The goal of this project, the Carlin residence in Silver Spring, Md., was to provide the client with a swimming pool integrated into a wood and brick design, a landscaped deck, and a garden gate. The design was based on the clients' interests and needs, with the pool being a focal point for family entertainment. The landscaped area included a variety of plants and flowers, creating a private and inviting space.

The problem of maintaining privacy was addressed by creating a dry drainage system and installing a fence. The design was submitted to the National Association of the Landscape Industry for an award, with the goal of showcasing innovative design solutions.

This is another NALS Residential Landscape Award winner in Dix Hills, N.Y., as constructed by Atlantic Nurseries. Dix Hills is a popular location for landscape design projects due to its natural beauty and the diverse terrain it offers. The landscape contractor worked closely with the clients to create a design that would enhance their outdoor space and provide a sense of privacy and tranquility.

The Eckstrom family of Malverne, N.Y., was having trouble with their backyard recreation area, which was located on the basement, and rainwater was entering the basement. The homeowner, Ronald Eckstrom, was concerned about the structural integrity of his home and the potential for mold growth. To address this issue, a new drainage system was installed and a swimming pool was designed to prevent water from pooling around the home.

The pool was designed to include a French drain system, allowing water to flow away from the home's foundation. The pool was also designed to be visually integrated into the landscape, with a garden gate and landscaping that blend seamlessly into the surrounding area. This design not only solved the water drainage problem but also created a beautiful and functional outdoor space for the family to enjoy.
The new John Deere AMT™ 600 All Materials Transport treads so lightly, it'll barely bend your bent grass. That's because even with a 600-pound* payload and a 200-pound operator on board, the AMT transport only puts down an average of 17 psi of ground pressure. And its automotive-type differential allows the inside wheels to turn slower than the outside wheels. So the 600 won't tear up your turf turning either.

But for all the features that won't leave a bad impression on your turf, there are even more that'll leave a good impression on you. Like the way the AMT...
3UT

LANDSCUFFING

transport's powerful drive system provides a 62-to-1 torque ratio for tremendous pulling power.
Or the way its box holds 12.5 cubic feet of material—and dumps too.
So if you're looking for a utility machine that won't sink into your landscape or

your budget, see your John Deere dealer. Or write John Deere, Dept. 84, Moline, IL 61265.

AMT 600 vehicle transports easily in a standard size pickup.

*On level ground
**Manufacturer's suggested list price not including sales tax.
Price may vary with dealer.

Nothing Runs Like a Deere®

Circle No. 115 on Reader Inquiry Card
MEASURING WATER STRESS OF URBAN TREES

Because water is becoming scarce, landscape personnel must be aware of plant moisture needs and of appropriate methods for measuring plant water stress.

by Bruce R. Roberts, USDA

Because city trees are often planted with little regard for their adaptability to the urban environment, they are often exposed to extremely stressful conditions. One important problem is moisture stress, which often occurs in aboveground containers and in other restricted-space planting sites in the metropolitan environment.

A problem with measuring the water status of individual trees is the often poor correlation between soil moisture and plant growth. Because water absorption by tree roots is largely controlled by the rate at which water is lost in transpiration, moisture deficits can develop in trees—even in moist soils. In addition, trees planted in wet sites (a condition not uncommon in many urban areas) may still have water deficits. This is because saturated soil conditions result in poor aeration and subsequent reductions in water absorption.

Consequently, soil moisture status is not always a good indicator of plant water status. The most reliable measurement of plant moisture involves estimates made on plant tissue itself.

Relative water content

Water content, the amount of water contained in plant tissue, is probably the most common method used to determine plant water status. However, expressing the amount of water in plant tissue by itself is impractical; it cannot be compared with measurements made from other plants or from other tissue on the same plant. So a common frame of reference is needed. Turgid weight (the maximum amount of water the tissue will hold) is frequently used as this reference point.

Relative water content (RWC) is determined by obtaining the fresh weight of leaf tissue (either leaf discs or entire leaves) and measuring its turgid weight after an appropriate equilibration period.

Turgid weight is obtained by floating the tissue on water or by placing it on water-saturated polyurethane foam in a moist chamber for a prescribed period of time. The same tissue is then oven-dried to a constant weight and RWC calculated from the following equation:

\[
\text{RWC} = \frac{\text{Fresh weight} - \text{Oven dry weight}}{\text{Turgid weight} - \text{Oven dry weight}} \times 100
\]

From this equation we can see that RWC provides a measure of water content relative to the maximum water-holding capacity of the tissue (i.e. 100% RWC = 0 plant water deficit).

Thermocouple psychrometry

Thermocouple psychrometry is used to measure the water potential or physiochemical activity of water in a plant system against a base measure of water. As such, it is probably the single best measure of plant water stress available.

In recent years, psychrometers are increasingly being used in urban tree management to assess water stress and guide appropriate interventions. These devices can provide real-time measurements of plant water status, allowing for timely and effective management strategies.
“Someone put a cart in the 7th fairway pond. My next-door neighbor bought his kid a set of drums. And I just found out my mother-in-law is moving in. But what really concerns me is Pythium.”

There’s one sure way to avoid worrying about Pythium. Use Subdue® fungicide. Subdue stops Pythium on contact. Once absorbed by grass roots, Subdue protects your turf against further attack for up to three weeks. So don’t let Pythium get you down. Get Subdue. Because you’ve got other things to worry about. CIBA-GEIGY

©1987 CIBA-GEIGY Corporation, Ag Division, Box 18300, Greensboro, NC 27419 Always read and follow label directions.

Circle No. 111 on Reader Inquiry Card
Measuring the water status of woody plant tissue using the thermocouple psychrometer technique.

have come into general use and commercial units are available for measuring water potential in the field. Briefly, measurements are obtained by recording the relative humidity in a small, sealed chamber containing the plant sample and a reference thermocouple. The newer psychrometer units use thermocouple transducers which eliminate the need for precise temperature control and make the instrument more practical for field use. Although some possible sources of error are associated with the psychrometric technique, they can be largely overcome by modifying current technology. Modifications of existing equipment have been made to permit water potential measurements to be made on tree trunks as well as on intact leaves and roots.

Pressure equilibration

An excellent method for measuring water stress of woody plants, particularly in the field, is the pressure equilibration or pressure bomb technique. This procedure, first introduced in 1965, has been widely used in recent years.

In actual operation, a single leaf or leafy shoot is sealed in a pressure chamber with the cut end of the sample protruding outside the chamber. It is exposed to atmospheric pressure. Then pressure is applied to the chamber from a tank of compressed gas until xylem sap appears at the cut end of the sample. The amount of pressure needed to force water out of the leaf cells into the xylem and up to the cut surface is approximately equal to the original water potential of the cells. If consistent sampling and measuring procedures are followed, this method should give very reliable information on the water status of urban trees.

The three techniques previously described have enjoyed wide acceptance and use over the years. This does not mean that other methods are not available for measuring water stress, but most have disadvantages which limit their usefulness for urban trees in the field.

In addition to the aforementioned direct procedures, other indirect methods for estimating water stress may have applicability for use with urban trees.

Stem diameter changes

This procedure uses an instrument developed by scientists at Battelle Memorial Institute referred to as the Ceres device. It is based on the physiological principle that as water moves out of living cells into the transpiration stream, it causes the cells to shrink. This shrinkage in cell size causes a small but detectable decrease in stem diameter.

The Ceres device measures these changes by means of strain gauges and a pressure transducer. As stress increases within the strain gauges, electrical resistance also increases, yielding data on sensitive alterations in stem diameter.

The Battelle instrument is similar in principle to earlier measuring devices referred to as dendrographs or dendrometers, but technology has improved the sensitivity of these newer instruments.

The concept behind the Ceres device and similar measuring systems is based on the cohesion theory. Water confined in small capillaries can withstand very low negative pressure potentials because of the strong attractive forces that exist between water molecules. Thus, microcontraction of water conducting elements occurs when moisture in the plant is subjected to a water potential gradient. The amount of contraction is proportional to the degree of stress.

Leaf temperature changes

Relative differences in moisture stress between plants can be estimated by measuring leaf temperature. This concept can be particularly useful in establishing irrigation regimes for landscape plants in urban and suburban environments. If transpiration decreases (assuming that other factors such as solar radiation and wind velocity remain relatively constant), the decrease in heat exchange between the plant and the atmosphere will result in an increase in leaf temperature. Thus, a sensitive measure of temperature differences between plants (preferably between plants known to be well watered and others) may indicate transpirational and water status differences. This principle has already been used to measure relative water stress of plants in the field.

One of the problems with using leaf temperature to estimate plant water status is obtaining uniform samples. It stands to reason that a leaf perpendicular to the sun will be warmer than one at an angle or one completely shaded. Because of this sampling difficulty, in the past the difference between leaf and air temperature has been used to predict relative water stress. However, studies have shown that leaf and air temperatures are not always correlated. Leaves are often warmer than the surrounding air during the day and cooler at night.

Recent developments in infrared thermometry have largely overcome many of these sampling problems so leaf temperature measurements may become a very useful technique for estimating the relative water status of urban trees.

Transpirational modeling

In this age of computer technology, it seems only fitting that one of the possible techniques for estimating plant water stress involves computer modeling of moisture loss from individual
Aggressive...innovative

The Brouwer Turf Maintenance Team...the one to beat.
Check our product line and you are sure to find the machine to suit your requirements.
Golf courses, school boards, landscapers, municipalities, highway departments, parks and recreation departments will all find a machine that fits the bill—and the budget!

Brouwer...the name and the products that you can have confidence in. Confidence in the quality, the innovative engineering, the rugged reliability, the lasting value. Confidence in a company that gives “second-to-none” after sales service. Get the best results from your turf maintenance equipment—put the Brouwer turf maintenance team to work—today.

BROUWER TURF EQUIPMENT LIMITED
An Outboard Marine Corporation Company
7320 Haggerty Rd./Canton, MI 48187 Telephone (313) 459-3700
Woodbine Avenue/Keswick, Ontario, Canada L4P 3E9 Telex 065-24161 Telephone: (416) 476-4311

Circle No. 107 on Reader Inquiry Card

JUNE 1988/LANDSCAPE MANAGEMENT 67
Measuring the water status of woody plant tissue using the pressure equilibration technique.

tree crowns. A recent study using two species of maple suggests that this technique may have practical application for problems associated with tree maintenance, especially in determining irrigation strategies.

Transpiration water loss is computed by taking the net flux density of incident radiation minus convectional net energy loss minus conductional energy loss divided by latent heat of vaporization of water.

The authors of this research suggest that their model functions best when the modeled trees are under relatively low levels of soil moisture stress.

Summary
The growth and development of urban trees is probably influenced more by plant moisture than by any other single factor. In a time when water resources are becoming scarce, prudent use of existing water supplies becomes an important management decision. Part of this decision process involves understanding the moisture needs of urban trees and learning the methods for accurately estimating the water status of woody plant tissue. Relative water content, thermocouple psychrometry, and pressure equilibration are recommended as readily-adaptable field techniques for measuring plant water relationships in urban trees. Monitoring sensitive changes in stem diameter, leaf temperature, and transpirational water loss are also potentially useful methods for indirectly estimating plant water status in the field. LM

Bruce R. Roberts is research plant physiologist with the United States Department of Agriculture based in Delaware, Ohio.
Entry forms are now being accepted by the Professional Grounds Management Society and Landscape Management magazine for their second annual "Landscape Manager of the Year" award.

Purpose of the award is to recognize superior job performance among landscape managers, to challenge those involved in the industry to achieve higher standards of excellence, and to bring national recognition to deserving managers.

Any person directly responsible for the professional maintenance of one or more landscapes is eligible to enter. Applicants will be judged according to job performance, honors and awards, procedures and philosophies, and contributions to the green industry. Applicants will be asked, at the time of entry, to submit four 5 x 7 black-and-white glossy photos and 10 color 35mm slides of current work areas with a short narrative on each.

Applicant's name
Title

Applicant's company

Official entry form should be sent to:

Name
Title

Company

Address
City/State
Zip Code

Mail to: PGMS, Landscape Manager of the Year, 1201 Galloway Ave., Suite 1E, Cockeysville, MD 21030
750 - TREE IDENTIFICATION
by George Symonds
Pictorial reference to identifying trees by checking leaves, buds, branches, fruit and bark. Like its sister publication SHRUB IDENTIFICATION, popular and botanical names are listed with index tabs for easy reference. $14.95

760 - TREE MAINTENANCE
by Pascal Pirone
The fourth edition of this guide for anyone involved in the care and treatment of trees. Special sections on tree abnormalities, diagnosing tree troubles, non-parasitic injuries and assessing the suitability of different trees. $49.95

405 - WOODY ORNAMENTALS
by Partnya, Joyner, Rimplispech, and Carver
Illustrates plant identification characteristics. Organized in two basic sections: plant identification and plant disorders, this text utilizes 430 color photos, 430 line drawings and 45 black and white photos to simplify identification. $32.90

404 - COST DATA FOR LANDSCAPE CONSTRUCTION 1988
by Kenneth W. Kim, Editor
An updated unit cost data reference for designers and cost estimators. Developed to fill the tremendous need for detailed landscape construction cost data. Laid out in easy-to-use CSI format. Annual. $35.00

370 - LANDSCAPE OPERATIONS: MANAGEMENT, METHODS & MATERIALS
by Leroy Hannebaum
An in-depth examination of accounting, business management, marketing and sales. Discusses effective methods for performing lawn installations, landscape planting and maintenance. Step-by-step accounting calculations are explained in simple terms. $34.00

365 - LANDSCAPE PLANTS IN DESIGN
by Edward C. Martin
An annotated photographic guide to the design qualities of ornamental plants and their aesthetic and functional use in landscape design. Over 600 trees, shrubs, vines, ground covers and turfgrasses are described in nontechnical language. Over 1900 photographs. Provides a basic for selecting the best plant materials for any particular use in landscape design. Contains detailed indexes that provide quick reference to particular design qualities and growing conditions. $58.95

345 - RESIDENTIAL LANDSCAPES
by Gregory M. Pierceall
An annotated photographic guide to the design qualities of ornamental trees, shrubs, vines, ground covers and turfgrasses. Illustrated plant identification drawings and 45 black and white photos to simplify identification. $37.00

305 - LANDSCAPE MANAGEMENT
by James R. Feucht and Jack D. Butler
Planting and Maintenance of Trees, Shrub, and Turfgrasses. Describes the basic principles of cultural management of installed landscapes. The important factors of plant growth, soil and fertilizers, improved planting techniques and new pruning techniques, integrated pest and disease management, and spray equipment calibration and care are all featured. $29.95

375 - SCIENTIFIC GUIDE TO PEST CONTROL OPERATIONS
by Truman, Bennett, Butts
A Guide to Producers and Products, Regulators, Researchers and Associates in the United States. A sound basis for studying the technical aspects of pest control. Covers pesticides, safety, health and environmental concerns, equipment, flies and mosquitoes, rats and mice, birds and much more. $35.00

565 - WEEDS
by Walter Muenchener
Second edition. Premier text for identification and basic natural history for weeds found in the continental United States and Canada. Ecological data on weed biology combined with excellent keys and plant descriptions make this an essential reference book. $39.95

500 - THE 1988 PESTICIDE DIRECTORY
by Lon Thomson Harvey and W. T. Thomson
A Guide to Producers and Products, Regulators, Researchers and Associates in the United States. For the person who needs to know anything in the United States pesticide industry. Includes Basic Manufacturers and Formulators with their products, key personnel, managers, district/regional offices and other pertinent information. For United States pesticide information in one place, this directory is a must. $75.00

Mail this coupon to: Book Sales
Edgell Communications
One East First Street, Duluth, MN 55802

Name ____________________________
Street Address ____________________________
P.O. Box Number __________
City/State/Zip ____________________________
Phone Number () ____________________________

Purchase Order Number ____________________________

Signature ____________________________ Date __________

Please send me the following books. I have enclosed payment* for the total amount.

Please charge to my Visa, MasterCard or American Express (circle one)

Account Number Expiration Date ____________________________

Please allow 6-8 weeks for delivery. Prices subject to change.

Total Enclosed ____________________________

*Please add $3.00 per order plus $1.00 per additional copy for postage and handling.

(postage & handling)

Please allow 6-8 weeks for delivery.

Quantity rates available on request.

70 LANDSCAPE MANAGEMENT/JUNE 1988