OUR GROUNDSMASTER® 62.
WE PICKED ITS ENGINE APART.

BECAUSE WE'RE PICKY ABOUT POWER.

When Toro develops a riding rotary mower, you can be sure it's engineered to keep you cutting.

Because, for one thing, we never forget that engineering begins with engine. Picking exactly the right power to match width of cut and kinds of attachments.

Too much power wastes fuel and is inefficient. Too little power stunts productivity and works the engine to death.

So we've powered our Toro Groundsmaster® 62 with an Onan 20 hp, twin cylinder engine. But only after considering 10 excellent candidates, narrowing them down to 3 for testing, then literally picking apart our final choice.

We tested it on a dynamometer to verify its power rating. We tore it down and inspected it part by part for durability. We tested it for noise. We tested it for vibration. We tested it for fuel economy. Then, we ran it hard for 1,000 hours to make sure it was up to going to work for our Groundsmaster 62. And you.

And, to keep you cutting, we evaluated its serviceability, too. Made sure its routine maintenance points and replaceable oil filter are easy to get to.

Call your Toro distributor. He'll tell you more about our Groundsmaster 62. The high capacity 62" professional now teamed with our Groundsmaster 52® and gas and diesel Groundsmaster 72s® to offer you a complete line of riding rotaries.

"Toro" is a registered trademark of The Toro Company, 8111 Lyndale Ave. So., Minneapolis, Minnesota 55420.

THE PROFESSIONALS THAT KEEP YOU CUTTING.

Circle No. 130 on Reader Inquiry Card
Kings Island and Oak Harbor, two small communities separated by about 250 miles of checkerboard Ohio farmland, don't have a whole lot in common. But they do share pride and a long-term commitment to excellence in their high school athletic programs. The evidence is two first-rate natural turf playing fields.

Small potatoes? Hardly.

The National Federation of State High School Associations reports more than 14,000 schools involved with high school football, more than 13,000 with baseball, and another 4,500 offering soccer programs.

Prep athletics continue to grow, but shrinking budgets result in many young athletes using facilities that are often poorly planned, worn out or neglected, sometimes even dangerous.

The importance of proper athletic field construction and maintenance came down hard at College Football Hall of Fame at Kings Island just a short drive from Cincinnati.

Fall religion

The Hall of Fame, located on a knoll within eyesight of the large Kings Island theme park, displays relics of our fall religion beside the microchip wizardry of computers and film presentations. It is a neat slice of Americana; as American as the "rah rah" of a Saturday afternoon in the fall.

But when it came to the game itself, the Hall of Fame flopped when it built a field of its own in 1981. What should have been a showcase for the sport turned into a sloppy, muddy headache instead.

This summer that changed.

The College Football Hall of Fame's Galbreath Field sports a new Prescription Athletic Turf (PAT) playing surface and is home field for a pair of nearby high schools, including nationally-recognized Cincinnati Moeller. It also hosts the Collegiate Division III championships, the Amos Alonzo Stagg Bowl.

A tough choice

The PAT natural turf field was chosen even though an artificial surface received serious consideration.

"We're basically a high school stadium and we've seen enough to know that grass for growing young people is a safer surface," Don Schumacher, general manager of the Hall of Fame, says. "Also, cost was a major consideration. We figured it would cost about $600,000 with synthetic turf and we might have to replace it in eight or nine years. The PAT cost $300,000."

Strengthening the swing to grass was the availability of professional maintenance help from the nearby Jack Nicklaus Sports Center with its two golf courses. The Nicklaus Sports Center is owned and managed by the Taft Broadcasting Company which also manages the College Hall of Fame.

PAT, invented by Dr. William Daniel of Purdue University, provides a flat, moisture-controlled playing surface. The turf is placed over a bed of 12 to 14 inches of sand which, at Galbreath Field, covers a network of 2-inch perforated tile (15 in all) running lengthwise every 11 feet apart. These tiles connect to a main drain which leads to a pump house.

A thick plastic sheet lies just below the layers of turf, sand, and tiles. Electronic sensors measure the moisture content. Watering is accomplished in two ways: via traditional in-ground sprinklers (Galbreath has 21 Toro sprinkler heads on the field and about 50 around the perimeter) and by pumping water back through the system beneath the field.

"Don't misunderstand," Schumacher says, "I'm not anti-artificial turf, but when you combine the savings, the utility of use and some concern for younger players, and then we have professionals to maintain it—the PAT is right for us."

The field is excellent for Moeller which shares the field with neighboring Kings High School. Moeller, perennial Ohio champion, is consistently ranked as one of the finest high school football teams in the nation and this season hosted Christopher Columbus, Miami, FL, and Cathedral Prep, Erie, PA, at Galbreath. Gerry Faust coached and won honors at Moeller before being tabbed as head coach at the University of Notre Dame in 1981.

But, Galbreath Field was anything but championship prior to this season.
Carved from a woodlot in 1981, its natural soil base had literally been chewed into a dustbowl by almost daily rounds of football and soccer. Built with a 21-inch crown, forward passes at the Hall of Fame field resembled mortar lobs and long passes in soccer games took parabolic routes to their destination.

"The first year we had 18 or 19 high school games," Schumacher explains. "We didn't have any rain and the field was dry every game. We tore the turf (the field had been seeded with fescue) pretty badly, but we thought maintaining a field was easy and that everybody could do it."

Management at the College Hall of Fame pulled out all the stops in 1982, scheduling a full program of youth football and soccer in addition to the high school games and season-ending state playoff game.

Disaster struck.

"The field started to tear up," Schumacher says. "By the time we made it to Thanksgiving the top six inches of material were churned to a pudding. It wasn't even safe to walk on. What a mess."

The field was resodded with bluegrass in March 1983 in an attempt to bring it back to life. Youth football and soccer programs were dropped.

The bluegrass looked good ("We found the bluegrass tended to regenerate and it also made for better footing," Schumacher says) but the basic problem remained. Rains turned the surface mushy and conditions weren't good for the Stagg Bowl which featured Augustana and Union City Colleges.

When officials from the National Football Foundation and Hall of Fame, Inc., owners of the field, went looking for answers they didn't have far to go. Spinney Field, the PAT prac...
Filling in around irrigation lines at Galbreath Field, King’s Island.

Ticke field for the Cincinnati Bengals professional football team, was nearby. Eventually a meeting was arranged with PAT proponent Daniel at Purdue in Lafayette, IN.

“Now that we have a surface that can control the moisture, we can somewhat control the wear,” Schumacher explains. “We’re very eager to get to the fall of 1985.”

This past year marked a renewed interest in the sand-concept PAT system with the University of Mississippi removing an old artificial surface in favor of PAT at Vaught-Hemingway Field in University, MS. PAT fields have been in use at three high schools, two in Indiana and one in Michigan, for the past decade with all three holding up well under intensive use. There have been problems, however, although they don’t appear to have been a result of the PAT concept.

Alkalinity woes

In Evansville, IN, for instance, an inability to keep healthy turf on a PAT field was eventually traced to the high alkalinity of the city water supply. Bob Meyerholtz, who oversees the field, says efforts to grow first Bermudagrass, then fescue, then zoysia failed as the alkalinity of the soil, irrigated with city water, climbed to a pH of 8. Meyerholtz, a teacher of agriculture at Reitz Memorial High School, says phosphoric acid is now added to water used on the field and the turf is showing “a definite improvement in growth, color, and standability.”

Meyerholtz admits the terrific usage the field gets (it is used by the junior high and high school teams from two schools) keeps it from being a showcase. “We have so many things on it, including band practices once or twice a week. We do have a problem in keeping grass in the center of the field,” he says.

The PAT natural turf field was chosen even though an artificial surface received serious consideration.

Tax money used

PAT remains beyond the financial reach of most high schools, however, even ones like Oak Harbor in Northwestern Ohio, the beneficiary of a tax windfall from a nearby nuclear power plant. Once one of the poorest districts in that part of the state, the Benton-Carroll-Salem District (of which Oak Harbor is a part) has literally uncorked a magic genie.

“The state says you can’t save the money,” School Superintendent Mel Hoover says of an ambitious project to upgrade the school’s athletic facilities. “You have to use it and have a reason for using it, so we’re using it.”

The school sports a lush new football field encircled by a rust-colored, latex-based, all-weather track with accompanying permanent metal stands and concession stand. A baseball diamond with a grass infield, four new tennis courts, a football practice area and an encircling cross country course complete the athletic complex.

Price tag for all the above? About $650,000, according to Hoover.

Even with the taxes generated by the Davis-Besse nuclear power plant, however, school officials keep a careful eye on expenses.

Subsoil taken from the football field site, for instance, was used to create a hill on the school’s cross country course. And, when it became apparent the seed that had been planted the previous fall on the football field wasn’t going to provide an attractive playing surface, Hoover and a handful of volunteers (mostly teachers) resodded the field themselves.

“We got a pretty good crop of weeds from the straw that was on the seeds, but we didn’t feel like the grass was going to mature,” he recalls. “We waited to see what was going to happen, but we couldn’t wait any longer because we had to give the sod enough time to anchor itself.”

Hoover, who built and operated a nearby golf course prior to heading the neighborhood school, remains protective of the field which is built over native clay soils.

The field gets “tender care,” he says, including liberal applications of the soil conditioner Turfas and regular aeration. Fertilizer for the turf (a mixture of Nugget, Cheri, and Adelphi Kentucky bluegrasses) is applied four times annually, while irrigation is provided by electronically-timed Toro Mistamatic sprinklers and drainage by four-inch field tile with off-field catch basins.

Hoover admits his school could have spent more on its athletic fields, but he doesn’t feel the extra expense would have accomplished anything.

“I think we have excellent facilities and they stay in good shape,” he points out. “The key, I think, is keeping them well maintained.”
A new day in grass control for ornamentals.

FUSILADE™

Postemergence grass control
This is the beginning of the FUSILADE herbicide era for ornamentals. FUSILADE is now registered for postemergence control of both annual and perennial grasses in ornamentals.

Safe grass control
FUSILADE controls grasses without damage to ornamentals. You can apply FUSILADE either over-the-top or as a directed spray. Follow label directions carefully for the correct method of application for specific ornamentals. Used as directed, FUSILADE controls nearly all grasses without danger of phytotoxicity to ornamentals, eliminating expensive hand labor to remove grassy weeds.

Complete grass control
FUSILADE means complete grass control because it controls weeds systemically, even penetrating into roots, rhizomes and stolons. And FUSILADE can be used with more ornamental species than any other postemergence grass herbicide. It’s a new day in complete grass control for ornamentals. For more information on FUSILADE, call the ICI Americas Information Service toll-free, 1-800-441-7757, extension 3192. ICI Americas Inc., Wilmington, DE 19897.

© ICI Americas Inc.
Poa trivialis, often called rough bluegrass, is native to northern Europe, temperate Asia, and North Africa, and has been introduced to both North and South America and Australia.

Brought to the United States from Europe during the Colonial period, it is best adapted to moist, shaded areas from Newfoundland to North Carolina and from Alaska to California.

Poa trivialis produces a moderately-fine textured, light green, medium-dense turf. It is a cool-season, sod forming perennial which spreads by creeping leafy stolons, and may be found growing in soils with a pH from 5 to 8, with the best growth between 6 and 7.

Beside being well-adapted to damp, shaded locations, it is also found growing in wet meadows, in fertile grasslands and along ditchbanks. Poa trivialis has the ability to germinate and grow at low temperatures, displays good color retention in the fall, produces early spring greenup, germinates rapidly with good seedling vigor, and has excellent winter hardiness.

Rough bluegrass has also been useful for winter overseeding of dormant warm-season turfs in the South. In southern overseeding mixtures, rough bluegrass is usually combined with improved turf-type perennial ryegrasses (10 to 15% Poa trivialis with 85 to 90% perennial ryegrass by weight).

Rough bluegrass does not tolerate drought and is likely to be short-lived on dry sites. The root system is fibrous, relatively shallow, and annual in nature. It may be severely damaged or killed during periods of moisture stress, especially in dry sandy soils. Poa trivialis also has poor wear tolerance and will not persist under heavy traffic.

There are approximately 2.3 million seeds per pound. The seed germinates under a wide temperature range with peak germination occurring at approximately 50 degrees F. Below 40 degrees F. less than 50% of the seed will germinate.

Rhizoctonia brown patch, leaf spot, and dollar spot are the most common diseases associated with Poa trivialis, however grey snow mold, pink snow mold, ophiobolus patch, pythium blight, fusarium blight, rust, stripe smut, and powdery mildew have also been reported as occurring on this species.

Before the release of Sabre Poa trivialis in 1977, no domestic cultivars were commercially available and most of the seed was imported from Europe. European common types are normally taller, lighter green, and form a looser sod than Sabre. Common types are of limited value for quality turf in moist shaded lawns or for winter overseeding. However, these common types may be useful for forage purposes in cool, moist environments, normally found in northern Europe.

Development of cultivars with lower growth habit, darker color, denser sod, improved disease resistance, and reduced seed shattering would be helpful in expanding the potential usage of this species.

POA TRIVIALIS
A Specialty Use Turfgrass

by Richard Hurley, Ph.D., Vice President and Director of Research and Agronomy, Lofts Seed Inc., Bound Brook, NJ

Rough bluegrass variety shade test at Lofts research farm in New Jersey.
For fastest response, use the peel-off label from the front cover.

<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>FIRM</th>
<th>ADDRESS</th>
<th>CITY</th>
<th>STATE</th>
<th>ZIP</th>
</tr>
</thead>
</table>

TELEPHONE (_)

<table>
<thead>
<tr>
<th>010</th>
<th>015</th>
<th>020</th>
<th>025</th>
<th>030</th>
<th>035</th>
<th>040</th>
<th>045</th>
<th>050</th>
<th>055</th>
<th>060</th>
<th>065</th>
<th>070</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>106</td>
<td>111</td>
<td>116</td>
<td>121</td>
<td>126</td>
<td>131</td>
<td>136</td>
<td>141</td>
<td>146</td>
<td>151</td>
<td>156</td>
<td>161</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
<td>112</td>
<td>117</td>
<td>122</td>
<td>127</td>
<td>132</td>
<td>137</td>
<td>142</td>
<td>147</td>
<td>152</td>
<td>157</td>
<td>162</td>
</tr>
<tr>
<td>103</td>
<td>108</td>
<td>113</td>
<td>118</td>
<td>123</td>
<td>128</td>
<td>133</td>
<td>138</td>
<td>143</td>
<td>148</td>
<td>153</td>
<td>158</td>
<td>163</td>
</tr>
<tr>
<td>104</td>
<td>109</td>
<td>114</td>
<td>119</td>
<td>124</td>
<td>129</td>
<td>134</td>
<td>139</td>
<td>144</td>
<td>149</td>
<td>154</td>
<td>159</td>
<td>164</td>
</tr>
<tr>
<td>105</td>
<td>110</td>
<td>115</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>135</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td>165</td>
</tr>
</tbody>
</table>

DECEMBER 1984
This card expires Feb 15, 1985

MY PRIMARY BUSINESS AT THIS LOCATION IS:
(PLEASE CHECK ONE ONLY IN EITHER A, B OR C)

A. LANDSCAPING/GROUND CARE AT ONE OF THE FOLLOWING TYPES OF FACILITIES:
- Golf courses
- Sport complexes
- Parks
- Rights-of-way maintenance for highways, railroads & utilities
- Schools, colleges & universities
- Industrial & office parks/plants
- Condominiums/apartments/housing developments/hotels/resorts
- Cemeteries memoria gardens
- Military installations & prisons
- Airports
- Multiple government/municipal facilities
- Other type of facility (please specify)

B. CONTRACTORS/SERVICE COMPANIES/CONSULTANTS:
- Landscape contractors (installation & maintenance)
- Lawn care service companies
- Landscape architects
- Extension agents/consultants for horticulture
- Other contractor or service (please specify)

C. SUPPLIERS:
- Sod growers
- Dealers, Distributors
- Other supplier (please specify)

Approximately how many acres of vegetation do you maintain or manage?

What is your title? (please specify)

I would like to receive (continue receiving) WEEDS TREES & TURF each month: YES NO

Your Signature: ____________________________ Date: ____________
Management

Rough bluegrass as a permanent turf is limited to shaded sites in the cool humid and cool semi-arid regions of the U.S. (zones 1, 5, 6, and 7). It should not be used for a permanent turf in transition or warm-season zones (zones 2, 3, 4, and 8) or in full sun in cooler climates (zones 1, 5, 6, and 7).

For permanent turf a seeding rate of two pounds per 1,000 square feet is recommended. Three pounds per 1,000 square feet is suggested when using a seed mixture designed for shaded sites, such as 30% Poa trivialis, 30% shade tolerant Kentucky bluegrass, 20% fine fescue, and 20% turf-type perennial ryegrass.

In shaded areas rough bluegrass may be mowed lower than other cool-season grasses (as low as 1/2-inch). Applications of a 25:5:10 or equivalent complete fertilizer should be applied once in early spring before trees leaf out and in mid- to late-fall after the leaves have fallen.

Dandelion and broadleaf weeds may be controlled with 2,4-D, however injury to Poa trivialis may occur if this herbicide is applied at higher than normal rates or when temperatures are above 85 degrees F.

Rough bluegrass benefits from both light and frequent irrigation because it is shallow-rooted.

When used for overseeding dormant warm-season putting greens, Poa trivialis seeding rates of 15 to 20 pounds per 1,000 square feet are recommended. However, rough bluegrass mixtures containing 85% perennial ryegrass with 15% rough bluegrass, or 60% perennial ryegrass with 25% chewings fescue and 15% rough bluegrass are desirable.

Once established, Poa trivialis can withstand heights of cut below 1/3-inch. Frequent light verticutting is necessary to prevent grain from developing. Light frequent applications of soluble nitrogen at 1/2 pound per 1,000 square feet is recommended every two to three weeks after winter overseeding.

During establishment, irrigate lightly 3 to 4 times per day between 10 a.m. and 4 p.m. Once the turf is established, syringing during mid-day may be necessary when dry, windy weather causes surface drying. If rough bluegrass is damaged by heat or drought, premature spring transition may occur.

Improved varieties

Sabre was developed by Dr. C. Reed Funk and Bill Dickson at Rutgers University and released in 1977. It has a medium leaf texture with a darker green leaf color when compared to Danish common. Sabre, like other sources of Poa trivialis is sensitive to heat and drought and is susceptible to dollar spot and brown patch disease. Sabre has performed well when used as a component in mixtures for use in overseeding dormant warm-season turfs. It is also useful for permanent turf in damp cool, shaded locations in temperate climates.

Dr. Hurley studied Poa trivialis as part of his graduate work under Dr. C. Reed Funk at Rutgers University and is currently working on an improved variety of rough bluegrass for the landscape market for Lofts Seed Inc.
WEEDS TREES & TURF
1984 Article, Author Index

A
Architects, Courting Success
(The Theodore Brickman profile), Maureen Hrehocik, February, p. 48.
Arlington National Cemetery
Maureen Hrehocik, April, p. 52.
Athletic Fields
College, Tradition Strong at Notre Dame, Penn State, Ron Hall, December, p. 34.
Athletic Fields, High School
Ron Hall, December, p. 42.
Athletic Fields, Professional, Pennant Winning Turf
Tiger Stadium and Wrigley Stadium.
Ron Hall, December, p. 22.
Athletic Field Survey, Ron Hall, December.
Azaleas—Undiscovered Color for Northern Gardens,

B
Benham Chemical, Selling Service
Ron Hall, September, p. 24.
Bizon Maintenance Co.
Buyers' Guide, 1985
September, p. 36.

C
Calibration of Boom Sprayers, Simplified
Bruce Branham, March, p. 102.
Computer, Going
Park Superintendents, Ed Porter, April, p. 66.
Condominium and Apartment Maintenance Survey
Maureen Hrehocik, October, p. 22.
Condos in Sun River
Maureen Hrehocik, October, p. 30.
Earl Crane—50 Years of Equipment,
George L. Zais, May, p. 64.

D
Dallorso, Joe
Hitchin Post, October, p. 28.
Design/Build May Dominate in the Future Bruce Shank, Feb., p. 38.
Disease, Turf, Guide to
J.M. Vargas. June, p. 22
(Distributor Survey) Changing Even in Good Times
Bruce Shank, September, p. 19.

E
Equipment, Building Self Preservation
Into, Thomas M. Carter. June, p. 64.

F
Fertilization, Guide To Turf, Tree, Ornamental, Drs. Rathjens and Funk, October, p. 34.

G
Garden Shows
Nedra Stalter, November, p. 68.
(Golf) Multi-Course Management and the Superintendent
Bruce Shank, January, p. 30.
The Golf Superintendent (market survey), Maureen Hrehocik, Jan., p. 36.
Government Landscape Manager Profile, Time to Specialize,
Bruce Shank, April, p. 44.
Grass Roots, Back to Basics Maureen Hrehocik, Nov., p. 98.
Green Speed, Pushed to the Limit Kevin Cooney, March, p. 98.

H
B. Hayman Co.,
Bruce Shank, September, p. 33.

I
illohe
Maureen Hrehocik, January, p. 54.
Insect Control Guide
Inverrary, the Greening of Brad Kocher, July, p. 48.

J
Jenkins Machinery Co.
Bruce Shank, September, p. 30.
Johnson Space Center, the Second Mission
Maureen Hrehocik, April, p. 60

K
Kentucky Bluegrasses and Their Culture, Dr. C. Reed Funk, June, p. 46.

L
Lawn Care Market Survey
November, p. 32.
Los Angeles Coliseum
Stephen T. Cockerman, Feb., p. 32.

M
Milwaukee Country Club
Bruce Shank, January, p. 48.

O
Olympic Fields, the XXIII
Dr. Kent Kurtz, August, p. 24.
Orr, Bill, Riding the Tide
Maureen Hrehocik, February, p. 56.

P
Parks, Report Card for,
Maureen Hrehocik, April, p. 48.
Perma Green, Gentleman Jim (Jim Marria, Boise, ID)
Maureen Hrehocik, November, p. 38.
Pinehurst
Maureen Hrehocik, January, p. 40.
Planting Hole
Michael Dirr, September, p. 18.
Poa Trivialis—A Specialty Use Turfgrass,
Dr. Richard Hurley, December, p. 46.

R
Ryegrasses, Perennial, A Landscape Manager's Guide
Dr. Gerald W. Pepin, July, p. 35.

S
Seed, Turf, Don't Wait for Spring to Buy
Bruce Shank, October, p. 20.
Sewage Compost Use Suffers Information Gap
Bruce Shank, February, p. 34.
(Snow Removal) Getting Rid of the White Stuff
Ron Hall, November, p. 28.

T
Tall Fescues, A Landscape Manager's Guide
Dr. Bill Meyer, August, p. 44.
Tournament Speeds Push Greens to Limit
Kevin Cooney, March, p. 98.
Trees, Mower Wounds Kill
Terry Tattar, Alex Shigo, March p. 36.
(Trees, Street)
Trimmer Makers See Trend Toward Gas, Blades Over Line,
Bruce Shank, Kevin Cooney, May, p. 22.
Turf Control, the Black Box,
November, p. 44.
Turf Vehicle Guide,
Ron Hall, November, p. 58.