Your search for a high capacity mower encompassing a one man operation is now concluded. The Hydro-Power 180 with its 15 foot hydraulically driven rotary mower has a mowing capacity of up to 11 acres an hour while incorporating rear wheel steering for maximum maneuverability. Cutting units are designed for maximum floatation and may be used individually or in any combination of the three.

A foot pedal controlled hydrostatic transmission affords variable mowing speeds as well as transport speed to insure maximum travel time between the job sites. The Hydro-Power 180 offers year-round versatility with a 2-stage, 73" snow blower and heated cab.

Manufactured by

Howard Price
18155 Edison Avenue
Chesterfield, Mo. 63017

Circle No. 125 on Reader Inquiry Card
645 - MANAGEMENT OF TURFGRASS DISEASES
by J.M. Vargas
Identifies turfgrass diseases by description and illustration. Includes a holistic approach to healthy turf and lawns. Presents practical management strategies for golf courses, lawns and athletic fields. 204 pages, illustrated. $26.70

640 - TURF IRRIGATION MANUAL
by James Trafton
A guidebook for engineers, architects, designers and contractors. Keeps pace with the latest developments in turf and landscape irrigation. Specific chapters devoted to rotary sprinkler designs. Golf course design systems and expanded engineering and reference material. $29.95

225 - TURFGRASS PATHOLOGY
by A.J. Turgeon
Revised edition. Covers the latest developments in turfgrass science and technology. Masterfully illustrated with dozens of new drawings. Provides specific recommendations for applying the newest pesticides, fertilizers and other materials to combat turfgrass problems. A valuable reference for diagnosing problems and determining their causes. $99.33

610 - TURF MANAGEMENT FOR GOLF COURSES
by James Beard
Written by an eminent turfgrass researcher, this USDA sponsored text is an ideal reference and "how to" guide. Details all phases of golf course design and construction, turf management, course administration, equipment and disease and pest control. Fully illustrated. $52.75

620 - TURF MANAGEMENT HANDBOOK
by Howard Sprague
Practical guide to turf care under both healthy and poor turf conditions. Chapters cover turf in cooler and warmer regions, fertilizer use, regular turf care, weed and disease control and special turf problems. Useful seasonal schedules for management of turf areas. $25.25

110 - TURF MANAGERS' HANDBOOK Second Edition
by Daniel and Frederick
ENTIRELY UPDATED. A practical guide for the turf professional. Chapters on grasses, growth regulators and diseases have been extensively modified. Innovations resulting from research and practice have been added to reflect the current techniques available for turf managers. Offers recommendations for effective turf protection through integrated pest management. Included are alternate plans for providing and improving safe, uniform turfgrass for sports fields. Outline format plus newly added index make this new edition easier to use and a more comprehensive approach to turfgrass science. $32.95

615 - TURF MANAGEMENT FOR GOLF COURSES
by James Beard
Written by an eminent turfgrass researcher, this USDA sponsored text is an ideal reference and "how to" guide. Details all phases of golf course design and construction, turf management, course administration, equipment and disease and pest control. Fully illustrated. $52.75

665 - ARBORICULTURE: THE CARE OF TREES, SHRUBS AND VINES IN THE LANDSCAPE
by Richard W. Harris
Provides comprehensive coverage of complete pruning, site analysis, preparation and special planting methods, fully detailed coverage of fertilization, irrigation and pruning guidelines on preventative maintenance, repair and chemical control, how-to's of diagnosing plant problems, practical data on non-infectious disorders, diseases, insects and related pests and pest management. $52.00

410 - DISEASES & PESTS OF ORNAMENTAL PLANTS
by Pascal Pirone
This standard reference discusses diseases and treatment of diseases and organisms affecting nearly 500 varieties of ornamental plants grown outdoors, under glass or in the home. Easy to understand explanations of when and how to use the most effective fungicides, insecticides and other control methods. $36.50

510 - HORTUS THIRD
by Philip A.好
A 1500-page concise dictionary of plants cultivated in the United States and Canada. A reference which every horticulture professional should have. $139.95

500 - THE GOLF COURSE
by Cornish and Whitten
The first book ever to give the art of golf course design its due. Uses professional architects and landscape designers as well as the history of golf and the evolution of the course design. Analyzes the great courses, shows how they were designed and constructed. $35.00

230 - LAWNS-Third Edition
by Dr. Jonas Vengris and Dr. William A. Torello
Designed as a textbook or a practical usage manual, this book has been completely brought up to date. Care of lawns and turfgrass, from selection of varieties to maintenance of established grasses is completely covered. $26.95

570 - WESTCOTT'S PLANT DISEASE HANDBOOK
by Kenneth Hold
This fourth edition offers professionals the latest diagnostic and disease control information. Plant entries designed to simplify diagnosis, plus background on the classification of plant pathogens. This handbook gives a specific description of each disease, susceptible plants, specific symptoms of the disease, reported locations and control measures for each disease and their side effects. $43.95

515 - HORTUS THIRD
by Philip A. good
A 1500-page concise dictionary of plants cultivated in the United States and Canada. A reference which every horticulture professional should have. $139.95

600 - DISEASES & PESTS OF ORNAMENTAL PLANTS 5th Ed.
by Pascal Pironne
Comprehensive text and reference source used in many leading university turf programs. Includes findings of current research compiled from more than 12,000 sources. $39.90

415 - NATIVE TREES, SHRUBS, AND VINES FOR URBAN AND RURAL AMERICA
by Gary L. Hightshoe
This award-winning reference to native U.S. plants has been expanded to include shrubs and vines. Over 250 major species are characterized by form, branching pattern, foliage, flower, fruits, habit, soil, hardness, susceptibility, urban tolerance and associate species. Includes unique color-coded keys that classify plant species by visual characteristics, cultural requirements and ecological relationships. $79.95

720 - SHRUB IDENTIFICATION
by George Symonds
Pictorial key to identify shrubs. Contains more than 500 full-color illustrations to check specimens. Popular and botanical names are given for each shrub and handy index tabs for quick reference. $12.95

220 - CONTROLLING TURFGRASS PESTS
by Shurtleff, Fermanian, Randell
New comprehensive guide provides the most up-to-date information available on the identification, biology, control and management of every type of turfgrass pest. Covers weeds, insects, animal pests and diseases in detail. Also provides information on cultural management practices: the establishment, care and renovation of low-, medium- and high-maintenance turf areas. 50 color and 450 black and white photographs. $32.00
BOOKSTORE

750 - TREE IDENTIFICATION
by George Symonds
Pictorial reference to identifying trees by checking leaves, buds, branches, fruit and bark. Like its sister publication, SHRUB IDENTIFICATION, popular and botanical names are listed with index tabs for easy reference. $14.95

760 - TREE MAINTENANCE
by Pascal Prone
The fourth edition of this guide for anyone involved in the care and treatment of trees. Special sections on tree abnormalities, diagnosing tree troubles, non-parasitic injuries and assessing the suitability of different trees. $49.95

405 - WOODY ORNAMENTALS
by Partyka, Joyner, Rimelspach, Carver
Illustrates plant identification characteristics. Organized in two basic sections: plant identification and plant disorders, this text utilizes 430 color photos, 430 line drawings and 45 black and white photos to simplify identification. $32.50

435 - COST DATA FOR LANDSCAPE CONSTRUCTION 1988
Kathleen W. Kerr, Editor
An updated unit cost data reference for designers and cost estimators. Developed to fill the tremendous need for detailed landscape construction cost data. Laid out in easy-to-use CSI format. Annual. $35.00

370 - LANDSCAPE OPERATIONS: MANAGEMENT, METHODS & MATERIALS
by Leroy Hannebaum
An in-depth examination that combines technical training in landscape science with methods of accounting, business management, marketing and sales. Discusses effective methods for performing lawn installations, landscape planting and maintenance. Step-by-step accounting calculations are explained in simple terms. $34.00

365 - LANDSCAPE PLANTS IN DESIGN
by Edward C. Martin
An annotated photographic guide to the design qualities of ornamental plants and their aesthetic and functional use in landscape designing. Over 600 trees, shrubs, vines, ground covers and turfgrasses are described in nontechnical language. Over 1900 photographs. Provides a basis for selecting the best plant materials for any particular use in landscape design. Contains detailed indexes that provide quick reference to particular design qualities and growing conditions. $58.95

500 - THE 1988 PESTICIDE DIRECTORY
by Loren Harvey and W. T. Thomson
A guide to Producers and Products, Registrants, Researchers and Associations in the United States. For the person who needs to know anything in the United States pesticide industry. Includes Basic Manufacturers and Formulators with their products, key personnel, managers, district/regional offices and other pertinent information. For United States pesticide information in one place, this directory is a must. $75.00

Mail this coupon to: Book Sales
Edgell Communications
One East First Street, Duluth, MN 55802

Name
Street Address
P.O. Box Number
City/State/Zip
Phone Number
Purchase Order Number
Signature

Please send me the following books. I have enclosed payment* for the total amount.

Please charge to my Visa, MasterCard or American Express (circle one)

Account Number
Expiration Date

BOOK NUMBER AND TITLE QUANTITY PRICE TOTAL PRICE

*Please add $3.00 per order plus $1.00 per additional copy for postage and handling.

Prices subject to change.

Quantity rates available on request.

Total Enclosed

(postage & handling)

Circle No. 136 on Reader Inquiry Card

APRIL 1988/LANDSCAPE MANAGEMENT 73
MANAGE YOUR TURF, MANAGE YOUR SOIL

Although the turf is what you see, you might have to get to the root of your problems through the soil.

by Paul E. Rieke, Ph.D., Michigan State University

Most of our efforts in turf management are based on how the above-ground portion of the plant responds to the practices followed or different stresses. The stems and leaves provide the beauty and functional aspects of a quality turf.

While deserved attention has been given to the above-ground portion of the turf, what happens in the soil is receiving greater attention as well. Soil provides water, nutrients and air to the plant roots. Soil also serves as the medium for rooting.

A healthy soil is a very complex system involving physical, chemical and biological systems. Each of these systems is complex in its own right, but they each interact on the others, as well as with the plant tissue above ground.

Physical soil management
Texture and structure are soil’s primary physical components.

Soil texture tells us about the amounts of sand, silt and clay in the soil which affect water holding capacity, drainage, aeration, space for roots and susceptibility to compaction.

Structure is a general term referring to the way the soil particles are put together. The traditional “ideal” soil consists of 50 percent solids, 25 percent small (or micro) pores for water holding capacity and 25 percent large (or macro) pores for drainage, aeration and easy rooting.

These numbers assume a loam soil with excellent structure. Such conditions seldom exist under turf conditions, especially on intensively-trafficked sites. So frequently the turf manager must maintain the turf on poor quality soils and/or where traffic results in compaction.

Compacted soils lose their larger pores, reducing drainage, aeration and rooting. Recent research by Robert Carrow, Ph.D., and co-workers proves that compacted soil conditions result in more roots in the surface soil but fewer roots deeper in the soil.

This clearly reduces the reservoir from which the plant can extract water. The turf is thus more susceptible to stresses—especially moisture stress. Sandy soils have a high percentage of larger pores but hold less water than finer textured soils.

The rapid drainage and good aeration conditions in a sandy soil normally permit use of a turf area soon after rainfall or irrigation. For this and other reasons, the preferred soils for high traffic areas are high sand content mixes.

While a soil-based mix (such as the USGA mix) is considered most desirable by this author, it is sometimes difficult to find adequate amounts of quality topsoil to use in the mix. The ultimate mix is often variable due to poor mixing techniques.

For this reason, many architects and construction firms prefer to use sand/peat mixes containing no soil. While this provides an easier approach to construction, management will be more difficult. More careful attention must be given to water and fertilizer rate and frequency. It is more difficult to overseed successfully on high sand soils. The playing surface can be very hard on sands, especially when the soil is dry.

The soil mix selected for a given site should be planned carefully. Then that plan should be followed closely. Often we find great attention is given to seed selection while soil conditions are taken for granted. Once the soil is in place, it cannot be changed without costly reconstruction efforts.

There are alternatives for improving a poor soil.

Top dressing is used widely on greens (golf, bowling, tennis) and to a limited degree on athletic fields. Careful attention must be given to select—continued on page 75
ing proper top dressing material, appropriate timing and rate.

Do everything possible to prevent the development of layers in the soil. Differing layers can result in a perched water table and limitations on rooting, drainage and aeration. Detrimental effects of layers could occur short-term but usually will not be too evident until several years later.

Another alternative for improving compacted soils is cultivation, to till or loosen the soil without seriously affecting the turf surface. Loosening the soil provides improved infiltration, drainage, aeration (exchange of gases between the soil and the atmosphere) and rooting. Cultivation also brings soil to the surface so it may be worked back into the thatch, theoretically providing a better medium for microorganism activity and thatch control. On golf greens, cores are often removed before top dressing. This permits a gradual change in soil conditions.

Some factors to evaluate in your cultivation program include spacing of aeration holes, depth of holes, type of tine or spoon, type of aerifier action, amount of soil brought to the surface, speed of unit and cost.

Be sure the unit you are using is doing what you want. Many turf sites do not need cultivation, while others may require very aggressive treatment. A compacted soil cannot be corrected in a single treatment. Cultivation should be viewed as a long range program. Turf managers should select the program on that basis whether for home lawns, grounds, athletic fields or golf courses.

Other helpful practices in high-traffic areas include changing traffic patterns, restricting traffic when soils are wet, using paving blocks or alternate surfaces, planting wear-tolerant grass species, using adequate potash, and mowing the grass at a higher height if feasible.

Irrigation/wetting agents

Another facet of soil management is irrigation. The turf manager must know the basics of irrigation:

1. How deep are the roots which are effective in water uptake?
2. What is the available water holding capacity of the soil? (Using 1 and 2 above he can then determine how much water is available in the root zone.)
3. How much water is lost by evapotranspiration each day?
4. What are the “indicator” spots where moisture stress will show first?

The last factor could be affected by soil variability, slope exposure, irrigation system design, wind effects, traffic, disease and other factors which could affect rooting or water movement in the plant.

Wetting agents can be a very helpful tool in soil water management. For example, if susceptibility to hydrophobic soil conditions occurs, wetting agents can help re-wet the dry soil. Cultivation and careful watering practices can also help to deal with these localized dry spots.

Since wetting agents vary widely in composition, be sure to check whether the wetting agent you are using is effective for the objective you have in mind.

Some wetting agents are more likely to cause phytotoxicity than others. Our recommendation is to water the turf lightly, apply wetting agent and water with at least ¼ inch of water. This should reduce the potential for injury. Use special care when using wetting agents during hot weather conditions.

Chemical soil management

continued on page 77
Ninety-six percent of the professionals, commercial users and homeowners we talked to told us they love the way their Gravelys perform. Our Pro Series of out-front cutters deliver maneuverability, versatility and a low cost per inch of cut, you can live with for a long time. To make a commitment, you have to make the first move. Test one of our Pro Series today.

Gravely International, Inc., One Gravely Lane, P.O. Box 3000, Clemmons, NC 27012 • 919-766-4721 • TELEX: 6971451 ARGRA
GSA# 07F13713 • HUD# HC-17095

Circle No. 120 on Reader Inquiry Card
Soil properties which are considered chemical in nature are pH control, available nutrients, cation exchange capacity and soluble salts and sodium. Control of soil pH is frequently over-emphasized. But pH adjustment must be done with care.

Generally, raising pH by liming is relatively simple. Ground limestone is safe to use on turf. In most cases, dolomitic limestone is preferred because of its magnesium content, but soil should be tested to be sure. Hydrated lime, which can cause phytotoxicity, should be used carefully.

Gradually the lime, placed on the surface where it neutralizes soil acids, is dissolved and moves lower into the soil. In fine textured soil, this process can take two years or more to have any impact on pH more than three inches below the surface.

Nitrogen fertilization is a major soil management practice on turf. Knowledge of the growth patterns, physiology, susceptibility to diseases and environmental stresses are necessary for its wise use.

Additionally, as an industry we must use proper carriers, rates and timing of nitrogen to prevent nitrate leaching at levels which could pollute groundwater. The February issue of Landscape Management provided good coverage on N fertilization.

It is best to use soil tests for phosphorus needs. This is especially wise for turfs along lakes and streams which could experience algal bloom problems with enough phosphorus pollution. Following soil test recommendations for phosphorus should prevent pollution when it is used.

Potash has become the “newly-found” nutrient in turf management, based on reports of improved tolerance (wear, moisture stress, rooting and disease pressure) when high K levels are applied.

While there are many good reasons to use K, remember that nutrient balance is still essential. Most turf specialists would not exceed a 1:1 ratio of N to K,0 on an annual basis. This depends on the annual N rate, however. Some golf course superintendents in the north are using less than 2 lbs. N/1000 sq.ft. annually, especially on sandy greens. Under such conditions, one would surely want to be using 4 lbs. K,0 or more annually.

Be careful to keep a balance between potassium and magnesium. Test the soil to be sure the rates between these two nutrients is not more than 4:1 or 5:1 [Mg,K,0] on sandy soils. And on sandy soils we need to “spoon feed” potash, since there is limited cation exchange capacity to hold the K ions in the soil.

Other nutrients used on turf include sulfur, iron and other micronutrients. The response to these nutrients will vary with turf and soil conditions. The turf manager should be familiar with local conditions dictating the need for these nutrients. Managing turf soils when soluble salts (saline) or high sodium (sodic) conditions exist requires evaluation of both physical and chemical soil factors.

The importance of irrigation water quality and volume, drainage and—in the case of excess sodium—the use of gypsum, must be understood to deal with these problems. Wise use of soil tests is essential for proper management of saline and sodic soils.

Biological soil management

Biological soil components include the activities of both desirable and undesirable organisms. The decomposition of soil organic matter and release of nutrients and other materials to help maintain good soil structure are desirable.

Thatch decomposition is accom-
Go ahead. Compare Scag commercial mowers to the competition. After you do, we're sure you'll agree that no competitive mower is easier to use than Scag.

Compare Cutting Speed
Scag walkers, thanks to a 4-speed gear box, cut faster than most competitive, belt-driven machines. And Scag mowers give a manicure finish cut every time.

Compare Maneuverability
Twin Power Belts™ on the Scag walker, offer double friction to pulley surfaces so belts won't slip in normal cutting conditions, even when wet. A high rear clearance for curb climbing and balanced engine placement add to Scag's easy handling. The tight turning radius and patented pivot mount frame make the Scag rider more maneuverable than conventional belly-mount tractors.

Compare Ease of Maintenance
Scag's simple modular construction allows for easy replacement of spindle bearings and drive wheel pulleys, and on-site wheel and tire changes. Belt adjustment requires no tools. And 80% of the service parts for Scag walkers and riders are interchangeable. Easy maintenance and a smaller parts inventory add up to savings for you.

Compare Durability
Scag mowers are built to outlast and outperform the competition. Our riders and walkers are constructed from the highest quality parts and materials, like over-size cast iron pulleys, rugged pneumatic caster wheels and heavy duty spindles.

Ask your dealer about the complete line of Scag mowers from 8 to 18 hp riders and walkers with cutting widths from 32 to 61 inches.

For free literature write: Scag Power Equipment, W226 N900 Eastmound Drive, Waukesha, WI 53186 or phone (414) 544-4090.

Circle No. 147
Solids

single grained sand

Air
H₂O
Solids

typical "ideal" loam soil with good structure

Air
H₂O
Solids

loam with a little sand added

Air
H₂O
Solids

compacted loam

Air
H₂O
Solids

wide particle size range sand

Air
H₂O
Solids

loam with enough sand added to permit bridging of sand particles

plished by a range of soil organisms from large, like earthworms, to the smallest bacteria.

Another desirable activity of soil organisms is their ability to biologically break down certain pesticide residues. This helps prevent accumulation of pesticides. This would be undesirable, however, if the pesticide’s residual activity is shortened enough to make its use impractical.

Other detrimental activities are caused by pathogens, insects and nematodes. Some of these may be active on the grass above the soil, while others are primarily active in the soil. Knowledge of their life cycles and the effect of soil management practices on their activity will help keep the impact of these pests at a minimum. In the past, major emphasis has been placed on chemical control of most turf pests.

As this science of turf management improves, we are learning more about the impact of fertilization and watering on pest management. Coupled with predicting pest problems more

continued on page 86
Elm trees fight back in Eau Claire, Wis.

Tees, equally spaced along the elm's root flare, are connected with short lengths of tubing.

There's no cheer in the bright orange markers on the tall gracious American elm trees in Eau Claire, Wis. They tell a grim tale: the continued deaths of irreplaceable elms to Dutch elm disease (DED).

The numbers have been devastating since 1980: between 1,280 and 2,150 elms have been lost each year. In 1960, about 40,000 elms graced Eau Claire, according to city forester Rod Schmidt. He estimates that surviving elms number approximately 12,000. Across the northern U.S., more than half the elms have succumbed since the late 1950s, according to industry experts.

In Owen Park, an Eau Claire centerpiece, the number of elms has dwindled from approximately 200 in 1976 to approximately 100 today. In this one-of-a-kind park, the fungus' spread has been effectively halted with an intensive sanitation and fungicide treatment program.

In the past three years, the program has reduced losses to only three elms.

The whole city began experiencing extremely heavy losses with a 1980 windstorm—"a terrible disaster," Schmidt says. Fresh wounds in the elms attracted elm bark beetles which spread the fungus that causes DED. The beetles breed in elms that are weakened, dying or dead and in cut elm wood with firmly attached bark.

Clean-up after the storm took 24 years. Meanwhile, losses of elms city-wide skyrocketed from approximately 500 in 1980 to 1,450 in 1981.

High priorities
Control of DED in Owen Park became a priority for the Eau Claire City Council. The scenic 50-acre park covers a two-by-six-block stretch along the picturesque Chippewa River near downtown Eau Claire.

The 60-year-old, 50-foot elms shade the annual art fair, "Sawdust City Days" activities, picnickers and joggers. They form a scenic backdrop for parades, weekly band shelter concerts and film features.

"You don't see a stand of elms like that any more. Nice...leafy...mature. They make the park and community special. And we'll go the extra mile to take care of them," explains city council president Wallace Rogers.

In 1984, the city council approved the first treatment of the park's elms with Arbotect (thiabendazole) fungicide. In 1987, when the treatment needed to be repeated, cost was not a concern. The city council allocated $5,000 more than the budgeted $12,000 so each of the park's elms could be treated.

"The value of the trees was never questioned," says Schmidt. "The council just said: 'Let's do it.'"

A local firm that delivered the lowest bid received the contract. The city forester's office supervised the job. Schmidt supported contract treatment of the trees. Even though his staff could have done the job, they would have been stretched too thin, he says. "In the summer, we have four permanent people and two temporary positions for tree and shrub inspections and evaluations, consultations with property owners and tree removals. That takes most of our time."

Expertise was another factor. "Handling the treatment ourselves would have required training our staff and buying equipment...and the next time the trees need treatment, we may not have the same staff," explains Schmidt.

The program
The trees were treated in July, when the beetle is active and the fungus is...