In 1983 the business community and homeowners of Marco Island, Fla. collected a special tax to fund the landscaping of neighborhood roadways. A. Gail Boorman & Assoc. was chosen to design the South Barfield Drive corridor, which serves as a collector to a large area of waterfront homes in the southern portion of the island. "Our challenge was to create a sophisticated residential roadway landscape that derives its characteristics from the natural history of the area," says Boorman.

To accomplish that end, the design and plant palette were kept simple, creating a visual flow of repeated elements that give the area a bold, unique identity. Berming was extensively used, symbolic of the upland rolling hills of the area. Earth sculpting and plant massing enhances the residential scale and creates a flow of visual continuity. The relationships of trees in groups is reminiscent of natural patterns found in native hammocks. Grasses (both native and ornamental) are extensively used.

Boorman used native plant selections whenever possible and non-natives were selected to complement the native look. All plants conform with the xeriscape program implemented by the local water company and require minimal maintenance upon maturation.

Circle no. 251 on Reader Inquiry Card

Next door to the Morton Arboretum outside Chicago is the Corporetum Office Complex, a 75-acre site hosting nine office buildings adjacent to the Illinois East-West Tollway. It was developed to provide a prestigious office campus environment to attract major corporations.

Landscape architect John M. Ryan, of Ives/Ryan Group, Inc., Des Plaines, Ill., used large plant materials to compensate for a total lack of existing mature vegetation in the area. Five to six inch shade trees and 14-foot ornamental trees were used in key viewing and access areas. The linear nature of the site in combination with its orientation to major highways on both the front and rear exposures resulted in viewable parking lots. These lots are screened through the establishment of "native groves," which introduced the feeling of forest remnants along the project frontage. These groves are composed of plants that associate together in nature. A typical grove consists of an anchor of shade trees spaced thirty to fifty feet apart, which are then underplanted with closely spaced shade-tolerant trees and masses of shrubs that naturally colonize. The grove is mulched with a base of leaf compost overlayed with wood chips. Its edges are planted with forest edge ornamental trees and perennials.

It should come as no surprise that this design won awards from the American Association of Nurserymen, the Chicago Sun Times and the Illinois Landscape Contractors.

Circle no. 252 on Reader Inquiry Card
GROWTH REGULATORS
FOR TREES AND SHRUBS

The further development of plant growth regulators may make them more applicable to landscaping.

by Thomas J. Banko, Ph.D., and Marcia Stefani, VPI-SU

The most common use for growth regulators in landscape management and nursery production is to suppress growth. Under certain circumstances, growth suppression may be useful for managing turfgrasses, trees, shrubs and even bedding plants.

Growth regulators have been used for a number of years in the production of greenhouse crops such as poinsettias and mums, and also in the production of container-grown nursery plants such as azaleas. Their use in the landscape has come slower, probably because some of the older chemicals cause phytotoxic symptoms at effective rates on shrubs, trees, and turf.

Some recent developments in plant growth regulators may make this group of chemicals more useful to those involved in landscape maintenance. Some of these products are so new that they are not yet commercially available, but all of the products discussed here are on the market or are expected to be available within the next year.

Controlling tree growth
The most serious problem with trees is controlling their growth into utility lines. Utility companies spend millions of dollars each year trimming trees away from power lines. Therefore, utility company foresters and line clearance managers have been among the first to use growth regulators to control trees. Although most of the earlier work with tree growth regulators was done on trees under utility lines, recent developments are opening up a potential for the use of growth regulators on trees in the general landscape.

The idea with growth regulators is not to stop growth, but to reduce it so that the tree can renew itself and achieve a reasonably normal appearance.

Utility company foresters and line clearance managers have been in the forefront in the use of growth regulators to control tree growth.
BLUEGRASS QUALITIES WITH TALL FESCUE PRACTICALITY

You'll quickly notice Mustang's finer texture, rich dark green color and dense, uniform turf—and you'll understand why we say Mustang has bluegrass-like qualities.

But there's more to Mustang turf-type tall fescue than beauty; it's tough and durable. It's heat and drought tolerance, winter hardiness, and ability to endure low mowing heights are remarkable. Mustang even shows improved resistance to Helminthosporium netblotch and many other diseases.

Best of all, Mustang is practical, because it performs extremely well under low maintenance conditions like minimum fertilization, watering and mowing. National tests and actual applications in parks, golf courses and playing fields have proven it.

That's why Mustang is becoming the favorite choice of professional turf managers, over K-31 and many other commercially available varieties.

For bluegrass qualities and tall fescue practicality, use the professional's choice—Mustang turf-type tall fescue.

Pickseed also produces and other fine turf grasses available nationwide from quality seed suppliers.

Produced by:

PICKSEED
PICKSEED WEST Inc.
P.O. Box 888 • Tangent, Oregon 97389
(503) 926-8886

Circle No. 135 on Reader Inquiry Card
The hoped advantages of growth regulators are:

- Reducing growth—especially sprout growth—following extensive trimming. This extends the trimming cycle which leads to reduced maintenance expenses.
- Reducing the amount of wound-sprout growth—following extensive trimming. This extends the trimming due to repeated trimming. It is estimated that the average tree trim exposes about 400 sq. in. of cut surface. This stresses the tree due to the energy needed to heal this area, and it exposes a large area to disease organisms.
- Improving stress resistance by reducing surface area exposed to water loss and reducing the energy wasted on excess regrowth.
- Allowing normally large trees to be planted in smaller spaces. In many cases the appearance of the tree is improved by using a growth regulator. That’s due to a reduction in sprout injury by foot traffic and that growth is needed in order for the grass to rejuvenate itself.

Growth regulators should be thought of as a tool to help manage the mowing schedule, not to replace mowing completely.

There are two major potential uses for growth regulators in turf maintenance. One is control of low-maintenance, low-quality turf such as along roadsides, steep slopes, fences, ditches, and stream banks. The second is in difficult-to-mow areas of higher quality turf.

Another possible use is on more formal, high-quality turf where mowing is continued, but a growth regulator is applied at a low rate to reduce some mowing. Currently, this application for growth regulators is highly limited, probably because most lawns are exposed to injury by foot traffic and that growth is needed in order for the grass to rejuvenate itself.

Types of PGRs

The greatest potential use of turfgrass growth regulators for general landscape management is for difficult-to-mow areas such as steep slopes, along fences, or around obstacles.

Some specific characteristics of turfgrass growth regulators are as follows:

- Maleic hydrazide (Royal SloGro, Drexal Retard): first growth regulator available for turf; for cool-season grasses only; inhibits growth by suppressing cell division in the shoots, roots, and buds; suppresses root and rhizome development; seedhead formation inhibited if application is timed properly; best application time is in spring when Poa annua in perennial turfs; yellowing of leaf blade tips four to six weeks after application possible; Scott’s TGR is a granular formulation, which also provides nitrogen fertilization.

- Flurprimidol (Cutless): very new growth regulator, not yet available commercially; effects on turfgrass very similar to paclobutrazol.

In general, plant growth regulators can be helpful in managing turfgrasses, but they should be used with caution and should be selected carefully to match the situation involved. They are still not recommended for high quality turf situations, except for edging and difficult-to-mow areas. Plant growth regulators inhibit the renewal process of grass plants. This can lead to increased disease, insect, and traffic problems and result in lower turf density.

-PGRs: a tool to manage mowing

It may seem that the ideal growth regulator would stop growth completely, making mowing unnecessary. But that is an unrealistic expectation. Turfgrasses are constantly subjected to environmental stresses such as traffic, disease, insects and pollution. The only way grasses have to repair the damage from these stresses is by growing and replacing the damaged shoots. Therefore, some growth must be allowed.

Growth regulators should be thought of as a tool to help manage the mowing schedule, not to replace mowing completely.

There are two major potential uses for growth regulators in turf maintenance. One is control of low-maintenance, low-quality turf such as along roadsides, steep slopes, fences, ditches, and stream banks. The second is in difficult-to-mow areas of higher quality turf.

Another possible use is on more formal, high-quality turf where mowing is continued, but a growth regulator is applied at a low rate to reduce some mowing. Currently, this application for growth regulators is highly limited, probably because most lawns are exposed to injury by foot traffic and that growth is needed in order for the grass to rejuvenate itself.

Types of PGRs

The greatest potential use of turfgrass growth regulators for general landscape management is for difficult-to-mow areas such as steep slopes, along fences, or around obstacles.

Some specific characteristics of turfgrass growth regulators are as follows:

- Maleic hydrazide (Royal SloGro, Drexal Retard): first growth regulator available for turf; for cool-season grasses only; inhibits growth by suppressing cell division in the shoots, roots, and buds; suppresses root and rhizome development; seedhead formation inhibited if application is timed properly; best application time is in spring when Poa annua in perennial turfs; yellowing of leaf blade tips four to six weeks after application possible; Scott’s TGR is a granular formulation, which also provides nitrogen fertilization.

- Flurprimidol (Cutless): very new growth regulator, not yet available commercially; effects on turfgrass very similar to paclobutrazol.

In general, plant growth regulators can be helpful in managing turfgrasses, but they should be used with caution and should be selected carefully to match the situation involved. They are still not recommended for high quality turf situations, except for edging and difficult-to-mow areas. Plant growth regulators inhibit the renewal process of grass plants. This can lead to increased disease, insect, and traffic problems and result in lower turf density.

—Banko and Stefani

54 LANDSCAPE MANAGEMENT/OCTOBER 1988
Meet A True Beauty

Nobody gives you a beauty quite like the Pro Master 18-H. Because the beauty of our machine is the way it performs. Hydrostatic drive delivers speeds up to 6.3 mph without shifting. Standard hydraulic lift means easier operation. And twin rear wheel design, plus 0° turning radius make it a model of efficiency. Find out why ninety-six percent of the professionals, commercial users and homeowners we talked to told us they love the way their Gravelys perform. Test a Pro Master 18-H and find beautiful performance.

Fall In Love With A Gravely

Gravely International Inc., One Gravely Lane, P.O. Box 5000, Clemmons, NC 27012 • 919-766-4721 • Telefax: 919-766-7545

Circle No. 117 on Reader Inquiry Card
growth that occurs following extensive trimming, and because certain growth regulators cause a darker green color.

Basically two groups of growth regulators are for woody plants. Terminal bud inhibitors comprise the first and oldest group. This includes malonic hydrazide (Royal Slo-Gro, MH-30, Drexal Retard), chlorfluorenol esters (Maintain) and dikegulac (Atrinal, Atrimmec).

Although all of these materials have been used effectively to control tree growth, injury symptoms have been observed and regrowth has been variable. Also, inhibition of the terminal buds tends to stimulate branching, which may be desirable with certain shrubs to promote bushiness, but is not particularly desirable for tree growth.

The second group includes the subapical meristematic (gibberellin biosynthesis) inhibitors ("growth retardants"). These compounds act by inhibiting the synthesis of gibberellin in the plant. Gibberellin is a natural growth hormone that promotes cell elongation in the stem just below the apical meristem. By inhibiting the production of this growth hormone, stem length is greatly reduced.

Recently developed representatives of this class of regulators include paclobutrazol (Clipper), flurprimidol (Cutless) and uniconazole (Prunit). These materials are extremely active, requiring a relatively little active ingredient for growth control, without producing noticeable injury symptoms. Their effect lasts up to three years, and they are highly specific to the stem elongation process. Other processes, such as root growth, stem diameter enlargement and flower and fruit development continue normally.

Application methods

The above-mentioned compounds can enter the tree through the trunk or through the roots. The chemical is carried by the xylem cells in the sapwood of the tree, upwards, along with water and other nutrients, to the growing ends of the stems. Growth regulators such as Clipper have been successfully applied using trunk injection, soil drench, soil injection, and soil band spraying. The most effective and environmentally safe method is trunk injection.

To prepare for the injection, measure the trunk's diameter within two feet of the ground. The diameter is used to determine the amount of chemical to inject and the number of injector holes needed. This information is found on the label. Drill holes uniformly around the trunk, horizontal or with a slight downward angle, and at a 30 to 45 degree angle to the plane of the trunk to intercept the outer sapwood. Place the injector holes in the holes, adjust the system for the proper dose and activate. Injection time may vary from a few seconds to a few minutes depending upon the injector system, tree species, and time of year.

Afterwards, the holes may be sealed with a vinyl plug or silicone caulk to prevent bleeding, which can cause discoloration of the trunk.

Some concern has arisen regarding the potential for internal injury during the injection procedure. Drilling into the wood certainly wounds the tree and opens it up to decay organisms. The research of A.L. Shigo and Frank S. Santamour Jr. and others has shown that a healthy tree is capable of compartmentalizing a wound area with a wall of phenolic compounds that retard the spread of microorganisms. A weak, unhealthy, or stressed tree may not have the carbohydrate reserves necessary to wall off the wound area, and decay will result. Therefore, it is essential that the injected tree be healthy and unstressed, and that the injection site not be near a previous wound or injection.

The potential for injury with repeated injections should be weighed against the injury which occurs from repeated trimming. Because limited evaluation of injection sites, injection does not appear at this time to be detrimental to healthy trees. However, it may be that if a tree needs repeated trimming and growth regulator control to keep it within bounds, it is the wrong tree for the location and replacement should be considered.

The new growth retardants are also effective when applied as a soil drench or soil injection. As a drench, a small trench is scraped around the soil line of the tree, and the recommended dose of the chemical is poured into the trench. Alternatively, the chemical may be poured around the base of the trunk, allowing it to run down along the trunk-soil interface.

Commercial soil injection equipment may be used to inject the chemical into the soil to a depth of about six inches. The retardants may also be applied as a soil band-spray or sometimes a bark band-spray. However, if the chemical contacts grass or other plants nearby, they will become severely stunted. Regulations regarding soil and groundwater contamination must also be considered when applying chemicals to the soil.

For controlling sprout growth on a more limited scale, you may want to consider using an aerosol spray on the cut surface. Sproutgard is one percent naphthalene acetic acid (NAA) in an aerosol-based spray. NAA is a hormone that is sometimes used to promote cutting rootings, but at higher concentrations it inhibits shoot development. Chlorfluorenol (marketed as Maintain A by Uniroyal) is also available in an asphalt-based aerosol formulation. Both these products come in ready-to-use 13-oz. pressurized spray canisters.

Using growth regulators for sprout control in trees is not a substitute for proper pruning practices. Limbs should always be cut back to a lateral branch growing in the desired direction and should not be stubbed off. Stubs promote excessive sprout regrowth and sometimes infection and dieback.

Other PGRs

Growth regulators for shrubs, hedges, groundcovers and other plants is an area with a large potential for expansion as the newer growth regulators become available.

The first material used to chemically control shrub growth was Off-Shoot-O. This is not a hormone-like growth regulator, but a fatty acid that destroys the meristematic tissue of the shoot apex. This inhibits shoot elongation and promotes lateral branching in the same way that manual pinching or pruning does. A major drawback to its use, however, has been the potential for foliar burning.

A newer, safer material is dikegulac, sold as Atrinal or Atrimmec. This growth regulator acts systematically to reduce apical dominance and induce lateral shoot development. It may be used both in nursery production to produce bushier, more compact plants, or in landscape management. In the landscape, it is generally used after pruning or shearing to maintain the plant in the desired...
Why Dormant Feed Milorganite?

Reduce Operating Costs
You’ll save time and money. Apply Milorganite in late fall for efficient labor and nutrient use. More time is available for you and your staff in late fall, and spring time crunches will be avoided when you dormant feed Milorganite.

The W.I.N. Factor
Dormant applied Milorganite does not burn, leach, or lose its nutritive value due to a 90% Water Insoluble Nitrogen (W.I.N.) factor.

Rich In Chelated Iron
Your turf will look great. Milorganite provides 4% min. iron and a full package of nutrients. That means an early spring green-up without excessive growth, with the iron content carrying the rich color well into the heat of summer.

FREE LITERATURE
Mail in the coupon below for further information or call 414-225-2222.

America's Number One Naturally Organic Fertilizer

Mail to: Milorganite • 735 N. Water St. • Milwaukee, WI 53202

Circle No. 128 on Reader Inquiry Card
shape through the growing season. A problem with dikegulac is that it can cause chlorosis of the growing tips two or three weeks after spraying. This effect is usually transient, but on some species such as forsythia, oleander and privet, it may persist up to six weeks.

Dikegulac is applied as a foliar spray, usually in conjunction with trimming or shearing. The rate is selected from an extensive list of woody plants on the label. The plants may be trimmed in the fall or in the spring, but they should be sprayed in the spring while they are actively growing. One application per growing season is usually sufficient, but a second application may be made if necessary.

Dikegulac may also be used to suppress flowering and fruit development of certain plants such as ornamental olive (Olea europaea), glossy privet (Ligustrum lucidum), and Japanese holly (Ilex crenata). It should be applied pre-bloom or during the flowering period to reduce or eliminate bloom and prevent fruit set.

Chlorflurenol (Maintain CF-125) retards the growth of most trees, shrubs and vines when applied as a foliar spray. It should be applied after the new leaves are fully developed, as it may cause curling and twisting of tender new growth. Maintain is also effective on conifers, although it should be applied before the buds expand. Application to tender candles causes distortion of the new growth. Paclobutrazol (Clipper), marketed as Bonzi for greenhouse use, is labelled as Bonzi for greenhouse use, is labelled for use on poinsettias. Uniconizole (Sumagic, Prunit), a similar compound, still has only an experimental label, but is expected to be available in 1989. Both of these materials are gibberellin biosynthesis inhibitors, taken up by stems and roots and translocated to the growing points. They are apparently effective on a wide variety of plants including floral crops, bedding plants and woody ornamentals. Azaleas and rhododendrons respond to foliar sprays of Sumagic in the range of 5 to 25 ppm.

In our research on containerized liners of the Indica azalea 'Formosa,' we applied 5 ml of a 15 ppm spray to give the most effective rate of 0.75 mg active ingredient per plant. The Bonzi was applied as a 90 ppm spray. Sprays of Atrinal or B-Nine would require rates of 3000 to 5000 ppm to obtain comparable results. Soil drenches may be more effective than sprays, depending on the soil or container medium. Some media (particularly those with a high percentage of bark) can tie up the active ingredient and make it less effective.

It must be pointed out that these newer materials are extremely active and the amount applied must be carefully calculated, either on a square foot or a per plant basis. Spray concentrations in the range of 25 to 300 ppm have been effective on cultivars of juniper, viburnum, ligustrum, English and Algerian ivy and pyracantha. Optimum rates and timing still need to be determined experimentally for these and other woody species.

The prospects are good for more effective growth regulators for control of trees and shrubs, increasing the efficiency of landscape managers. LM
Introducing the all-new Jacobsen LF-100, the 5-gang designed to increase your lightweight mowing productivity.

The wing mowers are up front for better visibility. So the operator can hold a closer line - even at mowing speeds over 5 mph - to take full advantage of the 100' cutting width. This unique, up-front configuration also gives better access to all mowing units to quickly empty catchers and make mower adjustments easy.

Heavy-duty reels deliver a greens-like cut. New heavy-duty reel construction provides extra strength for long life in demanding fairway conditions. The fully floating, 22-inch steerable 7-blade reels are heavier, to follow ground contours closely, for that smooth, consistent Jacobsen cut that's the envy of the industry.

True lightweight mowing. Newly designed low-profile turf tires produce the lightest ground pressure, and the rear wheels roll on a different track than the front, so your tender turf thrives with less compaction. And the wide 4-wheel stance offers excellent traction, increased stability and a tight turning radius.

Built to last. The LF-100 has a proven, rugged chassis, a durable and simple hydraulic system and liquid-cooled diesel engine for a longer, trouble-free life on your fairways.

What's more, the entire machine is backed by your Jacobsen distributor, so you're never far from dependable parts and service support.

See all the LF-100 differences. Ask your Jacobsen distributor for a free demonstration. Attractive lease and finance plans available.
Or contact:
Jacobsen,
1721 Packard Ave., Racine, WI 53403.

© Jacobsen Division of Textron Inc. 1988
Circle No. 121 on Reader Inquiry Card
SPECIALIZING OR VERSATILITY

Some utility vehicle manufacturers are getting away from the one do-it-all vehicle to machines designed for specialized tasks. But by no means is it the end of the ‘do-everything’ vehicle.

Utility. Webster defines it as “capable of serving as a substitute in various roles.” Golf courses have long used turf vehicles described as “utility vehicles,” and more, these vehicles are finding their way into the landscaping, parks and athletic field markets.

But a funny thing is happening along the way. Manufacturers are producing specialized utility vehicles. An oxymoron if there ever was one. “The trend toward specialization has been going on for several years,” notes Bob Brophy of Cushman-Ryan, manufacturer of a number of popular utility vehicles.

One firm that is making a good living off this specialization is Hahn Agri-Turf. The company’s Multi-Pro 44 is designed for application only. “We take the application part of the utility vehicle and specialize,” explains Kent Hahn, general sales manager at Hahn.

“It used to be one vehicle for everything,” Hahn continues. “But not any more.” The Multi-Pro carries either a 160 gallon spray tank, a 1,000 lb. capacity hopper or a 10-inch deep bed for hauling up to 1,500 lbs. Hahn will release a version in January with a 35 hp engine capable of hauling a 300 gallon sprayer or a 3,500 lb. capacity hopper. More specialization, just on a larger scale.

UV economics

What seems to be happening is that two markets are developing within the rapidly expanding UV/golf course market. On one hand there is the specialized vehicle manufacturer aiming mostly at the higher end golf courses with the big to megabuck budgets.

These courses can afford to get a vehicle to spray and topdress like Hahn’s, another to haul material and others, like all-terrain vehicles (ATVs) or converted golf cars to transport people and small loads of material, Cushman’s Brophy notes. With these courses, niches exist for all these products.

On the other hand is the medium or lower budget golf course. Superintendents needing to do their job with as much economy as possible can’t afford three vehicles for five jobs. They need that one vehicle, like the E-Z-Go or Cushman, among others, to do all those jobs.

“What we have tried to do,” explains Frank Smith, manager of Turf Products at E-Z-Go, “is take our vehicle and make it as versatile as possible so a golf course will not have to buy more than one.”

“A lucrative golf course can afford to buy specialized vehicles,” he says. “The average golf course can’t afford that.”

Smith says that E-Z-Go’s intentions are to expand its present product line and accessories to those products.

Daihatsu’s John Brozek agrees with this general use vehicle philosophy. He notes that Daihatsu produces its Hijet for longevity and low maintenance, providing a standard vehicle that can adapt to the end users’ own needs.

“We are selling to a very educated individual today with very specific needs,” Smith contends. “We need to meet those needs.”

The utility vehicle market is still expanding rapidly and will continue to do so as long as the golf course construction boom continues. Companies such as Kawasaki, with its Mule 1000, are entering the market with regularity.

This greater awareness on the part of the superintendent, having evolved from the greenskeeper into an agronomist, coupled with increased competition has improved the quality of utility vehicles and given the superintendent more options.

There seems no reason to suspect a slowdown in the market or improvements, either.