Earth Tempering of Ventilation Air

Earth tempering of ventilation air for swine buildings is being considered by many producers because of the moderate fluctuations in soil temperatures at shallow depths. Depending on the season, incoming ventilation air is heated or cooled as it passes through a buried tube. The soil serves as a heat sink in the summer and as a heat source in the winter, thus giving almost year-round temperature modification. It has the potential to significantly reduce heating costs during winter and provide zone cooling during summer.

Soil Temperature

Soil temperature is one of the most important factors affecting design and performance of earth-tube heat exchanger systems. Soil temperatures vary with soil type, depth, moisture content, time of year, and geographic location.

The mean annual ground temperatures for various locations in the United States are given in Figure 1.* In the central U.S., these mean annual ground temperatures range from 49°F. in St. Paul, Minnesota, to 58°F. in Lexington, Kentucky, and from 52°F. in Ames, Iowa to 55°F. in Columbus, Ohio. The variation of ground temperature from this yearly mean at any site is suggested by Figure 2. The amount of temperature variation decreases as depth increases. For example, at a depth of 6 ft., the yearly variation of a typical clay soil can be expected to range from 11 degrees above to 11 below the mean annual ground temperature, or a total yearly variation of approximately 22 degrees. At a depth of 10 ft., this variation is reduced to plus or minus 6 degrees F. or a total variation of 12 degrees.

The time of year when the ground temperature is at the extreme is also important in the design and performance of a system. Soil temperature fluctuations lag behind surface temperature changes due to the heat storage capacity of the soil. The soil surface reaches maximum temperature during the heat of the summer, but soil 10-12 ft. deep may not reach its peak temperature until almost three months later. This thermal lag at the 10 ft. depth (Fig. 3) helps both the heating and cooling performance of these systems. During the winter, soil temperatures at this depth are at the fall season level, making the soil near the mean annual ground temperature, thus adding to the heating capabilities of a system. The reverse is true during the summer months, when the soil temperatures at the 10-12 ft. depth are springlike and can cool the ventilation air.

Soil types and moisture content also affect the ground temperature variation. Soils with increasing sand content tend to have larger temperature variations at deeper depths than clay soils. Soil moisture and ground water elevation also affect soil temperature. Seasonal temperature variation is larger in very moist soils as compared to very dry ones due to the increase in heat transfer through soils whose voids are filled with water.

System Design

The typical earth-tube tempering or heat exchanger system consists of a heat exchanger field, a collection
Figure 1. Well-water isotherms indicating the mean annual ground temperatures for the 48 contiguous states.

Figure 2. Yearly variation of soil temperature with relation to depth below surface for average soil.

Figure 3. Annual ground temperature curves at the soil surface, at a depth of 10 ft., and the annual mean for generalized conditions at Lexington, Kentucky, showing the degree of thermal lag at the 10-ft. depth.
duct/fan house, and a building air distribution system. Each of these portions must be adequately sized to insure proper performance. The following sections may help to explain the many tradeoffs in system design.

Airflow Capacity. In general, much more air is required for summer ventilation than for winter. If zone cooling is used, the difference between the two rates is much less (Table 1). For example, the recommended summer zone cooling rate for a sow and litter is 70 cu. ft. per minute (cfm) of uncooled air per farrowing crate, 50 cfm for evaporative cooled air, and 30 cfm for air-conditioned air. Air tempered by an earth-tube system should be somewhat cooler and dryer than evaporative cooled air (depending on climate), but for planning purposes use the 50 cfm per crate. During winter, the recommended cold weather ventilation rate is 20 cfm per crate. With the system designed for a capacity of 50 cfm per crate, there is an additional 30 cfm which can be used for mild weather room tempering as needed or it can be used to preheat the winter air of a compatible nearby nursery. Similar design capacity figures are shown for gestation sows, boars, and growing and finishing pigs in Table 1.

Comparison of the air volume requirements for a farrowing house with and without the use of an earth-tube heat exchanger system is shown in Table 2. A properly designed and managed system allows the producer to reduce whole building ventilation rate by one-half during the summer (50 cfm/crate of earth zone cooled air plus 200 cfm/crate outside air versus the normal 500 cfm/crate outside air recommendation). If zone cooling is not desired or possible because of interior room design, whole-room cooling may be an option. For whole-room-cooling planning purposes use an air volume of 100 cfm per farrowing crate or twice the normal zone cooling rate. Adequate building insulation levels and proper room air distribution systems are extremely important to ensure successful ventilation with this type of system (See PIH-65, *Insulation for Swine Housing,* and PIH 87, *Cooling Swine*). Zone cooling is recommended over whole-room cooling because it is more cost effective, especially in the farrowing and gestation units.

Heat Exchanger Field Design. Both soil characteristics and tubing factors affect the design and performance of a system. Soil characteristics include soil type, moisture content, and water table elevation. Temperature levels for various soil types indicate the less favorable performance of sandy soils; so avoid these if possible. If sandy soils must be used, the number of lines, line lengths, and/or depth should be increased by 10 to 20% to offset this effect. Moisture content increases the heat-transfer capability of the system. Therefore, a system installed in an area with a shallow water table should have the lines buried below the average yearly elevation of the water table for maximum performance. Such a system must be well sealed to minimize ground water seepage and additional pumping costs. Construction should take place during periods of low water table to reduce the use of pumps and possibly unstable trench sides and bottom.

Air-tubing factors include diameter, length, depth of placement, and shape of the tube. Typically, nonperforated corrugated plastic drainage tubing is used.
Table 3. Earth-tube heat exchanger line dimensions and capacities.

<table>
<thead>
<tr>
<th>Tube diameter (in.)</th>
<th>Nominal tube area (sq. in.)</th>
<th>Relative cost per ft.</th>
<th>Suggested line lengths (ft.)†</th>
<th>Suggested airflow per tube (cfm)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12.6</td>
<td>$0.25</td>
<td>65 -- 85</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>19.6</td>
<td>0.35</td>
<td>80 -- 105</td>
<td>800</td>
</tr>
<tr>
<td>6</td>
<td>28.3</td>
<td>0.55</td>
<td>100 -- 130</td>
<td>110</td>
</tr>
<tr>
<td>8</td>
<td>50.3</td>
<td>0.90</td>
<td>130 -- 170</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>78.5</td>
<td>1.85</td>
<td>160 -- 210</td>
<td>300</td>
</tr>
<tr>
<td>12</td>
<td>113.1</td>
<td>2.30</td>
<td>190 -- 250</td>
<td>450</td>
</tr>
<tr>
<td>15</td>
<td>176.7</td>
<td>3.80</td>
<td>250 -- 320</td>
<td>700</td>
</tr>
<tr>
<td>18</td>
<td>254.5</td>
<td>6.30</td>
<td>300 -- 380</td>
<td>1000</td>
</tr>
<tr>
<td>24</td>
<td>452.4</td>
<td>14.40</td>
<td>400 -- 500</td>
<td>1800</td>
</tr>
</tbody>
</table>

* Costs vary with different manufacturers and change over time. These costs are only offered to give a relative figure for different sizes of tube.

† Line length ranges indicate the effect of soil type and moisture content on line dimensions. The low end of the range corresponds to a wet clay soil type and is based on 2.0 sq. ft. of tube surface area per cfm of airflow. The high end of the range corresponds to a dry sand soil condition and is based on 1.3 sq. ft. of tube surface area per cfm of airflow. All surface area calculations were made assuming smooth pipe for simplicity.

‡ These airflow rates allow for a air velocity of 500 to 600 fpm.

because of its availability and cost. The recommended airflow rates for various tubing diameters are shown in Table 3. These airflow rates are based on an air velocity in the tube of 500-600 ft. per minute (fpm). Divide the total airflow needed for the system by the recommended flow rate per tube to indicate the number of tubes needed for a given system. Table 3 also shows the recommended tubing length for various diameters of tubing. This length is based on an air contact (heat-exchange surface) of 1.3-2.0 sq. ft. of tube surface per cfm of airflow (figures are based on smooth pipe for simplicity of calculation). Small diameter tubing, such as the 3-, 4-, or 5-in. sizes, are impractical because of the large number of lines needed to provide enough air capacity for a typical system; thus the 8-, 10-, and 12-in. diameters are the most practical.

Layout. Several system layouts are possible, including the wagon wheel (radial) or the lateral (see Figs. 4 and 5). Material and trenching costs are normally less for the wagon wheel pattern because no manifold lines are used; however, excavation can be difficult near the collection duct. Manifold lines must be much larger than lateral lines, and tubing materials and trenching are more expensive. However, a lateral system with a manifold may be the only option when surrounding buildings, roads, or fields limit the area available for installing the system. The spacing between lateral lines need not be uniform, but each lateral should be of equal length to keep the airflow equal. Laterals do not need to run straight, but abrupt turns should be avoided.

Placement. The tubing should be buried to a depth of 7-12 ft. depending on installation costs and geographic location. System thermal performance will be better with maximum depth. If installation costs are prohibitive, somewhat shallower depths may provide a more beneficial economic return.

Space lines at least 8-10 ft. apart to maximize soil heat storage and minimize the chance of tubing deflection and damage during construction. Trenches with multiple tubes and closer tube spacings may be used to reduce construction costs; however, line length should be increased to maintain adequate soil mass for heat transfer. For example, four 6-in. diameter tubes have about the same airflow capacity as one 12-in. diameter tube. If four 6-in. lines are installed in a single trench, their length should be the same as the 12-in. recommendation of 200-250 ft. instead of the normal 6-in. tube recommendation of 100-130 ft. Slope lines at a minimum of 2-3 in. per 100 ft. to a U-trap and gravity drainage line at the outer tube ends or to a drain sump at the collection duct. Constant slope is critical because any low spots in the lines could fill with water and restrict air flow.

Tubing should be installed carefully, in accordance with ASTM Standard Designation: F 449-76.† Either trenchers or backhoes can be used for excavation, but hand blinding (careful placement of select material over and on the sides of the tubing) and narrow trenches with rounded bottoms should be used to ensure constant slope and minimal tube deflection and damage. Modern trenchers are equipped with laser plane-grade guides that ensure a constant slope. However, most trenchers are restricted to depths of less than 7 ft. unless a special adapter is available, and 2-3 ft. of topsoil may need to be removed before trenching if trenchers are to be used (Fig. 6). Backhoes are more expensive but are available for depths down to 12 ft. and can, with care, maintain a constant slope (Fig. 7). They can be used when trenchers are not practical; however, due to the extreme depths and possible cave-in problems, trench sides should be sloped and bulkheads may be needed to ensure a safe working area. Minimum trench width should be 6 in. wider than the outside diameter of the tubing. If extremely wide trenches are used, the tubing should be placed in the corner of the trench against a trench wall.

At the outer end of the system, the tubes should curve up and extend 3 to 4 ft. above the soil surface to

Earth-tube heat exchanger—radial system

Air distribution duct

Fan house

Collection duct with sump

Air inlets

Nonperforated buried plastic pipe sloped to sump

Figure 4. System layout using the wagon wheel or radial pattern.

Earth-tube heat exchanger—lateral system

Air distribution duct

Air inlets

Slope

Sump

Manifold line

Nonperforated buried plastic pipe sloped to sump

Figure 5. System layout using the lateral tubing pattern.
Figure 6. Chain-trencher excavating and installing 12-in. diameter tubing for a 1,600-cfm capacity system in Menard County, Illinois. Three to 4 ft. of soil was removed, using a bulldozer before the trencher was used to install the tubing an additional 6 ft. into the soil.

Figure 7. Backhoe excavating and installing 12-in. diameter tubing to a depth of 12 ft. for a 2,000-cfm capacity system in Sangamon County, Illinois. For safety reasons, the trench walls run up vertically only 6 ft. and the upper 6 ft. is set back to reduce cave-in problems. The evaporative cooler on the building roof is being replaced by the earth-tube heat exchanger system.

form the air inlet. Either rigid PVC pipe or corrugated plastic tubing can be used for the inlet risers; however, the tops should be screened to keep out debris and rodents and should be very visible to prevent damage from nearby machine traffic.

Collection Duct/Fan House Design. Common materials for collection ducts below grade include reinforced concrete, concrete blocks, and round steel. An example of one such reinforced concrete collection duct is shown in Figure 8. Size is determined by system airflow and wall area requirements to make the tubing connections. In general, collection ducts should provide enough wall area to connect the lines and enough cross-sectional area to keep airflow velocities below 500 fpm. Above grade, insulated wood construction is acceptable to enclose the airstream. A properly sized fan must be installed at the connection between the underground system (collection duct) and the building air distribution ducts. Determine the size of the above-grade duct by the size of fan to be enclosed and the type of service access entrance to be used. Normally,
4,000-cfm capacity system in Peoria County, Illinois. was chipped out after the producer decided to
At the sump, the tubing lines are approximately 8 ft.

System for the earth-tempered air consists of a fan, main
collection duct and all connections to prevent short cir­
ting of air from outside directly into the duct, thus

V₂-in.

Size this fan to deliver the desired airflows against %
to % in. of static pressure.

The distribution system for the earth-tempered air consists of a fan, main
duct or ducts, and downspouts (or drop ducts) located

as needed for each animal (Figs. 9 and 10). In a farrow­
ing house, locate a downspout above each individual
crate with the airstream directed at the sow's head. The
downspout should be located as close to the animal's
head as possible to make full use of the cooled air. If
spouts are within the animals' reach, they should be
made pig-proof. Include dampers in the downspouts to
close individual lines when crates are empty and to
adjust airflow if needed.

Main duct and downspout dimensions are given in
Table 4. These are minimum duct dimensions and
should be increased if duct framing is located inside the
airstream. Insulate ducts to at least R-6 to prevent heat
gain and condensation during summer operation.

For winter operation, earth-tempered air can be
routed through an existing room air distribution system,
through room make-up air heaters, or the summer
downsouts can be removed and tempered air can be
introduced into rooms via the distribution duct openings
along the room ceiling.

Design Example

Design an earth-tube heat exchanger for a 24-sow
farrowing house. The summer zone-cooling ventilation
rate equals 50 cfm per sow and litter, and the continu­
ous winter rate is 20 cfm per sow and litter (Table 1).
Therefore, the maximum airflow for the system (zone
cooling) equals 1,200 cfm (50 cfm per sow x 24 sows),
and minimum airflow equals 480 cfm (20 cfm per sow x
24 sows). During the winter, the extra 720 cfm capacity
of the system could be used to heat and ventilate an
adjointing nursery.

From Table 3, find that 6-in. tubing can carry 110
cfm per tube. Eleven 6-in. tubes are required (1,200 cfm
divided by 110 cfm per tube). For 8-in. lines, use six
tubes (1,200 cfm divided by 200 cfm per tube). For 10-
in. tubing use four tubes (1,200 cfm divided by 300 cfm
per tube). The suggested length for each tubing size is
given in Table 3. A system using eleven 6-in. tubes,
each 100-130 ft. long (depending on soil type); six 8-in.
tubes, each 130-170 ft. long; or four 10-in. tubes, each
160-210 ft. long, would be satisfactory. Check the cost
of trenching and materials in the area to determine
which system would be most economical. The relative
costs of different tubing sizes are also shown in Table 3.
As the size of the tubing increases, the cost of the
material goes up. The material cost increases are espe­
cially large if tubing of 10-in. diameter or more is used.

Manifold lines, when used, must carry the entire flow
that goes through them at an appropriate velocity (refer
to Table 3 for size). If six lateral lines of 8-in. tubing are
installed, as arranged in Figure 5, the manifold running
in each direction to the first lines needs to be 15 in.
diameter (200 cfm per 8-in. line x 3 lines = 600 cfm).
The manifold can then be decreased to a 12-in. size to
the second lines (200 cfm per 8-in. line x 2 lines = 400
cfm). After the second line is connected, the manifold
can be reduced to an 8-in. diameter tube out to the last
line. The vertical tube coming out of the ground should
be a 24-in. tube or larger.

Size the fan to supply 1,200 cfm at the high setting
and 480 cfm at the low setting while working against %
to % in. of static pressure.

From Table 4, an 18- by 18-in. or 10- by 30-in.
(inside dimensions) main duct will carry the 1,200 cfm
airflow. If crate layout is such that two ducts are needed,
two 12- by 12-in. or two 6- by 24-in. ducts could also
be used. Also from Table 4, a 4-in. diameter downspout

Building Air Distribution System.

Building Air Distribution System. The distribution

the above-ground portion can be constructed to the
same dimensions as the below-grade portion and still
provide enough area for fan installation, access, and
maintenance.

Insulate the entire collection duct/fan house to at
least R-19 to a depth of 6 ft. below grade with
moisture-proof insulation. A closed cell polystyrene or
polyurethane insulation is recommended. A reverse
tempering effect has been noted on installations in Illi­
nois where no insulation was used below the 3 ft.
depth. In one case, air that had been cooled in the tubes
was reheated 5 degrees as it passed through the
duct/fan house into the building.

A fan should be located between the underground
tubing system and the building air distribution system.
Size this fan to deliver the desired airflow against %

Building Air Distribution System. The distribution

Figure 8. Reinforced concrete collection sump on a
4,000-cfm capacity system in Peoria County, Illinois.
At the sump, the tubing lines are approximately 8 ft.
below grade but slope away from the building where
they become 10-12 ft. deep. A portion of the sump
was chipped out after the producer decided to
increase the number of lines in the system.

Building Air Distribution System. The distribution
system for the earth-tempered air consists of a fan, main
duct or ducts, and downspouts (or drop ducts) located

7