WE NEVER STOP PUSHING FOR PERFECTION

More people find more reasons to get behind Ransomes Bobcat than any other mid-size mowers. Because we never stop getting great ideas for improving them. Like our new ultra-durable, double-wide belt for truly uninterrupted mowing. Or our exclusive quick-lock caster clips for dependable wheel security. For landscaping and groundskeeping, remember; no one puts more new features on a wider selection of commercial mowers (32” to 54” cutting widths) than Ransomes. The best selling mid-size mowers in the world.

To see more great ideas, get started at your Ransomes distributor. Or call Ransomes, Inc., One Bob Cat Lane, Johnson Creek, WI 53038, (414) 699-2000.

RANSOMES
WHERE GREAT IDEAS START

Circle No. 274 on Reader Inquiry Card
In recent years there has been considerable discussion in the turfgrass industry regarding blended granular fertilizers versus homogenous granular fertilizers.

"Blended" describes the formulation process where the major fertilizer components, usually N, P and K, occur in separate particles, which are then mechanically mixed or blended together to form the desired N-P-K ratio.

"Homogenous" describes the formulation process where the N, P and K components are combined to form a single particle. Each particle would therefore contain the desired N-P-K ratio.

The uniformity debate
The point of discussion has centered primarily on the relative uniformity of application of these two basic types of fertilizers. It is believed that particles of blended fertilizers will segregate from one another when delivered from a rotary spreader, resulting in non-uniform fertilization. Conversely, segregation will be avoided by using homogenous fertilizers, thus resulting in uniform coverage.

The above situation is of primary concern when the materials are delivered from a rotary spreader. Rotary spreaders are commonly used by professional turfgrass managers because they afford ease of operation, wide swath, and relatively uniform distribution patterns.

A study was conducted at the University of Georgia in which the particle distribution of several commonly-used turfgrass fertilizers delivered from a rotary spreader was examined.

The study begins
In this study, the Scott's R-X7 rotary spreader was used to deliver the fertilizer materials. The test procedure involved passing the spreader, which contained a specified fertilizer, over a series of specially-designed collection trays. Spreader speed was maintained at approximately three miles per hour.

Seven complete fertilizer materials were tested: three homogenous formulations, two fertilizer/pesticide combination products (BFC) and two blended fertilizers without pesticide (BF).

After passing the spreader over the collection trays, a small sample of fertilizer was taken from each tray for chemical analysis. In addition to a chemical analysis, a physical analysis was also conducted. The physical analysis consisted of passing the fertilizer material from each collection tray through a series of wire mesh screens ranging from 2.00 to 0.25 mm.

The results of this study showed that with any given fertilizer, larger particles in the 1-2 to > 2 mm size range disperse relatively uniformly across the effective spreader swath. Materials do not accumulate at the perimeter or at the midpoint or center line of the swath.

PARTICLE SIZE RANGE OF SEVEN GRANULAR FERTILIZERS AND RELATIVE RANKING OF UNIFORMITY OF DELIVERY.

<table>
<thead>
<tr>
<th>Fertilizer type</th>
<th><0.25</th>
<th>>0.25-<0.5</th>
<th>>0.5-<1</th>
<th>>1-<2</th>
<th>>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF<sub>1</sub></td>
<td>58.2</td>
<td>41.0</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>BF<sub>2</sub></td>
<td>9.1</td>
<td>64.0</td>
<td>20.1</td>
<td>6.2</td>
<td>0.6</td>
</tr>
<tr>
<td>BF<sub>3</sub></td>
<td>28.8</td>
<td>47.9</td>
<td>19.6</td>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>HFC<sub>4</sub></td>
<td>0.7</td>
<td>26.6</td>
<td>52.6</td>
<td>15.6</td>
<td>4.5</td>
</tr>
<tr>
<td>HFC<sub>5</sub></td>
<td>4.2</td>
<td>42.8</td>
<td>40.2</td>
<td>10.4</td>
<td>2.4</td>
</tr>
<tr>
<td>BFC<sub>6</sub></td>
<td>15.0</td>
<td>36.0</td>
<td>34.0</td>
<td>11.0</td>
<td>4.0</td>
</tr>
<tr>
<td>BFC<sub>7</sub></td>
<td>11.0</td>
<td>57.0</td>
<td>22.0</td>
<td>8.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Entry forms are now being accepted by the Professional Grounds Management Society and LANDSCAPE MANAGEMENT magazine for their third annual "Landscape Manager of the Year" award.

The purpose of the award is to recognize superior job performance among landscape managers, to challenge those involved in the industry, to achieve higher standards of excellence and to bring national recognition to deserving managers.

Any person directly responsible for the professional maintenance of one or more landscapes is eligible to enter. Applicants will be judged according to job performance, honors and awards, procedures and philosophies, and contributions to the green industry. Applicants will be asked, at the time of entry, to submit four 5 x 7 black-and-white glossy photos and 10 color 35mm slides of current work areas with a short narrative on each.

<table>
<thead>
<tr>
<th>Applicant's name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicant's company</th>
</tr>
</thead>
</table>

Official entry form should be sent to:

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City/State</th>
<th>Zip Code</th>
</tr>
</thead>
</table>

Mail to: PGMS, Landscape Manager of the Year, 1201 Galloway Ave., Suite 1E, Cockeysville, MD 21030, 301-667-1833
bution occurred. These smaller particles showed greatest accumulation near the center of the spreader swath. Therefore, particle size of a fertilizer may help explain why some of the fertilizers examined in this study showed relatively non-uniform delivery.

To better understand this relationship, the particle size range of each material was determined (see table). In general, those fertilizers that spread the most uniformly also showed the smallest range in particle size. However, it is important to note that not all the blended fertilizers had non-uniform delivery. For example, BF2 was quite uniform; in fact, it was comparable to HF1. More than 84 percent of fertilizer fell in two size ranges (1-2 to > 2 mm). This explains its overall relatively uniform delivery. Only HF1, which had a narrower particle size range, showed slightly more uniformity.

N remains even
Although some fertilizers had non-uniform delivery, it was often difficult to observe growth or color variation in areas fertilized with these materials.

There may be several reasons for this. Our data showed that of the three nutrients, nitrogen exhibited the least variation across the spreader swath.

Of the three nutrients, turfgrasses exhibit the most dramatic growth and color response to nitrogen in either excess or deficient amounts. Therefore, since nitrogen showed relatively good distribution across the spreader swath, it would be rare to see growth or color variations in the field when using any of the materials tested in this study.

Our results did show phosphorus and potassium as having more variation in distribution than nitrogen. However, neither one of these nutrients in excess or deficient amounts would be expected to cause an obvious growth or color response in turfgrasses. Therefore, non-uniform delivery of these nutrients over a turfgrass area would be difficult to detect.

In conclusion, in terms of uniformity of application, is there a real difference between homogenous and blended granular fertilizers? Our study showed that there can be. However, when considering uniformity of fertilizer dispersion from a rotary spreader, a uniform or narrow particle size range is more important than whether the fertilizer is blended or homogenous.

In general, our study showed that the more uniform the particle size for a particular fertilizer, the more uniform was its delivery from a rotary spreader, regardless of whether it was homogenous or blended.

Label is no help
Finally, it should be noted that information pertaining to the particle size of a fertilizer is not usually included on the product label. However, consider the other factors that are just as important when determining the potential effectiveness of a particular fertilizer.

Two important considerations would be the N, P and K analysis and the specific nitrogen carrier. Some important characteristics of the nitrogen carrier include: rate of N release, burn potential, acidifying effects, water solubility and cost per unit of N. In addition, keep in mind that the condition of the spreader, calibration, operation and terrain may also cause variation in the uniformity of fertilizer delivery.

If the wrong fertilizer is selected in regard to analysis and/or nitrogen carrier, and/or particular attention is not paid to the care of the spreader and the spreader's operation, it will probably make little difference whether the fertilizer material is homogenous or blended.

With Olathe Slit Seeders you: • use less seed • get higher germination rates • have a healthier root system • thin out thatch and undesirable species • provide safer turf for sport areas • achieve the most important goal in over-seeding, namely, seed to soil contact.

MODEL 85 — 5 hp Seed n Thatch, low cost combination thatcher/seeder.
MODEL 84 — 4' PTO model for tractors 25 hp and up. In 1962, Buck Rogers built the first Rogers Slit Seeder. Now, in 1989, he has improved and expanded on his original ideas under the Olathe trademark.

OLATHE MANUFACTURING, INC. 100 INDUSTRIAL PARKWAY, INDUSTRIAL AIRPORT, KANSAS 66031
800-255-6438 FAX: 913-829-2825 913-782-4396
THIS SUMMER, "LOUISVILLE SLUGGER" WILL TAKE ON A WHOLE NEW MEANING.

Get the feel and power of a real slugger when you're in Louisville. See Wisconsin Robin's entire line of side and overhead valve engines, from 2 to 18 hp, in action at EXPO '89.

Check out the quiet power of the overhead valve line. A three-chambered exhaust and double-thick metal shroud means you won't get a roar from these engines. Just the crowd.

Impressive stats, too. Solid-state maintenance-free ignition, heavy-duty forged steel crankshaft and dual element air cleaners give our engines the endurance they're known for.

Be sure to collect baseball cards with pictures and stats of your favorite Wisconsin Robin sluggers.

Stop by the Wisconsin Robin booth at EXPO '89. And see the engines that put outdoor power in a whole new league.

Wisconsin Robin

Come See Our Power Line-Up At EXPO '89.
WE REACH THE PEOPLE YOU NEED TO REACH!

Place a classified ad in any of these EDGELL COMMUNICATIONS’ publications and you know your ad dollar is wisely spent.

<table>
<thead>
<tr>
<th>Magazine</th>
<th>Circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTERMARKET BUSINESS</td>
<td>22,544</td>
</tr>
<tr>
<td>AMERICAN AUTOMATIC MERCHANDISER</td>
<td>13,094</td>
</tr>
<tr>
<td>AMERICAN SALON</td>
<td>135,288</td>
</tr>
<tr>
<td>BEVERAGE INDUSTRY</td>
<td>28,987</td>
</tr>
<tr>
<td>BODY FASHIONS/INTIMATE APPAREL</td>
<td>10,478</td>
</tr>
<tr>
<td>CANDY INDUSTRY</td>
<td>3,894</td>
</tr>
<tr>
<td>CANDY MARKETER</td>
<td>11,293</td>
</tr>
<tr>
<td>COMMUNICATIONS NEWS</td>
<td>50,125</td>
</tr>
<tr>
<td>CONCRETE PRODUCER NEWS</td>
<td>20,431</td>
</tr>
<tr>
<td>DENTAL MANAGEMENT</td>
<td>102,981</td>
</tr>
<tr>
<td>DERMATOLOGY TIMES</td>
<td>6,765</td>
</tr>
<tr>
<td>DRUG & COSMETIC INDUSTRY</td>
<td>12,781</td>
</tr>
<tr>
<td>DVM NEWSMAGAZINE</td>
<td>35,417</td>
</tr>
<tr>
<td>FLOORING</td>
<td>24,447</td>
</tr>
<tr>
<td>FOOD & DRUG PACKAGING</td>
<td>77,322</td>
</tr>
<tr>
<td>FOOD MANAGEMENT</td>
<td>51,224</td>
</tr>
<tr>
<td>HEARING INSTRUMENTS</td>
<td>19,063</td>
</tr>
<tr>
<td>HOTEL & MOTEL MANAGEMENT</td>
<td>45,116</td>
</tr>
<tr>
<td>HOUSEWARES</td>
<td>14,090</td>
</tr>
<tr>
<td>INSTRUCTOR</td>
<td>275,174</td>
</tr>
<tr>
<td>LANDSCAPE MANAGEMENT</td>
<td>47,757</td>
</tr>
<tr>
<td>LAWN CARE INDUSTRY</td>
<td>13,550</td>
</tr>
<tr>
<td>LP/GAS</td>
<td>15,241</td>
</tr>
<tr>
<td>MEAT PROCESSING</td>
<td>17,407</td>
</tr>
<tr>
<td>NEUROLOGY</td>
<td>13,613</td>
</tr>
<tr>
<td>OPHTHALMOLOGY TIMES</td>
<td>15,321</td>
</tr>
<tr>
<td>PAPERBOARD PACKAGING</td>
<td>13,774</td>
</tr>
<tr>
<td>PAPER SALES</td>
<td>12,923</td>
</tr>
<tr>
<td>PEST CONTROL</td>
<td>16,325</td>
</tr>
<tr>
<td>PETS SUPPLIES MARKETING</td>
<td>14,099</td>
</tr>
<tr>
<td>PIT & QUARRY</td>
<td>21,581</td>
</tr>
<tr>
<td>POULTRY PROCESSING</td>
<td>10,090</td>
</tr>
<tr>
<td>RESTAURANT MANAGEMENT</td>
<td>101,583</td>
</tr>
<tr>
<td>ROOFING/SIDING/INSULATION</td>
<td>20,987</td>
</tr>
<tr>
<td>SNACK FOOD</td>
<td>9,377</td>
</tr>
<tr>
<td>UROLOGY TIMES</td>
<td>8,957</td>
</tr>
</tbody>
</table>

Don’t forget that classified advertising works just as effectively in locating employees as it does if you are looking for a position, have a line, machinery or a business to sell, are seeking representatives or wish to buy a specific item. Let it go to work for you!

EDGELL COMMUNICATIONS does a better job of reaching those who count (your potential customers) than any other business publisher.

COUNT ON US TO REACH THOSE WHO COUNT!

Call Dawn Nilsen at 218-723-9200

EDGELL COMMUNICATIONS
One East First Street
Duluth, Minnesota 55802
Instructional and technical material designed to aid you in your work.

<table>
<thead>
<tr>
<th>BOOK NUMBER</th>
<th>TITLE</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>810</td>
<td>LIABILITY AND LAW IN RECREATION, PARKS AND SPORTS</td>
<td></td>
<td>$33.00</td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>MANAGEMENT OF TURFGRASS DISEASES</td>
<td></td>
<td>$26.70</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>NATIVE TREES, SHRUBS, AND VINES FOR URBAN AND RURAL AMERICA</td>
<td></td>
<td>$79.95</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>1989 PESTICIDE DIRECTORY</td>
<td></td>
<td>$75.00</td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>LIABILITY AND LAW IN RECREATION, PARKS AND SPORTS</td>
<td></td>
<td>$33.00</td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>MANAGEMENT OF TURFGRASS DISEASES</td>
<td></td>
<td>$26.70</td>
<td></td>
</tr>
</tbody>
</table>

Use this coupon to place your order.

Mail this coupon to: Book Sales, Edged Communications
One East First Street, Duluth, MN 55802

Name ____________________________ Date ________________
Street Address ____________________________
P.O. Box Number ____________________________
City/State/Zip ____________________________
Phone Number ____________________________
Purchase Order Number ________________
Account Number ____________________________ Expiration Date ________________

Please send me the following books. I have enclosed payment for the total amount.
Please charge to my Visa, MasterCard or American Express (circle one)

<table>
<thead>
<tr>
<th>BOOK NUMBER</th>
<th>TITLE</th>
<th>QUANTITY</th>
<th>PRICE</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>810</td>
<td>LIABILITY AND LAW IN RECREATION, PARKS AND SPORTS</td>
<td></td>
<td>$33.00</td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>MANAGEMENT OF TURFGRASS DISEASES</td>
<td></td>
<td>$26.70</td>
<td></td>
</tr>
</tbody>
</table>

Domestic—"Please add $3.00 per order plus $1.00 per additional copy for postage and handling.
All others—"Please add $5.00 per order and if ordering multiple copies, also add $2.00 per additional copy to cover postage and handling.
Please allow 5-8 weeks for delivery.
Prices subject to change.
Quantity rates available on request.
Questions? Call 218-723-9471 or 9472

LM
Growing sod over plastic: turf in five weeks

by Henry F. Decker, Ph.D., Ohio Wesleyan University

Interest in growing grasses in various media over plastic sheeting has grown recently.

Turf grown by O.M. Scott & Sons in 1965 proved that, given appropriate care, you can maintain a grass sod on concrete or any impermeable base as long as you have sufficient water and nutrients.

The basic idea is compelling: by placing a suitable growing medium and seed over plastic sheeting (in our case, 1- to 6-mm polyethylene sheeting), and irrigating it carefully, a tall fescue sod, for example, can be formed in as little as five weeks. The entire primary root system remains intact: unable to penetrate the plastic sheeting, the roots run laterally. They rapidly form a fibrous root mass that binds and knitting the sod so that it can be harvested and handled in just a few weeks rather than the typical one to two years.

The new sod can be harvested by simply rolling it off the polyethylene sheeting which is left in place to be used again for subsequent sod crops. Since the sod is harvested with the root system intact, rather than being severed by a sod cutter, the sod binds and roots rapidly to a new site.

Good news, bad news

There are several other significant advantages to the process:

• Since the sod is grown in only a few weeks, much less water, fertilizer, and mowing are needed.
• Depending on the growing medium, the sod can be produced lighter than even a peat sod.
• The sod can be harvested and laid in large rolls (5 by 45 feet to give sod rolls of 25 square yards or more) which can eliminate a great deal of manual labor.

Despite the obvious advantages, several difficult problems have been encountered. First has been the availability of a plentiful, inexpensive, growing medium. Hundreds of materials appear to work in a greenhouse only to be quickly eliminated when considered on a field scale.

Second, the amount of growing material required to cover an acre sheet of plastic one inch deep translates into more than 130 cubic yards. That is too many dump truck loads to be competitive with the conventional sod on soil process.

Third, placing an exact amount of growing material in a thin layer evenly over acres of plastic film without distortion is a challenge. Rainfall — whether it be a drizzle or a downpour — compounds the problem.

Conventional sodding is very labor intensive. Significantly reducing the amount of hard labor involved has to be a prime attribute of any alternative sodding system.

Positive developments

Starting in the 1980s, several things helped make an alternative sodding system more feasible:

• The Beltsville system of composting sewage sludge began to catch on. Suddenly, at least in Ohio, an inexpensive growing material became available that is charged naturally with the right nutrients for grass culture.
• Techniques were developed to spread the growing medium evenly, to protect it from distortion in thunderstorms, and to reduce the quantity required to affect a sod.
• Turf-type tall fescues have been introduced. These new turf cultivars have several apparent advantages over bluegrass: they are more drought tolerant, possibly more shade tolerant, disease- and insect-resistant. They are more durable on playing fields, germinate and root more quickly and are more vigorous than bluegrass.

On the other hand, the tall fescues do not produce rhizomes and stolons. Hence, they do not lend themselves easily to conventional sod production. In practice, these drawbacks are compensated for by growing the sod for a longer than usual period, by including sod netting, and/or by adding bluegrass to the tall fescue seeding.

Thanks, tall fescue

These apparent disadvantages to growing a tall fescue sod in a conventional manner turn out to be strengths when tall fescue is considered as the main ingredient of an alternative sod grown on a solid base. The vigorous and rapid primary rooting gives the tall fescue cultivars a distinct advantage over the less vigorous bluegrasses.

With sod netting, we can easily grow in five weeks a bona fide tall fescue sod that expert grass men judge to be of comparable, even better, quality than conventional, soil-grown tall fescue sod.

In 1988 experiments supported by the National Science Foundation, we tested four different readily-available waste materials: composted sewage sludges from Columbus (“Com-Til”) and from Akron (“Organix”); a spent mushroom soil from the Campbell Soup mushroom production facility in Jackson, Ohio; and composted feed lot waste from stockyards in South Charleston, Ohio.

Controls consisted of a typical Ohio clay loam field soil and a mix of one-half field soil and one-half Com-Til. These were tested simultaneously in irrigated, 2,000 square foot test beds and in greenhouse pots at Ohio Wesleyan University. Selected turf cultivars were the bluegrasses Midnight, Adelphi, Banff, Mo.
STAY AHEAD OF THE GAME.

The Jacobsen 7-Gang Hydraulic Ranger's high-production, tournament quality cut puts you acres ahead of the game and your golfers.

Get ahead, and stay ahead, with the 15' cutting swath of this rugged, hard-working pull behind. It cuts nearly 40% more grass than a 5-gang, yet it's every bit as maneuverable. And hydraulic-reel drive delivers a quality cut, even through heavy, wet grass or morning dew.

Plus, the Ranger leaves a good impression on your golfers instead of your turf. Its compact size and wide, high-flotation turf tires produce a lighter footprint than competitors—less than 10 PSI ground pressure. Team-up the Ranger with the Jacobsen G-20D turf tractor and you’ve got a high-production mowing system that’s right at home on fairways, roughs, parks or schoolgrounds.

Any 42 PTO hp tractor can pull the Ranger, because it has a completely self-contained hydraulic system. The hydraulic pump mounts directly to the tractor PTO so you can turn tighter, without any PTO universal joints to get in the way or damage. And fast, simple hookup/disconnect frees up your tractor for other chores.

Easy-reach, up-front electrical solenoid switches start and stop the reels, and provide reverse rotation for backlapping or high-production vertical mowing. Hydraulic lift levers let you mow with three, five, six or all seven reels, for cutting widths from 84” to 184”. Choose 6- or 10-blade, fixed or floating reels to match your needs.

So stay ahead of the game. See your Jacobsen distributor for full details and a free demonstration. Attractive lease and finance plans available. Or for more information contact: Jacobsen Division of Textron Inc., Racine, WI 53403.

A powerful 5-Gang Hydraulic Ranger with a 133” cutting swath is also available.
nopoly, America, and Nassau; and the
tall fescues Jaguar and Rebel II.

Good results
The tall fescues reached an average
height of 27 cm four weeks after plant-
ing on the waste materials as on the
controls. They grew at least twice as
fast as the bluegrasses on all waste
materials. The bluegrasses averaged
heights of 15 cm on the controls, 11 cm
on the composted sludges and feed lot
wastes, and only 6 cm in four weeks
on the mushroom soil.

The sewage sludges had to be
"leached out" prior to seed germina-
tion with the seedling root growth
proportional to the amount of leach-
ing. In the field this translated into
intense irrigation (four inches of
water per week) for the first two
weeks of planting.

Despite a record drought over the
1988 summer, we were able to prove
conclusively that it was possible to sub-
stitute waste materials for topsoil and to
produce consistently high quality tall
fescue sods in short periods.

With certain pre-conditions, it
would not be unreasonable to assume
that a perfectly serviceable tall fescue
sod could be produced in as little as a
month.

Saving time, space
Surprisingly, because of the drought,
after the first two weeks of initial
growth the tall fescue sods grown on
plastic needed less water to maintain
in prime condition than our conven-
tional bluegrass sods on soil. And ac-
ceptable tall fescue sods were being
produced with as little as 20 cubic
yards of waste material per acre. The
optimum was in the range of 40 to 50
cubic yards per acre. No pesticides or
adjuvants were needed.

Bluegrass sods are much more dif-
cult to produce than tall fescue sods.
(A hot summer on plastic is probably
asking too much of bluegrasses.)

In 1989 summer experiments, we
hope to be able to study the effects on
bluegrass seedings of intermittent,
cool, deep, well water and to look for
bluegrass cultivars that have greater
drought tolerance and other favorable
characteristics.

Smart waste disposal
Another attractive feature of this in-
novative growing process is its broad
application on a national scale. Since
the growing medium is contrived or
constructed from waste materials—
such as composted sewage sludge—
substantial amounts of topsoil would
be saved. And an obviously trou-
blesome, ever-expanding waste mate-
rial would be handled effectively,
efficiently, and disposed of safely.

It has been estimated that only five
percent of the U.S. annual cultivated
sod production (estimated at 250,000
acres a year) devoted to this growing
process using sewage sludge as the
main ingredient of the growing mix in
place of topsoil, production would be
the equivalent of using the total dry
sludge production of Boston, New
York, Philadelphia, Washington, and
Chicago combined.

When the capacity of the new sod
growing system to produce four to
eight crops per year is factored in,
then it can be calculated that only
about 1,500 to 3,000 acres of growing
surface would be needed for all of
these cities.

If the technology of the earlier re-
search can be refined and adapted to
cost effective production on a large
scale then an entirely new avenue of
resource recovery will be introduced
into the handling and disposition of
otherwise troublesome waste materi-
als. In addition, a better and more eco-
nomical method of growing grass
sods, which also conserves topsoil,
will be introduced.

LM