Soil deficiencies occur most frequently in sandy soils, acidic soils (pH less than 5.0) or sodium-saturated soils (rare). True Ca deficiencies are very uncommon in turfgrasses.

Magnesium—Turfgrasses growing on soils testing below 20 ppm Mehlich I extractable magnesium (Mg) usually respond to Mg applications. A Mg deficiency prior to spring growth can be corrected by applying dolomitic lime (if required for soil pH adjustment), magnesium sulfate, or potassium-magnesium sulfate.

Application of 4 lbs. Mg/1000 sq. ft. should correct the deficiency for an entire growing season. Annual monitoring is recommended if a deficiency has been noted.

If the soil Mg status is marginal, high rates of K fertilization can induce Mg deficiencies. There is no "magic" Ca:Mg ratio required in soils for optimum turfgrass growth; rather, the absolute soil test Mg level is of paramount importance.

—The author is in the Soil and Water Science Department at the University of Florida.

Pruning tips for aesthetics, tree health, from Dr. Wade

- "The key to pruning is knowing the difference between heading and thinning," says Dr. Gary Wade of the University of Georgia. "Thick, dense canopies increase disease and insects, and the plant uses more water."

Wade, in a presentation at the Georgia Turfgrass Conference, told the audience to try and maintain nature's natural plant shape when pruning. You should try to cut right outside the branch collar, and not leave stubs. "When pruning is done properly, there is no need to paint or dress wounds," he noted.

Pruning should be done with a purpose, he said, and should be done "with low maintenance in mind."

Why prune at all? For various good reasons, including:

- To maintain the correct size of the plants. This is a common problem with residential landscapes.
- To improve flowering or fruiting performance.
- To repair what Mother Nature has inflicted upon us.
- To rejuvenate plants in the dormant season.

Some Wade tips:

- Prune six weeks before the start of the new growing season.
- Do not severely prune boxwood or conifers (pine, spruce, junipers).
- Prune in stages over two to three years, if possible.
- Be careful pruning crepe myrtle, the most abused plant in our landscapes.
All Praise Pe
All across America, people are saying beautiful things about pendimethalin.

Jim Miller of Emerald Green Lawn Care tells us, “When we compare preemergent results with price, we always return to pendimethalin.”

Jessie Creemcia of Torrey Pines Golf Course also sings the praises of pendimethalin. “We have used it for the past three years on our fairways and roughs. We have had great results.”

Due to its residual activity, pendimethalin controls a broad spectrum of grassy and broadleaf weeds all season long. With excellent turfgrass tolerance.

And it’s labeled for numerous ornamentals as well.

For truly praiseworthy turf, discover pendimethalin. The unbeatable preemergent turf herbicide.

Pendimethalin
Nothing Beats Pendimethalin.

Always read and follow label directions.

Photography courtesy of Kindem Associates Landscape Design and Installation, Dublin, OH
Turfgrass management in shady areas of lawns

by Joseph M. DiPaola, Ph.D.
North Carolina State Univ.

- Like all plants, turfgrasses need light to grow, at least four hours of full sunlight per day.

- Trees with dense crowns cast a deeper shade than trees with more open canopies. Deciduous trees selectively filter the sunlight, casting a “green shade” that is low in the parts of the light spectrum that are most important for lawn growth (blue and red light). Coniferous trees have a shadow that is largely unfiltered and block less light because of their needle-like leaf shape, more open canopies and narrow shapes.

Sunflecks are pockets of sunlight that penetrate the tree canopy and move across a turf. They greatly increase the ease of managing turf under shaded conditions. Sunflecking can be increased by opening the tree canopy through selective pruning. Dead and diseased limbs are good candidates for initial removal.

- Shaded areas:
 - are more humid,
 - have restricted air flow,
 - have fewer dews that “burn off” later in the day, and
 - are cooler during the summer and winter months.

In response to this altered environment, turf in shade has:
- a more upright growth,
- lower food reserves,
- a more shallow root system,
- a decreased stand density, and
- a more succulent shoot tissue.

Overall, shaded turf is less able to compete with weeds and pests. On the other hand, some weeds, like crabgrass and goosegrass, also grow poorly in shaded conditions and are less of a problem.

Turf, particularly warm-season grass, often suffers more winter injury in shaded settings. Under shade, a lawn’s vigor and wear tolerance is reduced.

Shade management tips

1) Select shade-tolerant cultivars. A groundcover may be necessary for deeply-shaded locations.

2) Use mixtures or blends of cool-season turfgrasses when renovating or establishing the site.

3) Improve the air flow across the landscape by removing trees and ornamentals which obstruct wind movement.

4) Prune lower tree branches to improve light penetration.

5) Selectively prune upper tree limbs to improve light penetration.

6) Increase your lawn mower’s cutting height by ½ to 1 inch.

7) Prune tree and ornamental roots using spades or edge the lawn with a trencher periodically. Do not remove more than half of the viable roots beneath the drip line. Some trees are sensitive to root pruning; check before beginning this work.

8) Reduce traffic on the lawn.

9) Promptly remove fallen tree leaves and clumps of mowing clippings.

10) Water deeply and infrequently. Avoid late afternoon and evening irrigation, which promotes disease.

11) Minimize nitrogen fertilization and maximize potassium fertilization.

12) Apply fungicides, when necessary, to check disease outbreaks.

13) Leave a two- to four-foot turf-free zone around small trees to improve their growth.

14) Provide broadleaf weed control and watch for encroachment by difficult-to-control weeds.

15) Keep soil pH adjusted.

16) Fertilize trees separately and at rootball depth.

Shade tolerance of selected turfgrasses

Kentucky bluegrasses:
- Good—A-34, Georgetown, Glade; Moderate—Adelphi, America, Bristol, Emmundi, Fykling, Midnight, Nugget, Ram I; Poor—Birka, Columbia, Eclipse, Mystic, Sydsport, Touchdown.

Fine fescues:
- Excellent—Aurora, Biljart, Reliant, Scaldis, Sparta, SR3000; Good—Center, Enjoy, Highlight, Jamestown, Shadow, Victory, Waldorf; Moderate to poor—Commodore, Flyer, Fortress, Pennlawn, Pernille, Robot, Ruby.

Perennial ryegrass:
- Good—Allstar, Birdie II, Cowboy, Elka; Moderate—Gator, Palmer, Pennant, Repell; Poor—Yorktown II

Roughstalk bluegrass:
- Moderate—Laser; Poor—Sabre

Tall fescue:
- Excellent—Trident; Good—Adventure, Apache, Ariad; Moderate—Finefawn I, Houndog, Jaguar, Bonanza, Falcon, Poor—Pacer, Rebel, Rebel II, Mustang, Olympic

St. Augustinegrass:
- Excellent—common, Roselawn, Bitterblue, Floralawn, Floratine, Raleigh

Zoysiagrass:
- Moderate—Belair; Poor—Cashmere, Emerald, Meyer

Bermudagrass:
- Poor—common, Vamont, Tilway

Bahiagrass:
- Moderate—Argentine, Pensacola

Centipedegrass:
- Good—common, Oaklawn, Tennessee Hardy, Centennial

Potential for lawn disease in the shade.

Shade tolerance—Diseases—like powdery mildew, brown patch, leaf spot, melting out and Fusarium blight—are a dominant factor limiting turf survival in the shade. Within a species, shade tolerance can range from poor to excellent, depending on the cultivar. Excellent shade tolerance does not ensure survival or acceptable performance.

Deeply shaded sites will not support a quality turf. In these settings, managers should consider using groundcovers and landscape mulches. If turf is necessary, pruning and/or removing trees may be needed to allow greater light penetration.

Many years ago, turf scientists demonstrated that shade disease problems were reduced when mixtures of turfgrasses (e.g. Kentucky bluegrass and fine fescues, tall fescue and Kentucky bluegrass) were used. Tall fescue has a much finer needle blade under shade than in open sunny areas and has performed well in mixtures with Kentucky bluegrasses (80:20 or 90:10 by weight) or with Kentucky bluegrass and fine fescues (80:10:10 by weight).

Among warm-season turfgrasses, St. Augustinegrass is clearly the most shade tolerant, with the exception of Floratam.

—The author is a member of the turf faculty at North Carolina State University. This article originally appeared in the winter ’92-93 issue of the North Carolina Turfgrass Council newsletter.
As part of our continuing commitment to turf care professionals, United Horticultural Supply proudly features our own TURFGO® line of fertilizers, chemicals and turf seed.

These top pros have discovered that TURFGO® products are premium quality in addition to being environmentally sound.

For example, TURFGO® Crabgrass Preventer plus Fertilizer contains TEAM*, a proven leader in crabgrass control. Regardless of weather, turf species or time of year applied, excellent results are predictable.

Recent studies conclude that TEAM is still a top performer. Plus, it's safe for all turf and it won't stain.

If you prefer it without fertilizer, we have TEAM 2G.

Whatever your need, United Horticultural Supply has a product that performs as promised and is always in good supply. Call us at 1-800-847-6417 for more information.

* TEAM is a trademark of DowElanco
The Merit Club in Gurnee, Ill. has received a singular honor: its 320 acres have been granted a government easement, preserving it as open space for perpetuity.

The gently rolling course, owned by Bert Getz, includes 30 acres of wetlands, a 30-acre savannah and a two-acre tree nursery. One thousand, four hundred of the course’s 2,200 trees are holdovers from the original site.

“When I decided to convert our family farm into the Merit Club, the goal all along was to save the scenic and natural character of the land,” says Getz. “I’ve owned the property for 25 years and didn’t want to see it paved or roofed over. Granting a conservation easement completes my efforts to save the site’s beauty for future generations.”

Developers had originally approached Getz about building an 1,800-home luxury golf course community on his property. He decided to keep just 100 acres and to allow a small subdivision to be built on another 100 acres.

“I wanted to do something right,” Getz told a reporter for the Chicago Tribune last year, “and not let the almighty dollar make the decision.”

Getz began working with GorLands, a corporation for open lands and an affiliate of Open Lands Project, to establish the easement in 1991. Details were finalized last fall.

“Developing a ‘unique piece of property’ attracted veteran superintendent Oscar Miles to the project.”

Developers had originally approached Getz about building an 1,800-home luxury golf course community on his property.

He decided to keep just 100 acres and to allow a small subdivision to be built on another 100 acres.

“I wanted to do something right,” Getz told a reporter for the Chicago Tribune last year, “and not let the almighty dollar make the decision.”

Getz began working with GorLands, a corporation for open lands and an affiliate of Open Lands Project, to establish the easement in 1991. Details were finalized last fall.

“The Merit Club is a particularly exciting project for CorLands,” says director Tom Hahn. “Not only is it a model in environmentally-sensitive golf course design, but it also sets an example for other owners who realize that the open space their courses provide in areas of rapid growth is invaluable.”

The easement eliminates any commercial office or residential development on the site. Buildings may only be constructed in two designated “maintenance” and “club house facility” zones (totaling 15 acres) and must be directly related to operation of the golf course. If golf course operation ceases for any reason, the land must remain open and be allowed to revert back to its natural state. These restrictions apply even if the land is sold.

The Merit Club land contains 2,200 trees, 1,400 of which are native to the area.

A ‘super’ challenge—Course superintendent, Oscar Miles—a superintendent for 32 years—says he accepted the position at CorLands after he realized that here was an opportunity that doesn’t come along often: a chance to develop “a unique piece of property.” Miles was involved in the project from the planning stages, and he and his men did the landscaping finish work.

“Each hole is a corridor,” says Miles. “We think in terms of one hole at a time, from tee to green.”

Pennlinks, Penneagle and Penncross varieties are used at CorLands. The turf from tee to green grows from two inches to six inches, to one-foot high roughs. Natural grasslands grow as high as four feet.

The course includes a sod nursery, and Miles recently began a native tree nursery.

ELSEWHERE

Rolling greens: the verdict is in, page 58
Weekend crews work, super says, page 58
GCSAA honors two long-timers, page 58
Deadline extended on golf publication, page 58
LESCO Fertilizers with PRE-M®
The Most Trusted Combinations on Earth.

All combination fertilizers are not the same. In fact, only LESCO combinations contain PRE-M®, the most trusted name in preemergent herbicides.

Our Poly Plus® sulfur-coated fertilizers combine with PRE-M for a wide variety of trusted combinations that are simply unbeatable.

Trusted Results. For more effective results, Poly Plus fertilizers with PRE-M give you more flexibility when choosing application rates and length of feeding. Compare preemergent labels and you’ll agree. PRE-M is best.

Trusted Weed Control. PRE-M delivers exceptional control against a broad range of annual grassy and broadleaf weeds. Very economically, too.

LESCO offers you another unbeatable combination: People and Service.
You’ll find more knowledgeable, helpful sales people and more than 100 convenient Service Centers. It’s just some of the added value you get exclusively from LESCO.

To learn more, call this trusted combination of numbers: 1-800-321-5325.

LESCO, Inc. 20005 Lake Road
Rocky River, OH 44116

For professional use only. Always read and follow label instructions.
PRE-M is a registered trademark of LESCO, Inc. Poly Plus is a trademark of LESCO, Inc. © 1994 LESCO, Inc.
Rolling greens: is it a help or a hindrance?

- Rolling putting greens to enhance green speed has been practiced for a number of years.

Advanced lighter rollers that are not so prone to compacting the turf have reignited interest in rolling—especially on sand-based greens.

Last summer, a study was conducted by Drs. Karl Danneberger, Ed McCoy and Thomas Parobek at Ohio State University.

Two locations with different construction methods were used. The first was a 21-year-old USGA-constructed Penncross green. The second site was a 10-year-old Penncross turf established on native Brookston silty-clay loam.

Both sites were mowed at 5/32nds of an inch with a John Deere walk-behind mower. Rolling was done with a Toro Greensmaster 3000 with rolling units. What they found out, as reported in a recent edition of OSU’s "Turf News:"

- As measured by a stimpmeter, rolling increased green speed significantly on both USGA and native soil greens compared to the non-roll control.

On the USGA sand green, rolling increased green speed between 5 and 11 inches compared to the control. On the native soil green, speed increased between 5 and 13 inches compared to the control. (However, increasing speed with successive rollings was not observed on the native green, as it was on the USGA green.)

- Comparison of stimpmeter readings of the rolled vs. control plots immediately preceding the rolling treatment revealed no difference in green speed on both the USGA and native soil greens. From these data, it appears that rolling increases green speed, but the effect lasts no longer than 24 hours.

- Rolling had no effect on water infiltration over the duration of this study.

- Rolling negatively affected the overall visual quality of the turf. Rolled plots were more off-color and showed some wear.

The conclusion the research team reached was this:

"Rolling for a short duration is a means of increasing putting green speed with minimal detrimental agronomic effects. However, the long-term use of rolling may be detrimental to the turf."

Golf Course Maintenance

Deadline extended for book

- "Superintendents’ Handbook for Golf Course Maintenance & Construction" has extended its deadline for submission of entries until April 10th. Entries which are received will then be used to develop chapters on topics such as putting greens, fairways, roughs, wildlife management, equipment, IPM, etc.

"Contributions at all levels, from superintendents across the country, have been received," says editor Dr. Trey Rogers of Michigan State University. "This is an excellent opportunity to give back to the industry, and to receive full recognition, now and forever, in a published form."

Contributions should be one to five pages in length and include photos. To receive a contribution packet, please write: "Handbook for Superintendents," P.O. Box 799, Okemos, MI 48805-0799.

Weekend crews work

- Frank Siple, golf course superintendent at Royal Lakes Golf and Country Club in Flowery Branch, Ga., believes in hiring part-timers for weekend maintenance work. That allows his regular crews the weekends off.

Writing in "Thru the Green," Siple says:

"We have found a better attitude on Monday mornings. Employees don’t seem to be as tired, stressed out or over-worked. The weekend break acts as a buffer or even a mini-vacation, which we all need.

"Second, many overtime hours are cut out of your budget. This savings can be thousands of dollars a year. This money could be used to hire another summer crew member or simply help to lower your budget."

Quite obviously, the weekend employee will also be paid less than a regular full-time employee, further saving money.

Finally, the weekend crew can serve as a "feeder" system to your regular roster. "These employees may show skills and interest for a full-time or summer position," Siple says.

One more hint from him: you might want to hire an extra weekend person so that crew members can rotate weekends off. "It works for me," Siple says.

GCSAA honors pair in Dallas

- Allan MacCurrach and John J. Spodnik received this year’s Distinguished Service Awards from the Golf Course Superintendents Association of America at the opening session of last month’s GCSAA conference and trade show in Dallas.

"On behalf of our members, the GCSAA board of directors is very pleased to honor these two gentlemen," said President Randy Nichols. "Allan’s and John’s careers embody the highest traditions of this award."

As senior agronomist for the PGA Tour, MacCurrach makes advance agronomy visits to sites for Tour, Senior Tour and Nike Tour events. He also assists Tournament Players Club superintendents in developing their agronomy programs. He has been a GCSAA member since 1962.

Spodnik has been superintendent at Westfield Country Club in Westfield Center, Ohio, for 34 years as it grew from nine to 36 holes. He has been secretary/treasurer for the Northern Ohio GCSAA chapter for 34 years. He has been a GCSAA member for 35 years.

The GCSAA also gave its Leo Feser Editorial Award to Thomas A. Christy of Riverside Golf & Country Club, Portland, Ore. The award is presented annually to the author of the best article published in the association’s magazine. The article for which Christy received his award was "Redesigning Equipment Washdown Pads," which appeared in the April, 1993 issue.
For 10 Years, Superintendents Have Been Using It To Relieve Headaches.
Fertility management of sand as a growing medium for greens grass

by James Latham
USGA Green Section

The development of high sand content sports fields and golf greens has been heralded as a major step toward the multipurpose, all-weather use once thought possible only with artificial turf. It seems, however, that these rugs have as many problems as natural turf—except inside domed stadiums.

The sands are far from foolproof; finding the right components for a mixture does not end problems in a sand-based program. Fertility management can be difficult, and the related problems as insidious as any faced by a turf manager.

The major problems are related to high leaching potential, low cation exchange capacity, nutrient balance difficulties and other problems with pH levels. These, however, were considered worthwhile trade-offs when compared to problems associated with easily-compacted, poorly-drained (and aerated) soil mixtures used in the past.

High-sand growing media are supposed to support traffic and drain readily. That same porosity makes nutrient retention quite difficult, and nitrogen is particularly subject to loss due to the very nature of the sandy substrate. Ammonium ions (NH₄⁺) are rapidly converted to nitrate ions (NO₃⁻) in the well-aerated sand. The nitrates have no physical attraction to negatively-charged soil or organic matter and are readily washed out of the rootzone by the sand's high permeability.

Slow-release?—At first, this leaching loss indicates that slow-release nitrogen sources are naturals for growing turf in porous media. This is not always the case, since sand is essentially sterile or at least has a small population of microorganisms.

The release of nitrogen from sources requiring microbiological breakdown is, consequently, slow for a while. These products are ureaformaldehydes, methylene ureas, process tankages, sewage sludges, etc. Encapsulated particles, IBDU, etc. are not so limited.

The restricted release does not last long, but must be considered in the early stages of use. Combinations of soluble and insoluble nitrogen sources produce the best results until the micro-organism population grows.

Another difficulty is low cation exchange capacity. We have lost the forgiveness of the soil.

Clays and organic matter had a tremendous capacity to absorb cationic nutrients, which reduced leaching loss. In sand/peat mixtures, however, the total cation exchange capacity is around five, and that means that this mode of nutrient retention is very low.

Additionally, the normally weak adsorption of potassium on clay or organic matter is readily overcome by irrigating with hard water, which contains high concentrations of calcium and magnesium ions.

Furthermore, we have always heard that phosphorus does not leach but accumulates in the upper rootzone. This does not occur in sands. The phosphates go right on through—just like the nitrates.

Trace elements may be lost in the same way, but the manner of their availability is not as clear because the chemistry of these nutrients has not been worked out in this medium or with turfgrasses.

pH problems—One of the most founding problems with sand relates to its pH. We usually expect sand to have a neutral pH of 7.0, but this is seldom the case—at least in the central U.S. Soil tests show pH levels up to 8.0 or more, indicating high calcium levels.

Sands with alkaline reaction are subject to close observation and careful application of trace elements thought to be needed. In most cases, it is iron.

These nutrients should be applied individually to determine the turf’s reaction. Shotgun mixtures are not recommended because of potential toxicity from over-applying the wrong nutrient. But don’t forget that the alkalinity also offers some protection against toxicity due to excess copper and zinc levels.

Nutrients should be applied as in hydroponic gardening until the root system is well established and has cycled through death and re-establishment of new roots several times.

The residual left by dead roots has the best potential for maintaining nutrient stability throughout the rootzone. It also provides the nutrition needed to develop adequate populations of beneficial organisms. Only then can a stable plant community be established and nutrient balance based upon a well-established fertility management program be developed.

Water watch—One final word of caution on the possibility of contamination.

These growing media with little or no buffering capacity are susceptible to contamination by poor chemical water quality, overuse of pesticides, and even silting in by dust storms or muddy water.

All in all, sand as a growing medium for turf is a major advance in our field. It is imperative, however, to select the sand carefully, approach nutrition programs with knowledgeable caution, and revise almost everything you’ve learned about turf management using natural soils.

Since we have lost the forgiveness of the soil, we must make up for the loss with a better understanding of the material with which we now work.

—This article originally appeared in the May, 1992 issue of "Hole Notes," the newsletter of the Minnesota Golf Course Superintendents Association. It is reprinted with the author’s permission.