as young nymphs on the undersides of branches on spruce or on the lower leaf surface of Douglas fir, the alternate host of the Cooley gall adelgid.

Pine bark adelgid overwinters as eggs, nymphs, and adults in bark cracks and crevices on white pine.

By late winter the trunks of infested pines may be snow-white from huge numbers of adelgids.

Adelgids can be controlled on all hosts any time after spruce galls open in late summer until just prior to bud break the following spring.

Horticultural oil may reduce the overwintering population, but oil may remove the waxy bloom from the needles of spruces and pines, causing them to become unsightly.

Sevin (carbaryl) or lindane can also be used in a thorough-coverage, hydraulic spray, making sure to cover the underside of spruce branches and Douglas fir needles. A wetting agent may be useful to help penetrate the fluffy wax covering that surrounds the insect, especially when treating the pine bark adelgid.

Mites

Spider mites, including spruce spider mite on coniferous evergreens and southern red mites on broadleaf evergreens, suck plant juices and deposit silk and waste material on their hosts, causing foliage to become dull and bronze-colored.

Mites tend to feed in spring and fall but populations usually crash in very hot or very cold weather. They overwinter in the egg stage which is susceptible to control with horticultural oil used at the dormant season rate.

False spider mites are tiny, flat mites which feed and reproduce slowly throughout the year. Most "winter injury" symptoms on Aucuba, azalea, and Japanese hollies are due to false spider mites.

Horticultural oils or other miticides give adequate control of these pests. Treatment is appropriate at any time of the year except in early spring when new, tender growth is emerging.

Aphids

Aphids are small, soft-bodied insects that insert their mouthparts into the phloem of leaves, stems, and roots to suck out sap.

Aphids excrete honeydew, a sweet liquid that coats heavily infested plants. Some species (melon aphid, apple aphid) feed on the most succulent part of the plant. Other species (giant willow aphid, giant bark aphid, Cinara aphids) feed on stems. High aphid populations can cause leaves to yellow and fall prematurely.

The honeydew they excrete serves as a substrate for a black sooty mold fungus that reduces the aesthetic appeal of the plant and reduces its ability to manufacture food.

Many aphids overwinter as exposed eggs on conifer needles or on stems and buds of other woody plants.

If a damaging aphid population was detected the previous summer or fall, an application of horticultural oil before bud break will reduce the spring aphid population, thereby giving the tree a chance to recover before aphids build up again during the spring and summer.

Soft Scales

Soft scales are another kind of sucking insect that drain a tree's energy and reduce its ability to manufacture food.

They suck sap from the phloem and produce honeydew. Some (e.g. the tulip tree scale) seriously weaken or kill their hosts.

Heavily infested trees and shrubs often become blackened with sooty molds. Some soft scales overwinter as immature forms (cottony maple, cottony maple leaf, magnolia, Pine tortise, and Fletcher scales) that are somewhat vulnerable to horticultural oils used at the dormant application rate.

Spring (April-late June)

Most insects become active in the

spring. Responding to warmer weather and resumption of plant growth and development.

Monitoring trees and shrubs for pests during spring is one of the most important tactics in a modern insect control program.

Newly expanding or expanded leaves should be checked for the presence of sucking insects, leafminers, and defoliators.

Tree limbs and trunks should be inspected to determine presence of active borer galleries as early detection will permit time for learning the identity of the pest and determining if a spray program is justified.

Defoliators
Eastern tent caterpillar, fall cankerworm, whitemarked tussock moth, and pine sawflies are among the first defoliators to begin feeding in spring.

The eastern tent caterpillar is obvious and readily detectable because it forms a silken tent in tree crotches, especially flowering fruit and nut trees.

During years of high caterpillar numbers, entire trees may be defoliated. These pests often reach maturity before defoliation is noticed.

The eastern tent caterpillar is known for this use.

Elm leaf beetle larvae and adults consume foliage. There are two generations each summer. Sevin, Orthene, or Turcam/Dycarb (bendiocarb) can be used when trees leaf-out in spring. A second generation may require a second application in July.

Armored Scales
Armored scales, soft-bodied sucking insects that suck juices from leaves and stems but do not produce honeydew, are named armored scales because after the first stage molts, later stages are covered by cast skins and tough wax.

Consequently, they are vulnerable to contact insecticides only during the crawler and settled first nymph stages.

Armored scales overwinter as eggs (pine needle and oystershell scale), as mated females (euonymus and white peach scales), or in more than one stage (hemlock and tea scales). As indicated, all of them are most easily controlled with crawler sprays.

Armored scales that overwinter as eggs can usually be controlled with a single application of an insecticide, if thorough coverage is achieved. If application timing is not precise, a systemic insecticide like Metasystox-R (oxydemetonmethyl) or Orthene should be used.

Species like euonymus scale require more than one crawler spray, since the first hatching crawler sprays molt before the last spring generation eggs are laid.

Three thorough coverage, hydraulic sprays at 10-to-14 day intervals are needed to provide an adequate level of control.

All armored scales that have more than one generation per year (pine needle, euonymus and white peach scales) should always be controlled during the spring crawler hatch because the hatching period is shorter at that time, so fewer sprays are required to provide control.

Horticultural oils may be effective for armored scale control. Use the summer rate after new plant growth has hardened-off.

Aphids
Aphid populations can explode in a short time, since a new generation can be produced every 10-to-15 days in the North and even faster in the South.

In the North, aphids are often at high population density during summer droughts, or just after a drought period, and should be controlled before they cause premature leaf drop.

In the South, aphid populations are often high in late winter and early spring before lady beetles and other predators become active. However, grape myrtle aphid populations often become damaging later in the summer.

Mistblower applications are excellent against free-living aphids.

Adelgids
Remember, overwintering forms on spruce are protected as their galls form. They become vulnerable again in fall after their galls open. Pine bark adelgids can be controlled in spring or summer as long as the pines are not under water stress and after the new growth has begun to harden off.

Leafminers
Birch, boxwood, and holly leafminers are highly specialized insects whose larval stages damage trees and shrubs by destroying tissues within the leaf.

Birch leafminer is a sawfly (closely related to bees and wasps) who emerge as adults in May.

Foliage can be protected by spraying when the adult sawflies are actively mating and feeding on birch trees.

Sevin, malathion, and lindane are effective before eggs are laid within leaf tissue. After egg laying begins or
110 KINDS OF PLANTS.
43 TYPES OF INSECTS.
1 SPRAY.

You're looking at a picture, not a place, but of an idea: ORTHENE® Tree and Ornamental Spray, and why it means so much to professional gardeners, nurserymen, arborists and golf course superintendents.

ORTHENE offers blanket protection against an amazing variety of insect pests. It's cleared for use on a long list of trees and plants, from orchids to roses to ponderosa pine, even for turf. Cleared last year for use against turf insects, ORTHENE® has just been okayed for mole crickets in Florida—the main enemy of professionals' healthy greens and fairways.

By using ORTHENE, one spray lets you kill pests like tent caterpillars, whiteflies, Japanese beetles and thrips on contact. Plus it provides lasting residual action against other insects from aphids to scale crawlers to sod webworms. It's a great way to make the whole job of protecting flowers, trees and turf simpler, and more effective.

If you're a professional in the plant care industry, ORTHENE can actually make it easier to do a better job of protecting plants. You ought to know more about it. To find out, send in this coupon.

*ORTHENE 75 S Soluble Powder (Florida SLN).

Avoid accidents: For safety, read the entire label including precautionary statements. Use all chemicals only as directed. Copyright © 1985 Chevron Chemical Company. All rights reserved.

Circle No. 221 on Reader Inquiry Card
INSECT CONTROL GUIDE

INSECTICIDE DIRECTORY

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Brand Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>acephate</td>
<td>Orthene</td>
<td>Ortho/Chevron</td>
</tr>
<tr>
<td>B. t.</td>
<td>Thuricide</td>
<td>Zoecron</td>
</tr>
<tr>
<td>bendiocarb</td>
<td>SOK Bt</td>
<td>Abbott Labs</td>
</tr>
<tr>
<td>carbaryl</td>
<td>Turcam</td>
<td>Nor-Am</td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>Sevin</td>
<td>Union Carbide</td>
</tr>
<tr>
<td>diazinon</td>
<td>Dursban</td>
<td>Dow</td>
</tr>
<tr>
<td>dicrotophos</td>
<td>Sarolex</td>
<td>Ciba Geigy</td>
</tr>
<tr>
<td>dimethoate</td>
<td>Keltane</td>
<td>Ciba Geigy</td>
</tr>
<tr>
<td>dioxathion</td>
<td>Bidrin</td>
<td>Rohm & Haas</td>
</tr>
<tr>
<td>dymet</td>
<td>Cygon</td>
<td>Shell</td>
</tr>
<tr>
<td>femobutain-oxide</td>
<td>Vendex</td>
<td>American Cyanamid</td>
</tr>
<tr>
<td>fenvalerate</td>
<td>Pydrin</td>
<td>Nor-Am</td>
</tr>
<tr>
<td>fluvalinate</td>
<td>Mavrik</td>
<td>Mallinckrodt</td>
</tr>
<tr>
<td>isofenphos</td>
<td>Ottanol</td>
<td>Shell</td>
</tr>
<tr>
<td>malathion</td>
<td>Malathion</td>
<td>Shell</td>
</tr>
<tr>
<td>methoxychlor</td>
<td>Marlate</td>
<td>Zoecon</td>
</tr>
<tr>
<td>morestan</td>
<td>Imidan</td>
<td>Mobay</td>
</tr>
<tr>
<td>oxydemetonmethyl</td>
<td>Metasystox</td>
<td>Kincaid</td>
</tr>
<tr>
<td>phosmet</td>
<td>Imidan</td>
<td>Stauffer</td>
</tr>
<tr>
<td>trichlorfon</td>
<td>Dylox</td>
<td>Mobay</td>
</tr>
<tr>
<td></td>
<td>Proxol</td>
<td>Nor-Am</td>
</tr>
</tbody>
</table>

mines begin to form. A systemic insecticide should be used. Metasystox-R, Orthene, and Cygon (dimethoate) are labeled for this use.

There are several generations per year, but the first two generations seem to be most destructive.

Holly leafminer is a true fly that has only one generation per year. Spring application of Metasystox-R or Orthene after the new plant growth has hardened-off is necessary to achieve control.

Boxwood leafminer is a gall midge which also has one generation per year. A mid-to-late spring application of Cygon will adequately control boxwood leafminer.

Spider Mites
Spider mites such as twospotted spider mite and tumid mite are common and damaging on plants under water stress and during long, hot droughts.

They complete many generations throughout the summer. Keltane (dicrofol), Mavrik (fluvalinate), or another miticide should be used before mites cause foliage to turn bronze. A hydraulic sprayer must be used to maximize coverage, especially on plants with dense foliage, including foundation plantings, conifers, and other evergreens.

Two sprays must be used at a seven-to-10 day interval, since most miticides do not kill eggs. A single application will not be effective against spider mites.

Root Weevils
Root weevils (black vine, strawberry root), can be destructive in both adult and larval stages. Adults chew notches in leaf margins. Larvae consume small roots and girdle larger roots, sometimes causing death of foundation plants, including rhododendron, azaleas, and yews (taxus).

Spray foliage with Orthene or Turcam/Dycarb in mid-June, followed by repeat applications at three-to-four week intervals until August.

Level of control is directly related to the degree of coverage, so use a hydraulic sprayer to control root weevils. Drenching soil beneath host plants may help reduce larval populations.

Borers
Clearwing moth borers are common in lilac, ash, dogwood, rhododendron, oak, and flowering cherries. Flatheaded borers (adults are called metallic wood borers) are common in white-barked birches, oaks, and other stressed hardwoods.

Larvae do the damage by feeding beneath bark, disrupting movement of food and water, destroying the cambium (the growth layer of cells), and causing structural weakness. Clearwing presence and flight periods can be monitored with pheromone traps (see insert).

A single, thorough-coverage bark spray of Dursban (chlorpyrifos) or lindane, 10-to-14 days after first male moth capture, will provide season-long control of most clearwing moths.

Three applications of bark/foliation sprays with Turcam/Dycarb, Dursban, or lindane are required to control flatheaded borers.

Summer (July-Sept.)
Defoliators
Mimosa webworm, bagworm, fall webworm, Japanese beetle adults, and second generation elm leaf beetles sometimes become common in early summer.

All of these pests should be controlled when larvae are small to minimize damage and maximize effectiveness of the insecticide. Caterpillars can be controlled with one of the B.t. formulations. Sevin, Orthene, Turcam/Dycarb, and several other common insecticides will also control these pests.

Mistblower application may be cost-effective but may result in unacceptable drift of insecticidal sprays, especially in windy weather.

Japanese beetle adults defoliate many kinds of woody plants and roses in July and August. They are most easily controlled with weekly sprays of Sevin or Turcam/Dycarb.

Mavrik also gives long-term control of Japanese beetle adults. Japanese beetle traps can be used to capture large numbers of beetles, but they do not reduce defoliation or control the beetle population.

Area-wide grub control is the most effective way to reduce numbers of Japanese beetle adults and defoliation they cause.

Second generation elm leaf beetles
CHIPCO® 26019 fungicide costs less because it works longer.

You'd expect a premium product to cost more. But in the case of CHIPCO 26019 fungicide, its quality translates into greater cost-effectiveness than you'll find with any other product.

At the labeled spray interval of 28 days, you can protect your fairways for under $0.10 per 1000 square feet per day.

The cost alone might convince you to give it a try. But performance against turf disease makes CHIPCO 26019 the leading fungicide on the market.

A fairway disease prevention program based on CHIPCO 26019 will give effective, long-lasting protection against the major diseases: Helminthosporium Leaf Spot and Melting Out, Dollar Spot, Brown Patch, Fusarium Blight, Red Thread, Fusarium Patch, and Gray and Pink Snow Molds.

So if you want to economize without compromise, buy the numbers: CHIPCO 26019 fungicide.

Rhone-Poulenc Inc., Agrochemical Division, Monmouth Junction, NJ 08852.
can cause significant defoliation if heavily infested trees are not sprayed. Birch leafminer can be controlled, if trees are sprayed when second or third generation adults are mating and ovipositing.

Scales
Crawlers of several soft scales (Fletcher, cottony maple, cottony maple leaf, pine tortoise, wax and tulip tree) hatch in late June or early July (earlier in the South).

They and settled nymphs are susceptible to scalicides (Sevin, Orthene, diazinon, Dursban, Turcam/Dycarb and Mavrik) in early July. A single, thorough-coverage, hydraulic spray should provide control.

Settled nymphs and other nymphal stages are vulnerable to contact insecticides, because they are not protected by cast skins and wax. Sprays to control soft scales should always be applied after all eggs have hatched to minimize the impact of pesticides on lady beetles and other predaceous insects, to minimize insecticide usage, and to maximize control.

Second generation pine needle scale, euonymus scale, and white peach scale crawlers hatch during July and early August. Two sprays at a 10-day interval may be required to control pine needle scale and white peach scale because crawlers hatch over a three week period.

Summer generation euonymus scale crawlers hatch over a longer period, so three applications at 10-day intervals are required.

Aphids
Aphid populations should be controlled before they secrete copious amounts of honeydew or do irreversible damage to leaves.

If aphids are allowed to build-up in high numbers, plant growth may be distorted and leaves may fall prematurely. Once honeydew and sooty mold are present they may persist long after aphids have been controlled by pesticides or natural enemies. Aphids are vulnerable to contact sprays whenever they are active.

Spider Mites
Spider mites can be controlled whenever they are active by spraying twice with a five-day (South) or 10-day (North) interval.

If trees are receiving repeated applications of Sevin to control other insects, be especially watchful for build-up of spider mites. Sevin selectively kills natural enemies of mites, thereby contributing to increases in spider mite populations.

Woody ornamentals—such as some euonymus varieties, roses, and bedding plants—are frequently infested by twospotted spider mites and tumid spider mites. These mites are dispersed on air currents and may appear suddenly in large numbers in hot dry weather.

Root Weevils
The second and third applications of black vine weevil adulticides should be applied in July and August. In the South, Japanese weevils and Fuller rose beetles can be controlled with Orthene as a spray and drench during July. A single spring application will not control black vine weevil or other weevils mentioned earlier.

A area-wide grub control is the most effective way to reduce numbers of Japanese beetle adults...

Borers
White-barked birches determined to be infested by bronze birch borer during the summer can be injected with Inject-A-Cide B (Bidrin) using microinjection procedures developed by the J. J. Maugel Company.

Injection must be done by a trained technician between early July and early August but should not be used as an annual, preventive tactic.

Infested trees should be watered weekly during summer and fall drought and fertilized in the fall after the first hard frost.

The following year, bark/foliation sprays should be implemented as indicated earlier.

The peachtree borer can be controlled with a single application of Dursban or lindane in early July (in the North) or late August (in the South). The second application for control of lesser peach tree borer should also be applied at this time to infested flowering cherries.

Fall (Sept.-Oct.) Defoliators
Mimosa and fall webworms reach their highest population density and cause most defoliation during late summer and early fall. They should be controlled as soon as first generation larval webs are detected in early summer.

However, both pests are susceptible to larvicides in late August and early September. If B.t. is to be used, it must be applied when larvae are small to achieve an acceptable level of control.

Scales
Magnolia scale and tulip tree scale crawlers are produced in late August and early September. Infested magnolias should be sprayed when goldenrod is in full bloom (early September).

A single, thorough-coverage, hydraulic spray with Orthene or Sevin will provide excellent control. Magnolias and tulip trees may be severely stunted or even killed by heavy infestations of these scales.

Gall Adelgids
Galls on spruce caused by eastern and Cooley spruce gall adelgids turn brown and open in August and September. After galls open, adelgids are vulnerable to contact insecticides. Adelgids on spruce, Douglas fir, and pine remain vulnerable to insecticidal sprays until the following spring when new buds open.

Root Weevils
Attempts to control root weevil larvae should be made in early September and early October. Two drenches with Turcam/Dycarb have been effective against larvae established in soil surrounding roots of field plants.

A single drench with Turcam/Dycarb, Orthene, or Furadan (carbofuran) controls larvae infesting containerized plants. Recent evidence indicates that overwintered larvae may also be susceptible to drenches in early spring.

Closing Thought
We believe that the best way to minimize insect damage is to maintain healthy trees and shrubs. Trees should be matched to sites, watered during the first two years after planting and during summer and fall drought, pruned properly, fertilized in late fall, mulched, and aerated to promote root vitality.

Adherence to these basic horticultural practices will promote tree vitality and improve their ability to withstand attack by most insect pest species.

Throughout this article we have stressed the importance of pest identification, proper timing, and thorough coverage for achieving a high level of insect control.

Coverage and timing are often more important than the insecticide or miticide used. So, make sure of proper pest identification, determine when it is most vulnerable to control, and apply a pesticidal spray thoroughly to only infested trees following label directions.
That's Treflan®. It controls annual grasses and broadleaf weeds so effectively, it could easily pass as an "expensive" preemergence herbicide.

But don't let the expensive look fool you. The fact is, Treflan is the lowest-priced herbicide there is for established ornamentals. At less than $1 per 1,000 square feet, nothing beats Treflan on price or weed control. Nothing.

Treflan is labeled for use on more than 175 different varieties of ornamentals. Just spread it on evenly and water or rake it in. It's that easy to get expensive-looking, full-season weed control. Treflan is also available in quarts and gallons.

Call your Elanco distributor today. Or write:

Elanco Products Company
A Division of Eli Lilly and Company
Dept. E-455, Indianapolis, IN 46285, U.S.A.

Treflan®—(trifluralin, Elanco Products Company)

Weed control that only looks expensive.
Five simple ways to take control.

Whether you need a 6, 8, 12, 16 or 24 station irrigation controller, you can’t beat the microcomputer Mark Series from Weather-matic. All models are available in three types of housings — U.L.-listed rainproof aluminum; economical plastic for indoors or heavy-gauge, industrial-grade steel — so they can fit every application.

The Mark Series is easy to program, too. A function selector switch and large pushbuttons reduce operator confusion and help cut training time, all but eliminating installer callbacks.

Among the advantages are two watering schedules, four daily start times on each program and 0-99 minute timing at one-minute increments. Plus the new Day-Bright™ LED display — filtered and recessed for daylight visibility.

Special features include a self-charging battery back-up system. This retains the program and clock time in the event of a power failure. And it eliminates periodic battery replacement. The controllers will also detect and skip a shorted valve.

Teamed up with Weathermatic’s proven valves, sprinklers, Rain-Stat® and other products, Mark Series controllers work and work and work.

They’re five reasons why so many irrigation professionals say you can’t beat the system — when the one you choose is Weather-matic.

To learn more, write or call tollfree: 1/800/835-2246. (In Kansas: 1/800/362-2421)

We’ve got your number!

Sprinkler Division, Telsco Industries
P.O. Box 18205 • Dallas, Texas 75218
214/278-6131

Weathermatic
LAWN AND TURF IRRIGATION

Circle No. 159 on Reader Inquiry Card
HIGH-TECH OVERLOAD

Computerization of the irrigation industry is here to stay. Now it's up to the individual companies to educate their clients on the variety of new technology.

by Jerry Roche, editor

Development of new technology...computerized controls, plant stress monitors, more efficient nozzles...this is the future of the irrigation industry as the years wind their way toward the millennium.

Of course, whether the landscape manager is ready for this high-tech overload is another thing.

"I've found that 70 percent of the market doesn't go for computers yet," notes Chuck Hoover of Irri-Trol, Valencia, Calif. "Six, seven, eight years from now, though, people coming out of schools will want to know how they can program their computers."

Adds Don Cooper of Weathermatic, Garland, Texas: "You take the average Joe and put a computer console in front of him and it's going to turn him off. He doesn't understand it. But with proper instruction, the digital are very easy to use."

Hoover says that when the big changeover from mechanical to digital does come, "it'll come so fast that if people aren't prepared for it, it will go right past them."

So the irrigation industry is ahead of everybody? Maybe, maybe not.

"You could look at it that way," says Dave Davis of Buckner Irrigation, Fresno, Calif. "Or you could look at the new technology as being too late. If it would've been around 20 years ago, we wouldn't have to be so stingy (with water) today."

Also of concern to the industry, then, is conservation of water and energy, each of which has been in short supply at some time during the last 15 years.

Saving water

"I have a personal challenge to all irrigation equipment manufacturers," said Dan Heiny of The Irvine Company, Irvine, Calif., in the August, 1984 issue of Weeds Trees & Turf. "That is to develop a low-volume pop-type spray head."

Such a system has been developed but cost is still high, notes Gary Panuzzi of Richdel, Carson City, Nev. But they will come down. "It's like a watch you can buy $3. Everybody will be able to afford it."

But low-volume is not the issue, some other manufacturers claim.

"Application rates are," says Rick Robins of Toro Irrigation, Riverside, Calif.

"The main thing is to apply the water in the right spot at a rate slow enough so the soil will absorb it," says Robins.

The key to slow application is the sprinkler head; the key to location is the controller.

"You use a controller that breaks up application times," Robins continues. "It doesn't make any difference whether the controller is mechanical or solid state. Even though the solid state units can make applications of less than one minute in duration, some mechanical clocks have more start times—23 or 24—compared to the four or six of solid state clocks."

One way to save water is with subsurface irrigation, which is especially effective in convoluted areas and on ornamentals.

"There are inherent evils of throwing water up in the air," says David Cordillo of Hydro Systems, Warminster, Pa., says there's an inherent evil with throwing water up in the air. Nonetheless, above-ground irrigation remains extremely popular.

"Sub-surface is the irrigation system of the future," he says.

The Golf Course Superintendents Association of America is trying to develop ways to cut water usage in half, a goal that Dr. James Beard of Texas A&M University thinks is attainable.

"The talk is that there's a trend toward controlling water usage," notes Cooper of Weathermatic. "The professional irrigation contractor is adhering to that talk. But we've got some contractors out there that definitely are not professional."

"As a company, we are very cognizant of the water shortage. We as an industry have to recognize that water is a finite resource. If we don't, we're going to be out of work."

Monitoring plants

Efforts are being made to avoid apply-
Superior irrigation control translates into two major advantages: better turfgrass and substantial reductions in the use and costs of energy, water and labor.

Toro's Network 8000 provides exactly that: demonstrably superior irrigation control. It is the first and only totally automatic irrigation control system. Just enter design, weather/climate, geographical and agronomical information. Network 8000 then automatically computes the operating times for all stations, based on the evapotranspiration rate, modified by an applicable rainfall.

Network 8000 accomplishes all of this by combining a computerized central controller with satellites of amazingly extensive stand-alone capabilities.

The central controller utilizes an IBM "XT" personal computer as the hub of the operation, including keyboard, color monitor, matrix printer and a light pen for easy access to all functions. This non-dedicated central is capable of "transparent" multiple function, which provides for simultaneous business and irrigation program operation. It's like getting two important pieces of equipment for the price of one!

Network 8000 provides automatic adjustment of irrigation system operation, responding to such key factors as rainfall, evapotranspiration rate, plant materials, soil types, soil compaction, geographic location, terrain slope, Ph factor and system design. A manual override is provided for all factors. The central programmer will operate any station, set the running time, assign it to any program and set up to three repeats for any station. It can operate up to 800 satellites of 32 stations each, for a total of 25,600 stations.

Toro's new Network 8000 central provides two-way communication: "down-loads" information to the satellites, and "up-loads" information from the satellites.

Also, with this central station you enjoy the advantages of water-budgeting by means of percentage increase/decrease control (by station, by program, by CSG, or the total system), from 1% to 900%.

But this is only the beginning of the story. You have to see it perform to fully appreciate exactly what it can do for you and your irrigation. Call The Man from Toro for a no-obligation demonstration.