS: James Lempke and Dr. Richard Leep, Department Crop & Soil Sciences, Marquette COUNTY EXTENSION DIRECTOR: Cynthia Brock, Escanaba EXT. AG/DIST. FARM MGMT AGENT: Warren L. Schauer, Escanaba # Average of Alpena & Missaukee County Silage Trials One, two year averages — 1994, 1993 | alkana ayaka | | | 1000000 | | TONS | PER ACRE | | | ALPENA | COUNT | Y | MIS | SAUKE | cou | NTY | |---|--|--------------------------------------|---------------|--------------------------------------|---------------|---------------------------------|--------------|--------------------------------------|--------------------------------------|------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-------------------------------| | HYBRID
(BRAND-VARIETY | , . | % DRY
1994 | MATTER
2Yr | GREEN
1994 | WEIGHT
2Yr | DRY W
1994 | EIGHT
2Yr | % DM | TONS/A | | %STD | % DM | TONS// | CRE
D WT | %STI | | PIONEER
*PIONEER
PIONEER
DAIRYLAND
PIONEER | 3979
3905
3907
STEALTH-1284
3893 | 35.6
35.6
34.9
33.3
31.5 | | 13.2
22.1
22.0
20.8
24.6 | | 4.7
7.9
7.7
6.9
7.7 | | 31.9
37.0
35.0
35.1
31.9 | 13.0
23.7
22.7
20.7
26.3 | 4.2
*8.8
8.0
7.3
8.3 | 100
99
100
98
100 | 39.4
34.2
34.8
31.5
31.2 | 13.2
20.6
21.2
20.8
22.9 | 5.2
7.0
*7.4
6.6
7.2 | 100 | | *PICKSEED *NORTHRUP KING *DAIRYLAND *NORTHRUP KING PICKSEED | 4990
N2933
DST 9026
N3030
5665 | 30.6
30.4
29.1
29.1
28.8 | | 26.2
25.6
27.0
26.5
26.4 | | 8.1
7.8
7.8
7.8
7.6 | | 31.3
31.4
29.3
31.0
26.8 | 28.0
26.4
29.2
28.5
28.2 | *8.7
8.3
*8.5
*8.8
7.6 | 95
100
100
95
100 | 30.3
29.4
28.8
27.1
30.8 | 24.4
24.9
24.8
24.6
24.5 | *7.4
*7.3
7.2
6.7
*7.5 | 98
100
100
98
100 | | CARGILL
NORTHRUP KING | 2927
N2899 | 28.7
27.9 | 29.7 | 26.6
25.3 | 21.4 | 7.6
7.1 | 6.3 | 29.3
27.0 | 28.5
27.0 | 8.3
7.3 | 98
97 | 28.1
28.8 | 24.7
23.6 | 6.9 | 100 | | Average | | 31.3 | 29.7 | 23.8 | 21.4 | 7.4 | 6.3 | 31.4 | 25.2 | 7.8 | 99 | 31.2 | 22.5 | 6.9 | 100 | | Range | | 27.9
to
35.6 | | 13.2
to
27.0 | | 4.7
to
8.1 | | 26.8
to
37.0 | 13.0
to
29.2 | 4.2
to
8.8 | 95
to
100 | 27.1
to
39.4 | 13.2
to
24.9 | 5.2
to
7.5 |
98
to
100 | | Least Signification | | 1.3 | | 1.0 | | 0.4
6.3 | | 1.2
3.7 | 0.9 | 0.6 | | 1.3 | 1.1 5.8 | 0.4
7.0 | | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE DRY WEIGHT PER ACRE IN 1994 ### Table 6B ### **NORTHERN MICHIGAN** ZONE 4 ### Average of Alpena & Missaukee County In-vitro Analyses One, two year averages — 1994, 1993 | | | XDRY M | | X F | The second second second | % NEU | A PROPERTY OF A | | RUDE | | | IN-VIT | RO QU | ALITY A | NALYSE | S | | |---|--|--------------------------------------|---------|--------------------------------------|----------------------------------|--------------------------------------|---------------------|--------------------------------------|---------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------| | | | | | | | D. GEN | | | | A | LPENA | COUNT | Y | MI | SSAUKE | E COUN | ITY | | HYBRID
(BRAND-VARIETY) | | 1994 | 2
Yr | 1994 | 2
Yr | 1994 | Yr 2 | 1994 | Yr | 2DMD | %FD | %NDF | %CP | %DMD | %FD | %NDF | %CI | | PIONEER
PIONEER
PIONEER
DAIRYLAND
PIONEER | 3905
3979
3907
STEALTH-1284
3893 | 76.7
70.3
75.1
76.2
75.7 | | 45.6
43.1
45.9
45.0
44.7 | | 42.9
51.9
46.2
43.3
43.9 | | 7.38
7.41
7.42
7.39
6.73 | | 76.2
64.6
74.5
76.1
76.1 | 45.2
41.1
47.1
44.8
45.5 | 43.4
60.2
48.3
43.4
44.0 | 7.43
7.25
7.66
7.74
6.87 | 77.1
76.0
75.7
76.3
75.4 | 46.0
45.2
44.8
45.2
43.8 | 42.4
43.7
44.1
43.3
43.8 | 7.3
7.5
7.1
7.0
6.5 | | PICKSEED
NORTHRUP KING
DAIRYLAND
NORTHRUP KING
PICKSEED | 4990
N2933
DST 9026
N3030
5665 | 73.7
73.7
74.7
76.5
75.9 | | 44.7
45.2
47.3
49.0
47.3 | | 47.5
47.9
48.0
46.1
45.8 | | 7.48
7.10
7.23
6.87
7.49 | | 72.2
74.6
74.7
76.0
74.9 | 45.2
46.9
47.3
48.6
47.0 | 50.8
47.8
48.1
46.7
47.3 | 7.19
7.49
7.71
7.06
7.89 | 75.3
72.8
74.7
77.0
76.8 | 44.2
43.4
47.4
49.4
47.5 | 44.2
48.1
48.0
45.4
44.2 | 6.7 | | CARGILL
NORTHRUP KING | 2927
N2899 | 74.5
73.6 | 76 | 48.5 | 50 | 49.6
47.9 | 49 | 7.10
6.92 | 7.2 | 73.0
72.6 | | 51.0
50.0 | | 76.0
74.7 | 50.0
44.8 | 48.1
45.9 | | | Average | | 74.7 | 76 | 45.9 | 50 | 46.8 | 49 | 7.21 | 7.2 | 73.8 | 45.9 | 48.4 | 7.38 | 75.7 | 46.0 | 45.1 | 7.0 | | Range | | 70.3
to
76.7 | | 43.1
to
49.0 | i origina
graeji
Serteyina | 42.9
to
51.9 | | 6.73
to
7.49 | | 64.6
to
76.2 | 41.1
to
48.6 | 43.4
to
60.2 | 6.87
to
7.89 | 72.8
to
77.1 | 43.4
to
50.0 | 42.4
to
48.1 | 6.50
to
7.7 | | Least Significan
Coefficient of N | | 0.6 | | 1.2 | | 0.5 | 24(77 v)
25(5)(8 | .13 | ige elk | 0.5 | 1.0 | 0.6 | .15 | 0.6
0.6 | 1.3 | 0.4 | .1 | DMD = DRY MATTER DIGESTABILITY (higher percentage means greater energy content) FD = FIBER DIGESTABILITY (the measure of the degree of fermintation of fiber, high FD is desirable) NDF = NEUTRAL DETERGENT FIBER (the measure of fiber content, higher levels mean lower energy) CP = CRUDE PROTEIN (higher protein levels require less supplementation) PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION **ROW WIDTH** FERTILIZER SOIL TEST: pH K ALPENA May 9 September 22 Selkirk Loam Navy Beans 25,780 118-78-162 6.3 178 (very high) 272 (high) MISSAUKEE May 6 September 23 Nester Sandy Loam Canola 24,550 24,510 116-18-70 6.6 88 (high) 192 (medium) FARM COOPERATORS: Allen Schiellard, Hubbard Lake; Doug Nielsen and George McGloughlin, Lake City Experiment Station, Lake City MSU COOPERATORS: Dr. Michael Allen and David Main, Animal Science Department, East Lansing COUNTY EXTENSION DIRECTOR: Paul Wegmeyer, Alpena; Richard Miller, Lake City ### Average of Kent, Ingham & Saginaw County EARLY Silage Trials One, two, three year averages — 1994, 1993, 1992 EARLY TRIAL (106 DAY RELATIVE MATURITY OR EARLIER (BASED ON COMPANY RATING) | | | | | | | TON | S PER | ACRE | | | | - | KENT C | OUNTY | | 1 | NGHAM | COUNT | Y | | IURON | COUNT | Y | |---|--|--------------------------------------|-------------|--------------------|--------------------------------------|-------|--------------------|---------------------------------|------------------|------------------|----------------------------|-------|--------------------------------------|------------------------------------|------------------------------|--------------------------------------|--------------------------------------|------------------------------------|----------------------------|--------------------------------------|--------------------------------------|--|-------------------| | HYBRID
(BRAND-VARIETY |) | % DF
1994 | Y MA
2Yr | TTER
3Yr | | EN WE | IGHT
3Yr | DRY
1994 | WEIG
2Yr | SHT
3Yr | × | DM | TONS/ | | %STD | % DM | TONS/ | | %STD | % DM | TONS/ | The state of s | | | PIONEER *CIBA PIONEER NORTHRUP KING PIONEER | 3769
4202
3752
N4342wx
3723 | 34.7
34.3
34.1
33.0
33.0 | :: | 36.8 | 18.8
21.8
19.7
21.9
21.8 | | 20.1 | 6.6
7.5
6.8
7.3
7.3 | 7.0 | 7.4 | 37
38
37
36
37 | .0 .4 | 21.6
25.1
23.0
23.8
25.3 | 8.1
*9.5
8.6
8.7
*9.4 | 100
99
100
94
97 | 33.8
32.4
34.1
31.6
31.9 | 19.8
23.5
20.5
23.5
21.9 |
6.7
7.6
7.0
7.4
7.0 | 99
86
95
98
89 | 33.1
32.4
30.7
31.0
29.8 | 15.0
17.0
15.5
18.2
18.3 | 5.0
5.5
4.7
*5.7
5.4 | 99
82
100 | | NORTHRUP KING
NORTHRUP KING
CIBA
DAIRYLAND
PIONEER | N4242
N3030
4172
STEALTH-1203
3751 | 32.6
32.5
32.2
32.2
32.1 | 34.9 | 37.2 | 21.2
17.9
19.8
21.6
21.1 | :: | 19.8 | 7.0
5.9
6.5
7.0
6.8 | 7.2 | 7.3 | 36
36
36
34
32 | .0 | 23.7
20.3
22.5
24.8
25.3 | 8.5
7.3
8.3
8.5
8.2 | 99
89
100
98
99 | 32.7
31.2
30.6
31.4
33.2 | 21.6
18.5
21.3
23.1
20.3 | 7.1
5.8
6.5
7.3
6.8 | 90
76
93
98
90 | 29.1
30.3
29.1
30.9
30.5 | 18.2
14.9
15.7
16.9
17.7 | 5.3
4.5
4.6
5.3
5.4 | 88
98
94 | | CIBA
CIBA
NORTHRUP KING
GOLDEN HARVEST
*NORTHRUP KING | 4144
4214
X4263
Ex702
N5220 | 31.9
31.8
31.7
31.5
31.2 | :: | | 20.3
22.5
21.1
20.4
24.2 | :: | | 6.5
7.2
6.7
6.5
7.6 | :: | | 34
33
33
33
32 | .1 | 21.7
27.2
22.8
23.9
29.3 | 7.4
9.0
7.6
8.1
*9.5 | 100
96
100
97
99 | 31.6
33.5
32.4
32.7
31.4 | 23.2
23.0
22.8
20.4
24.5 | 7.3
*7.7
7.4
6.7
*7.7 | 97
86
99
99
99 | 29.8
28.8
29.2
28.0
29.8 | 16.0
17.2
17.8
16.8
18.8 | 4.8
5.0
5.2
4.7
5.6 | 97
100
99 | | DAIRYLAND *DAIRYLAND *PIONEER *DAIRYLAND *CARGILL | STEALTH-1405
STEALTH-1205
3573
STEALTH-1407
4327 | 30.8
29.8
29.5
28.8
28.7 | | 32.8 | 22.5
26.3
26.2
25.7
26.5 | | 24.7 | 6.9
7.9
7.8
7.5
7.6 | 7.9 | 8.1 | 32
31
32
29
29 | .6 | 25.5
29.2
29.5
28.5
31.4 | 8.2
*9.2
*9.6
8.5
*9.1 | 100
100
98
98
98 | 31.1
30.9
28.8
29.7
30.0 | 24.7
26.4
26.1
26.7
26.3 | 7.6
*8.1
7.5
*7.9
*7.9 | 98
99
97
94
94 | 29.2
26.9
27.1
27.0
26.9 | 17.3
23.4
23.1
22.0
21.8 | 5.0
*6.3
*6.3
*6.0
*5.9 | 100
98
92 | | Average | | 31.8 | 33.9 | 35.6 | 22.1 | 22.4 | 21.5 | 7.0 | 7.5 | 7.6 | 34 | .2 | 25.2 | 8.6 | 98 | 31.7 | 22.9 | 7.2 | 93 | 29.5 | 18.1 | 5.3 | 96 | | Range | COLUMN TO THE PERSON OF PE | 28.7
to
34.7 | to | 32.8
to
37.2 | 17.9
to
26.5 | to | 19.8
to
24.7 | 5.9
to
7.9 | 7.0
to
8.1 | 7.3
to
8.1 | 29
t
38 | 0 | 20.3
to
31.4 | 7.3
to
9.6 | 89
to
100 | 28.8
to
34.1 | 18.5
to
26.7 | 5.8
to
8.1 | 76
to
99 | 26.9
to
33.1 | 14.9
to
23.4 | 4.5
to
6.3 | 82
to
100 | | Least Significar
Coefficient of \ | nt Difference | 1.8
6.4 | | | 1.0
5.3 | | | 0.5
8.6 | | | 2
6 | .1 | 0.9
3.9 | 0.5
6.9 | | 1.8
7.1 | 1.0
5.2 | 0.5
8.6 | 9503 | 1.4
5.7 | 1.0 | 0.4
10.2 | COLUMN TO SERVICE | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE DRY WEIGHT PER ACRE IN 1994 ### Table 5L (A) ### **SOUTH & NORTH CENTRAL MICHIGAN** **ZONES 2 & 3** Average of Kent, Ingham & Saginaw County LATE Silage Trials One, two, three year averages — 1994, 1993, 1992 LATE TRIAL (107 DAY RELATIVE MATURITY OR LATER (BASED ON COMPANY RATING) | | | | | | | TON | S PER | ACRE | | 100 | | KENT | COUNTY | | 1 | NGHAM | COUNT | Y | | HURON | COUNT | Y | |--|---|----------------------|-------|------------------------------|--------------------------------------|----------------------|--------------------|---------------------------------|------------------|------------------|--------------------------------------|--------------------------------------|-------------------|-------------------------------|--------------------------------------|--------------------------------------|------------------------------------|----------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-----------------| | HYBRID
(BRAND-VARIETY | 0 | ALPERT CONTRACTOR | RY MA | TTER
3Yr | | EN WE | IGHT
3Yr | DRY
1994 | WEIG
2Yr | | % DM | | ACRE
D WT | %STD | % DM | TONS, | ACRE
D WT | %STD | % DM | | ACRE
D WT | %STD | | *CIBA
CARGILL
CALLAHAN
HYPERFORMER
CARGILL | 4394
\$X269
C7252
HY9424
5547 | 35.3
34.8 | 35.7 | 36.6 | 22.9
23.4
23.5
22.9
22.8 | 23.1 | 22.8 | 8.7
8.3
8.3
8.0
7.9 | 8.2 | | 39.5
35.9
38.4
35.9
34.8 | 26.0 | *10.3 | 97 | 37.7
35.7
32.8
33.9
34.4 | 23.1
25.7
25.6
22.8
23.0 | *8.8
*9.2
8.4
7.7
7.9 | 99
91
95
91
93 | 37.0
34.5
33.4
34.3
34.6 | 19.5
18.4
18.3
18.5
19.2 | *7.2
6.3
6.1
6.3
6.6 | 98
94
95 | | *HYPERFORMER
NORTHRUP KING
CALLAHAN
RENK
*CALLAHAN | HY9490
N6330
C7454X
RK812
C7258 | | :: | 33.6 | 26.0
23.9
22.4
24.2
25.4 | 24.1 | 24.0 | | 8.0 | | 39.5
33.1
33.7
35.3
36.6 | 28.7
27.8
27.6 | 9.5 | 100
100
97
99
100 | 33.2
34.5
34.3
34.3
32.8 | 26.5
24.6
21.8
23.9
26.1 | *8.8
*8.5
7.5
8.2
*8.5 | 92
79
80
96
97 | 30.9
35.3
33.6
32.2
31.8 | 21.9
18.5
17.7
21.3
20.4 | *6.8
6.6
5.9
*6.9
6.5 | 99
96
100 | | NORTHRUP KING
*PIONEER
PIONEER
*RENK
AMCORN | N5901
3525
3394
RK886
9292 | 33.1
32.5
32.3 | 32.2 | 31.6
32.3
32.2
34.2 | 25.8 | 27.8
25.8
25.9 | 25.6 | 8.1 | 8.2 | 8.2 | 34.2
35.0
33.1
33.2
33.6 | 24.5
29.2
28.7
31.1
23.7 | 9.4 | 98
100
99
99
73 | 33.0
32.0
33.7
33.3
28.8 | 23.0
27.1
25.9
24.4
18.2 | 7.6
*8.6
*8.7
8.1
5.2 | 94
99
97
86
61 | 33.7
32.2
30.8
30.5
33.1 | 18.3
21.0
20.2
21.9
17.4 | 6.2
*6.8
6.2
6.7
5.8 | 96
97
100 | | PIONEER | 3394E | 29.9 | | | 19.8 | | | 6.0 | | | 30.7 | 25.4 | 7.8 | 78 | 29.4 | 16.0 | 4.7 | 56 | 29.5 | 18.0 | 5.3 | 89 | | Average | | 33.8 | 33.6 | 33.4 | 23.5 | 24.5 | 24.5 | 8.0 | 8.2 | 8.1 | 35.1 | 27.4 | 9.6 | 96 | 33.4 | 23.6 | 7.9 | 88 | 33.0 | 19.4 | 6.4 | 96 | | Range | | to | to | 31.6
to
36.6 | 19.8
to
26.0 | to | 21.9
to
26.7 | 6.0
to
9.1 | 7.1
to
8.7 | 7.4
to
8.3 | 30.7
to
39.5 | 23.7
to
31.1 | 7.8
to
11.7 | 73
to
100 | 28.8
to
37.7 | 16.0
to
27.1 | 4.7
to
9.2 | 56
to
99 | 29.5
to
37.0 | 17.4
to
21.9 | 5.3
to
7.2 | 81
to
100 | | Least Significa
Coefficient of | | 2.0
6.7 | | | 1.5
7.4 | | | 0.4
8.7 | | | 2.9
8.8 | 1.6 | 0.7
8.0 | | 1.7
6.2 | 1.7
8.9 | 0.6
9.4 | | 1.4
5.0 | 1.1
7.0 | 0.4 | | ^{*} SIGNIFICANTLY BETTER THAN AVERAGE DRY WEIGHT PER ACRE IN 1994 PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION ROW WIDTH FERTILIZER SOIL TEST: pH P KENT May 4 September 15, 29 Spinks Loamy Sand Alfalfa Sod 28,500 27,670 30" 76-0-0 5.8 132 (very high) 320 (very high) INGHAM April 25 September 9, 20 Capac Loam Soybeans 28,500 25,900 30" 160-10-107 5.9 113 (very high) 240 (high) PLANTED HARVESTED SOIL TYPE PREVIOUS CROP PERFECT STAND AVERAGE POPULATION ROW WIDTH FERTILIZER SOIL TEST: pH P HURON May 10 September 12, 26 Kilmanagh Loam Corn 28,500 27,390 30" 150-120-9 6.8 73 (high) 216 (high) FARM COOPERATORS: William, Ron and Ed McCrea, Wil-le Farms, Bad Axe MSU COOPERATORS: Dr. Michael Allen and David Main, Animal Science Department, East Lansing COUNTY EXTENSION DIRECTOR: Robert Johnson, Bad Axe EXTENSION AGR'L AGENT: James LeCureux, Bad Axe Table 5L (B) ### Average of Kent, Ingham & Huron County EARLY In-vitro Analyses One, two, three year averages — 1994, 1993, 1992 EARLY TRIAL (106 DAY RELATIVE MATURITY OR EARLIER (BASED ON COMPANY RATING) | | | MORY I | MATTER
GEST | % FIBER | | NEU' | TRAL
T FIB | %
PR | CRUDE | | | | | IN-VITE | | | | | MIDUM | COUNT | | |--|--|------------------------------|-------------------------|--|-------|-------------------------|----------------------|------------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------| | HYBRID
(BRAND-VARIETY) | 20 Z 5122 | | | 1994 Yr | | 1994 | Yr Yr | 1994 | | %DMD | %FD | COUNTY | %CP | %DMD | %FD | %NDF | %CP | %DMD | %FD | %NDF | *CI | | PIONEER
CIBA
PIONEER
NORTHRUP KING
PIONEER | 3769
4202
3752
N4342wx
3723 | 76.4
76.9
77.8
76.4 | 76 | 46.1 45 - 47.4 46.6 43.4 44.6 45 4 | - 4 | 3.9 4
4.0 -
1.6 - | 43 | 7.55
7.32
7.43
7.58 | 7.5 | 75.9
77.9
77.8
75.5 | 46.3
47.1
44.7
39.8 | 44.9
41.7
40.2
40.8 | 7.92
7.76
7.97
8.15 | 76.7
76.1
79.6
77.3 | 42.6
46.0
46.9
44.9
39.1 | 40.6
44.4
38.5
41.3 | 7.48
7.39
7.26
7.58 | 76.6
76.7
76.1
76.5 | 49.3
49.2
48.3
45.6 | 46.1
45.9
46.1
43.2
46.5 | 7.26
6.8
7.06
7.06 | | NORTHRUP KING
NORTHRUP KING
CIBA
DAIRYLAND
PIONEER | N4242
N3030
4172
STEALTH-1203
3751 | 77.2
77.1
77.1 | :: :: | 45.8
46.6
45.7
47.8
48.0 47 4 | - 4 | 2.9 - | | 7.55
7.40
7.58 |
: : | 77.2
76.1
77.7 | 44.5
40.3
47.1 | 41.1 40.1 42.1 | 7.86
7.45
8.39 | 77.8
77.4
77.3 | 47.9
46.2
45.3
46.2
47.0 | 41.3
41.3
42.2 | 7.52
7.54
7.50 | 76.5
77.9
76.1 | 49.3
51.6
50.0 | 45.7
46.2
45.8
47.8
45.6 | 7.2
7.2
6.8 | | CIBA
CIBA
NORTHRUP KING
GOLDEN HARVEST
NORTHRUP KING | 4144
4214
x4263
Ex702
N5220 | 74.6
75.9
77.5 | | 46.3
47.2
46.7
48.4
47.8 | - 4 | 8.4 -
5.1 -
3.6 - | | 7.24
7.47
7.96 | = = | 75.1
73.4
78.4 | 43.5
43.3
48.2 | 44.1 46.9 41.7 | 7.75
7.68
8.92 | 73.7
77.7
76.5 | | 48.6
41.8
43.5 | 7.14
7.60
7.64 | 74.9
76.7
77.6 | 52.1
50.0
51.0 | 49.5
52.4
46.7
45.7
53.6 | 6.8
7.1
7.3 | | DAIRYLAND
DAIRYLAND
PIONEER
DAIRYLAND
CARGILL | STEALTH-1405
STEALTH-1205
3573
STEALTH-1407
4327 | 77.7
76.6
76.4
76.9 | 77 77 77 | 48.1
50.3 48 -
48.8 48 4
47.5
47.3 | 4 4 4 | 4.8 4
5.8 4
4.9 - | 4 44 | 8.14
7.60
7.24
7.42 | 7.9
7.5 7.2 | 77.9
75.1
77.8
76.4 | 48.7
47.1
47.2
44.8 | 43.1
47.1
42.0
42.7 | 8.30
8.25
8.07
8.23 | 75.7
76.9 | 49.2
49.0
47.5
45.6 | 44.6
42.3
46.4
42.5 | 8.10
7.40
6.69
7.26 | 77.9
76.2
75.9
77.5 | 52.8
50.4
47.8
51.4 | 47.6
46.8
47.9
46.2
46.4 | 8.03
7.16
6.96
6.78 | | accesses Average | AND THE STATE OF | 76.6 | 77 77 | 47.0 47 40 | 4 | 4.2 4 | 3 43 | 7.53 | 7.7 7.4 | 76.5 | 45.3 | 42.9 | 8.07 | 77.0 | 45.9 | 42.6 | 7.50 | 76.4 | 49.8 | 47.1 | 7.03 | | Range | | 74.6
to
77.8 | 76 76
to to
77 77 | 43.4 45 45
to to to
50.3 48 47 | 4 | 1.6 42
to to | 2 43
o to
4 44 | 7.24
to
8.14 | 7.5 7.2
to to
7.9 7.6 | 73.4
to
78.4 | 39.8
to
48.7 | 40.1
to
47.1 | 7.45
to
8.92 | 73.7
to
79.6 | 39.1
to
49.2 | 38.5
to
48.6 | 6.69
to
8.10 | 73.1
to
77.9 | 45.6
to
52.8 | 43.2
to
53.6 | 6.05
to
8.03 | | Least Significant
Coefficient of Va | Difference | 0.6 | | 1.4
2.4 | 0 | 0.3 | | 1.7 | | 0.5 | 1.2 | 0.4 | .15 | 0.7 | 1.8 | 0.4 | 1.8 | 0.5 | 1.1 | 0.2 | 1.9 | DMD = DRY MATTER DIGESTABILITY (higher percentage means greater energy content) FD = FIBER DIGESTABILITY (the measure of the degree of fermintation of fiber, high FD is desirable) NDF = NEUTRAL DETERGENT FIBER (the measure of fiber content, higher levels mean lower energy) CP = CRUDE PROTEIN (higher protein levels require less supplementation) ### **SOUTH & NORTH CENTRAL MICHIGAN** **ZONES 2 & 3** ### Average of Kent, Ingham & Huron County LATE In-vitro Analyses One, two, three year averages — 1994, 1993, 1992 LATE TRIAL (107 DAY RELATIVE MATURITY OR LATER (BASED ON COMPANY RATING) | | | MORY MATTER
DIGEST | % FIBER
DIGEST | % NEUTRAL
D'GENT FIB | % CRUDE
PROTEIN | | | | | IN-VITR | O QUA | LITY | ANALYSE | S | | | | |--|---|--|--|--|--|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------| | | | | 1 | | | | KENT | COUNTY | | 1 | NGHAM | COUN | TY | | HURON | COUNTY | | | HYBRID
(BRAND-VARIETY) | | 1994 Yr Yr | 2 3
1994 Yr Yr | 1994 Yr Yr | 2 3
1994 Yr Yr | %DMD | %FD | %ND F | %CP | %DMD | %FD | %NDF | %CP | %DMD | %FD | %NDF | %CP | | CIBA
CARGILL
CALLAHAN
HYPERFORMER
CARGILL | 4394
\$X269
C7252
HY9424
5547 | 73.5
76.0 77 76
76.1 76 | 46.4
44.5 46 46
43.8 44 | 43.3 43 44 42.6 42 | | 75.7 | 42.4
39.5
39.9 | 49.3 | 7.09
7.29
7.00
8.36
7.40 | 74.6
75.8
77.1 | 47.0
45.0
45.8 | 43.9 | 6.81
6.82
7.13 | | 49.7
49.0
47.2 | Street Street Street | 6.92
6.50
7.00 | | HYPERFORMER
NORTHRUP KING
CALLAHAN
RENK
CALLAHAN | HY9490
N6330
C7454X
RK812
C7258 | 76.9
76.9
76.4 77 76 | 48.6
47.5
47.6 47 46 | 45.0
44.0
45.1 44 45 | 7.31
7.17
6.72 6.9 6.8 | 76.6
76.4
76.0 | 46.9
45.0
44.7 | | 7.94
7.85
6.97 | 78.7 | 48.9
50.8
48.5 | 46.0
43.4
45.4 | 6.96 | | 46.6 | 45.1
45.0
45.6
45.9
45.6 | 7.16
6.70
6.79 | | NORTHRUP KING
PIONEER
PIONEER
RENK
AMCORN | N5901
3525
3394
RK886
9292 | 75.6 76 75
75.1 76 75
76.8 77 76 | 43.2 44 44
45.6 45 45
48.1 48 47 | 43.0 43 45
45.8 44 46
44.7 44 45 | 7.42 6.89 7.1 6.7 6.98 7.0 6.8 7.52 7.3 7.1 7.22 7.2 7.1 | 76.8
74.5
74.9 | 43.2
43.3
47.6 | 40.9
45.0
48.0 | 7.59
7.70
7.65 | 74.4
73.4
78.2 | 42.0
44.8
48.6 | 44.2 | 7.57 | 75.5
77.3
77.4 | 44.4
48.7
48.0 | 45.6
44.0
44.2
43.5
41.6 | 6.68 | | PIONEER | 3394E | *74.8 | 43.5 | 44.6 | 7.50 | 74.7 | 42.2 | 43.7 | 7.86 | 75.2 | 44.0 | 44.3 | 7.85 | 74.4 | 44.3 | 45.9 | 6.79 | | Average | | 75.9 77 76 | 45.7 46 46 | 44.4 43 45 | 7.10 7.1 6.9 | 75.4 | 43.3 | 43.4 | 7.65 | 76.0 | 46.2 | 44.5 | 6.77 | 76.2 | 47.5 | 45.2 | 6.88 | | Range | | 73.5 76 75
to to to
77.5 78 77 | to to to | to to to | 6.50 6.6 6.6
to to to
7.72 7.6 7.1 | to 77.4 | to
47.6 | to
49.3 | 6.79
to
8.36 | 73.4
to
78.7 | 42.0
to
50.8 | 42.2
to
48.2 | 5.87
to
7.85 | 74.3
to
78.7 | 44.3
to
50.1 | 41.6
to
51.0 | to
7.66 | | Least Significa
Coefficient of | ant Difference | 0.6
0.7 | 1.4 | 0.5
0.8 | .13
1.5 | 0.6 | 1.4 | | .16 | 0.7
0.7 | 1.5 | 0.5 | .11 | 0.6 | | 0.4 | .12 | DMD = DRY MATTER DIGESTABILITY (higher percentage means greater energy content) FD = FIBER DIGESTABILITY (the measure of the degree of fermintation of fiber, high FD is desirable) NDF = NEUTRAL DETERGENT FIBER (the measure of fiber content, higher levels mean lower energy) CP = CRUDE PROTEIN (higher protein levels require less supplementation) | | KENT | INGHAM | |--------------------|-------------------|-----------------| | PLANTED | May 4 | April 25 | | HARVESTED | September 15, 29 | September 9, 20 | | SOIL TYPE | Spinks Loamy Sand | Capac Loam | | PREVIOUS CROP | Alfalfa Sod | Soybeans | | PERFECT STAND | 28,500 | 28,500 | | AVERAGE POPULATION | 27,670 | 25,900 | | ROW WIDTH | 30" | 30" | | FERTILIZER | 76-0-0 | 160-10-107 | | SOIL TEST: pH | 5.8 | 5.9 | | P | 132 (very high) | 113 (very high) | | K | 320 (very high) | 240 (high) | FARM COOPERATORS: Gerald Kayser, Pleasant Acres Farm, Caledonia; Michigan State University, East Lansing MSU COOPERATORS: Dr. Micheal Allen and David Main, Animal Science Department, East Lansing COUNTY EXTENSION DIRECTOR: William Harrison, Grand Rapids; Joseph Lessard, Mason EXTENSION AGR'L AGENTS: William Steenwyk, Grand Rapids; John Knorek and Laura Rhodes, Mason HURON PLANTED May 10 HARVESTED September 12, 26 Kilmanagh Loam SOIL TYPE PREVIOUS CROP Corn PERFECT STAND 28,500 **AVERAGE POPULATION** 27,390 **ROW WIDTH** 30" FERTILIZER 150-120-9 SOIL TEST: pH 6.8 73 (high) 216 (high) FARM COOPERATORS: William, Ron and Ed McCrea, Wil-le Farms, Bad Axe MSU COOPERATORS: Dr. Michael Allen and David Main, Animal Science Department, East Lansing COUNTY EXTENSION DIRECTOR: Robert Johnson, Bad Axe EXTENSION AGR'L AGENT: James LeCureux, Bad Axe | TABLE 7 | | | | | | | |---------|---|---|---|---|---|---| | | Г | A | В | L | E | 7 | | Bearing Street, Street | | TABLE 7 | STATE OF THE | | |--
---|---|--|--| | Amcorn Hybrids, Inc.
Amcorn 3030 (3E,4)
Amcorn 4420 (2E) | Ciba Seeds Ciba 2130X (3L) Ciba 4030 (4) | Index for 297 hybrids from 37 seed companies entered in | Mycogen 4970 (2E)
Mycogen 5150cb (2L)
Mycogen 5270 (2E,3L) | Renk RK835 (1L)
Renk RK886 (1L,5L) | | Amcorn 4747 (2E)
Amcorn 5230 (1E,2L)
Amcorn 5830 (1L)
Amcorn 5930 (1L)
Amcorn 9292 (5L) | Ciba 4120 (3E)
Ciba 4144 (3E,5E)
Ciba 4172 (5E)
Ciba 4202 (3E,5E)
Ciba 4214 (2E,3E,5E) | 1463 county tests in the 1994 Michigan Corn Performance Trials. Numbers within parentheses refer to table numbers | Mycogen 5480 (1E) Mycogen 6060 (1L) Mycogen 6220 (1L,2L) Mycogen 6970 (1L,2L) Mycogen 7460 (1L) | Rupp Seeds, Inc. Rupp XR1623 (1E,2L,3L) Rupp XR1644 (3L) Rupp XR1677 (1E,2L) Rupp XR1688 (1E) Rupp XR1704 (1E) | | Amcorn Ex 272 (4) Amcorn Ex 410 (3E,4) Amcorn Ex 537 (1L,2L) Amcorn Ex 583 (1L) Amcorn LG 2388 (4) Amcorn LG 2409 (4) | Ciba 4225X (1L) Ciba 4273 (2E) Ciba 4282 (2L) Ciba 4372 (2L) Ciba 4394 (1L,2L,5L) Ciba 4494 (1L) | in which the hybrid appears,
(E) or (L) refers to the early or
late group within that table.
Company names used in asso- | Mycogen 7660 (1L) Northrup King Company Northrup King N1500 (4) Northrup King N2409 (3E,4) Northrup King N2555 (3E) Northrup King N2879 (3E) | Rupp XR1727 (1E,EL) Rupp XR1739 (1L) Rupp Ex.4-223 (2L) Rupp Ex.4-229 (4) Rupp Ex.4-238 (4) Rupp Ex.4-239 (2E,3E) | | Amcorn LG 2465 (2E,3E) Amcorn LG 2482 (2E,3E) Amcorn LG 2522 (1E,2L) The Andersons Andersons PSY 200 (1E 3E) | Countrymark Cooperative, Inc. Countrymark 432 (1E,2E,3L) Crow's Hybrid Corn Company Crow's 165 (2E,3E) | ciation with hybrid numbers refer to the brand and the numbers are the variety (hybrid) designation. | Northrup King N2899 (6)
Northrup King N2933 (2E,6)
Northrup King N3030 (2E,3E,5E,6)
Northrup King N4242 (1E,2E,3L,5E) | Rupp Ex.4-240 (4) Stine Seed Company Stine 870 (3E) Stine 951 (3E) | | Andersons PSX 300 (1E,2E) Andersons PSX 370 (1L) Andersons HSX 2241 (4) Andersons HSX 44011 (3E) Asgrow Seed Co. | Crow's 170 (2E,3E) Crow's 180 (1E,2E,3L) Crow's 204 (1E,2L,3L) Crow's 370 (3L) Crow's 375 (2L) | Fred Gutwein & Sons, Inc. Gutwein Ex333 (2L,3L) Gutwein 2088 (2E,3E) | Northrup King X4263 (2L,5E) Northrup King N4342wx (5E) Northrup King N5220 (1E,2L,5E) Northrup King N5901 (1L,5L) Northrup King X6133 (1L) | Stine 993 (2E,3L) Stine 994 (2E,3L) Stine 1033 (1E) Stine 1059 (1E) Stine 1076 (1L,2L) | | Asgrow RX 444 (2E,3E)
Asgrow RX 502 (2E,3E)
Asgrow RX 623 (1E,2L,3L)
Asgrow RX 699 (1L)
Asgrow RX 707 (1L) | Crow's 401 (1L) Crow's 435 (1L,2L) Crow's 445 (1L,2L) Crow's 490 (1L) Dairyland Seed Company, Inc. | Gutwein 2434 (1L) Gutwein 2474 (1L) Gutwein 2494 (1L) HyPerformer Seed Company HyPerformer HY 9207 (3E) | Northrup King N6330 (5L) Michigan State Seed Payco 151 (4) Payco 253 (3E,4) Payco 344 (3E,4) | Stine 92-70X (1E,2L) Terra International, Inc. Terra TR910 (4) Terra E981 (2E,3E) Terra TR1031 (1E,2L,3L) | | Asgrow XP4923 (2E,3E) Bayside Seeds Bayside 86 (3E) Bayside 95 (2E,3E) Bayside 100 (2L) | Dairyland Stealth-1174 (4) Dairyland Stealth-1195 (3E) Dairyland Stealth-1198 (1E,2L) Dairyland Stealth-1200 (2E,3L) Dairyland Stealth-1203 (1E,2L,3L,5E) | HyPerformer HY 9262 (2E,3E) HyPerformer HS 9330 (2L) HyPerformer HY 9355 (2L,3L) HyPerformer HY 9385 (1E,2L) HyPerformer HS 9408 (1L) | Payco 413 (2E,3E) Payco 444 (2E,3E) Payco 531 (1E,2E,3E) Payco 614 (1E,2E,3E) Payco 711 (1E) | Terra TR1050 (1E,2L) Terra TR1070 (1L,2L) Terra TR1091 (1L) Top Farm Hybrids | | Bayside 102 (2L) Bayside 1794 (2E,3E) Beck's Superior Hybrids Beck's 5070 (1E) Beck's 5101 (1E) | Dairyland Stealth-1205 (1E,2L,3L,5E) Dairyland Stealth-1209 (1L) Dairyland Stealth-1284 (4,6) Dairyland Stealth-1285 (4) | HyPerformer HY 9424 (1L,2L,5L)
HyPerformer HY 9487 (1L)
HyPerformer HY 9490 (1L,5L)
HyPerformer HX45101 (1L) | Payco 734 (1E,2L,3L) Payco 754 (1L,2L) Payco 814 (2L) Payco 834 (2L) Payco 903 (2L) | Top Farm TFsx1097A (1E,2E,3L) Top Farm TFsx1193 (3E) Top Farm TFsx2103 (1E,2L) Top Farm TFsx2104 (1E,2L) Top Farm TFsx2108 (1L,2L) | | Beck's 5202 (1E)
Beck's 5305 (1L)
Beck's 5405 (1L)
Beck's EX1485 (1L) | Dairyland Stealth-1400 (2E,3L) Dairyland Stealth-1405 (1E,2L,5E) Dairyland Stealth-1407 (1E,2L,5E) Dairyland DST 9026 (3E,6) Dekalb Plant Genetics | ICI Seed Company ICI Seeds 8400 (1L) ICI Seeds 8481 (1L) ICI Seeds 8513 (1L) ICI Seeds N8541 (1L) | Payco Ex4241 (2E,3E) Pickseed Canada, Inc. Pickseed 2620 (4) Pickseed 4990 (3E,4,6) | Top Farm TFsx2194 (3E) Top Farm TFsx2195 (3E) Trelay Seeds, Inc. Trelay 1011 (4) | | Blaney Seeds Blaney 2100 (2E,3E) Callahan Seeds Callahan C7245 (1E,2L) Callahan C7249 (1E,2L) | Dekalb DK306 (4) —— Dekalb DK352 (4) Dekalb DK381 (3E,4) Dekalb DK401 (2E,3E,4) | ICI Seeds 8570 (1L) ICI Seeds 8700 (2L) ICI Seeds 8746 (2E,3L) ICI Seeds 8751 (2E,3E) ICI Seeds 8940 (4) | Pickseed 5665 (6) Pickseed 5990 (3E) Pickseed 5993 (2E,3L) Pioneer Hi-Bred International, Inc. | Trelay 2004 (4) Trelay 5200 (2E) Trelay 5202 (2E) Trelay 6002 (1E) Trelay 7200 (1E) | | Callahan C7249 (1E,2E) Callahan C7252 (1L,5L) Callahan C7258 (5L) Callahan C7337 (1E,2E) Callahan C7348 (1E) | Dekalb DK446 (3E,4) Dekalb DK471 (1E,2E,3E) Dekalb DK474 (2E,3E) Dekalb DK485 (1E,2E) Dekalb DK493 (1E,2E,3L) | ICI Seeds 8990 (4) Jung Farms, Inc. Jung 2244 (4) Jung 2366 (4) | Pioneer 3293 (1L) Pioneer 3394 (1L,2L,3L,5L) Pioneer 3394E (5L) Pioneer 3463W (1E,2E) Pioneer 3525 (1E,2L,3L,5L) | Tri State Seeds Tri State 572 (1L) Tri State 574 (1L) Tri State 628 (1L) | | Callahan C7435 (1E,2E) Callahan C7446X (1E,2L) Callahan C7454X (5L) Callahan C7525 (2E) Callahan C7537X (2E) | Dekalb DK512 (1E,2L,3L) Dekalb DK560 (1E) Dekalb DK569 (1E,2L) Dekalb DK580 (1L) | Jung 2386 (4)
Jung 2496 (3E,4)
Jung 2596 (3L)
Jung 2648 (3L) | Pioneer 3573 (1E,2L,3L,5E)
Pioneer 3723 (1E,2E,3L,5E)
Pioneer 3751 (2E,3E,5E)
Pioneer 3752 (1E,2E,3E,5E) | Tri State 633 (1L) Tri State 685 (1L) Tri State 750 (1L) Tri State 770 (1L) Vigoro Industries | | Callahan C7548X (2L) Callahan C7633X (2E) Callahan C7643X (2E) Cargill Hybrid Seeds | Gen-Tech Farm Seeds, Inc. Gen-Tech 1064 (1E) Gen-Tech 1074 (1E) | Jung 2672 (3L) King Agro King Agro KGAG 18057 (3E) King Agro KGAG 21050 (4) Leader Seeds, Inc. | Pioneer 3769 (2E,3E,5E) Pioneer 3861 (2E,3E) Pioneer 3893 (4,6) Pioneer 3905 (4,6) Pioneer 3907 (4,6) | Vigoro V875 (2E)
Vigoro V925 (2E)
Vigoro V974 (2E)
Vigoro V1055 (1E) | | Cargill SX269 (1L,2L,5L) Cargill 1037 (4) Cargill 2497 (2E,3E,4) Cargill 2927 (3E,4,6) Cargill 3777 (1E,2E,3E) Cargill 4277 (1E,2L,3L) | Golden Harvest H-2292 (2E,3E) Golden Harvest H-2331 (1E,2E,3E) Golden Harvest H-2349 (1E,2E,3E) Golden Harvest H-2390 (1E,2L) Golden Harvest Ex 692 (1E,2L) | Leader SX499 (1E,2L) Leader X3654 (1E,2L) Leader X4154 (1E,2L) Leader X5154 (1L,2L) Mycogen Plant Sciences | Pioneer 3979 (4,6) Renk Seed Company Renk RK424 (3E) Renk RK555 (3E) Renk RK602 (3L) | Vigoro V1084 (1L) Vigoro V1105 (1L) Vineyard Seed Company Vineyard V414W (1L,2E) Vineyard V417W (1L,2L) | | Cargill 4327 (2L,3L,5E) Cargill 5547 (1E,2L,3L,5L) Cargill 5677 (1L,2L,3L) Cargill 6303 (1L) Cargill 6327 (1L,2L) Cargill 6677 (2L) | Golden Harvest Ex 702 (1E,2L,3L,5E) Gries Seed Farms, Inc. Gries GSF-Ex185 (2E) Gries GSF-4100 (2E) Gries GSF-5208 (1L) | Mycogen 1376 (4) Mycogen 2440 (4) Mycogen 3440 (3E) Mycogen AG3965 (3E,3L) Mycogen 4140 (4) Mycogen 4440 (3E) | Renk RK617 (1E,2L,3L) Renk RK646PT (1E,2L) Renk RK657 (3L) Renk RK696 (1E,2L)
Renk RK714 (1L) Renk RK802PT (1L) | Vineyard V438W (1L) Wolf River Valley Seeds Wolf River Valley WRV-9185 (4) Wolf River Valley WRV-9383 (4) | | Cargill 7777 (1L) | | Mycogen 4770 (3E) | Renk RK812 (1L,2L,5L) | | | | COMPANIES WITH HYBRII | | | |----------------|---|-------------------|---------------------------| | BRAND | COMPANY NAME AND ADDRESS | BRAND | COMPAN | | AMCORN . | Amcorn Hybrids, Inc., 9875 W. Grand Ledge Hwy. | ICI SEEDS | ICI Seeds | | | Sunfield, MI 48891 | JUNG | Jung Farn | | ANDERSONS | The Andersons, P.O. Box 119, Maumee, OH 43537 | KING-AGRO | King-Agro | | ASGROW | Asgrow Seed Company, 7000 Portage Road
Kalamazoo, MI 49001 | LEADER
MYCOGEN | Leader Se | | BAYSIDE | Bayside Seeds, 259 Bowker Road, Munger, MI 48747 | NORTHRUP KING | Mycogen
Northrup I | | BECK'S | Beck's Superior Hybrids, 6767 East 276th St
Atlanta, IN 46031 | PAYCO | Michigan Grand Led | | BLANEY | Blaney Seeds, Rt.1 Box 40, Francesville, IN 47946 | PICKSEED | Pickseed | | CALLAHAN | Callahan Enterprises, Inc., 1122 E. 169th St | HOROLLD | Tilbury, Or | | GARGUI | Westfield, IN 46074 | PIONEER | Pioneer H | | CARGILL | Cargill Hybrid Seeds, Box 5645
Minneapolis, MN 55440-5645 | | Route 15 | | CIBA | CIBA Seeds, 12275 South Sherman Lake Drive | RENK | Renk See | | OIDA | Augusta, MI 49012 | RUPP | Rupp See | | COUNTRYMARK | Countrymark CO-OP, 950 N. Meridian St. | STINE | Stine Seed | | | Indianapolis, IN 46204-3909 | TERRA | Terra Inter
P.O. Box 6 | | CROW'S | Crow's Hybrid Corn Company, Box 306, Milford, IL 60953 | TOP FARM | Top Farm | | DAIRYLAND | Dairyland Seed Co, Inc., Box 958, 3570 Hwy.H | TRELAY | Trelay Inc. | | - | West Bend, WI 53095-0958 | TRI-STATE | Tri-State S | | DEKALB | Dekalb Genetics Corp., 3100 Sycamore Road, Dekalb, IL 60115 | VIGORO | Vigoro Ind | | GEN-TECH | Gen-Tech Farm Seeds, Inc., 15740 Old 31, Argos, IN 46501 | | | | GOLDEN HARVEST | Sommer Bros. Seed Company, P.O. Box 248, Pekin, IL 61554 | VINEYARD | Vineyard S | | GRIES | Gries Seed Farms, Inc., 2348 North Fifth St, Fremont, OH 43420 | WOLF RIVER VALLEY | Wolf River
White Lake | | GUTWEIN | Fred Gutwein & Sons, Route 1, Box 40, Francesville, IN 47946 | | Wille Lan | | HYPERFORMER | HyPerformer Seed Co. 3477 S.Graham Rd., Hwy M-52
Saginaw, MI 48603 | | | | BRAND | COMPANY NAME AND ADDRESS | |-------------------|---| | ICI SEEDS | ICI Seeds, Inc., 6945 Vista Drive, West Des Moines, IA 50266 | | JUNG | Jung Farms, Inc., 335 South High Street, Randolph, WI 53957 | | KING-AGRO | King-Agro, P.O. Box 1088, Chatham, Ontario, Canada, N7M5L6 | | LEADER | Leader Seeds, Inc., 7160 S.R. 118, Celina, OH 45822 | | MYCOGEN | Mycogen Plant Sciences, 720 St. Croix St., Prescott, WI 54021 | | NORTHRUP KING | Northrup King Company, P.O. Box 959, Minneapolis, MN 55440 | | PAYCO | Michigan State Seed/Payco, 717 N. Clinton Street
Grand Ledge, MI 48837 | | PICKSEED | Pickseed Canada, Inc., Box 517, R.R.#5
Tilbury, Ontario, Canada N0P 2L0 | | PIONEER | Pioneer Hi-Bred International, Inc., R3 05-653
Route 15 N, P.O. Box 756, Bryan, OH 43506-0756 | | RENK | Renk Seed Company, 6800 Wilburn Road, Sun Prairie, WI 53590 | | RUPP | Rupp Seeds, Inc., 17919 Co. Rd B, Wauseon, OH 43567 | | STINE | Stine Seed Company, 2225 Laredo Trail, Adel, IA 50003 | | TERRA | Terra International, Terra Centre, 600 Fourth Street,
P.O. Box 6000, Sioux City, IA 51102-6000 | | TOP FARM | Top Farm Hybrids, Inc., P. O. Box 850, Cokato, MN 55321 | | TRELAY | Trelay Inc., 11623 Hwy 80 N, Livingston, WI 53554 | | TRI-STATE | Tri-State Seeds, P.O. Box 341, Richmond, MI 49083 | | VIGORO | Vigoro Industries, P.O. Box 177, Sigourney, IA 52591 | | VINEYARD | Vineyard Seed Company Inc., P.O. Box 139, Sidney, IL 61877 | | WOLF RIVER VALLEY | Wolf River Valley Seeds, N. 2976 Cty Hwy. M,
White Lake, WI 54491 | EMERICA TOTAL SOLIT and the state of the state of Get tour work the state of s CONTRACTOR MENTE 点的 种型 (manual) (manual) (manual) re TOTAL HORSE SELECTION OF SELECT AT. A BALL TO LOS TO LOS DE RECEISANTS DE PROPERTIES PROPER W---50