eliminate details which will cause troublesome maintenance in the future.

Ackerman is figuring the 1980-81 budget with a 16 percent reduction. "We are going to be hard pressed to do grounds maintenance work on areas like ball diamonds, playground equipment, and that sort of thing," he says. He will be losing 40 to 45 people for the fall/winter season and that will curtail leaf pickup and late autumn mowing.

Tree care is fairly safe of budget cuts because 90 percent of its funds come from the state Gas and Weight Tax and other reimbursements outside the city. Under the Federal Block Grant Program, Detroit can plant 20,000-25,000 trees a year along residential streets. The city contracts out tree and stump removal and tree planting.

Snw removal, ice rink maintenance, and grounds funds all come from local taxes, which will mean some drastic cutbacks. Fertilizing has been almost eliminated except in the downtown area. The two foresters have a soil sterilization program along fences which they will try to keep and have installed mowing strips under fences to prevent grass from growing.

In the past few years, the city has begun to install splash strips along roadside curbs, but not enough in Tatti’s opinion. "Wherever they use salt they’re killing off all the grass and plant material along the curbs. They’re going to have to design splash strips all over with a little more pitch to them. It’s folly to plant seed or sod in the spring and have it killed off in the winter."

Tatti began an early morning operation during the summer with a seven-man crew that was willing to work on any type of project. They started at 4 a.m., hours before the traffic began to inhibit their mobility and freedom to work. Tatti figured he covered more in three hours than a regular shift crew could do in five. Without traffic, they could park heavy vehicles on the street instead of on top of the grass.

No maintenance operation in the country is immune to the bite of inflation and budget reductions, but some have been hit harder than others. One that took it on the chin this summer is Dallas, TX, where gasoline for park and street maintenance was reduced 80 percent. Eddie Hueston, superintendent of park maintenance, said the situation caused a whole new schedule of priorities and a shakeup in traditional methods.

In Dallas, gasoline for park and street maintenance was reduced 80 percent and caused a shakeup in traditional methods.

Hueston says that he actually caught up on tree maintenance in many areas, mostly in corrective tree work. "We sent people into a large park and they didn't drive around a lot to different projects but just worked right there with hand tools." The crew noticed what had to be done in nearby areas. Turf care didn't suffer much because it fell into the category of landscape areas, which were a priority.

"It made us take a real hard look at how efficient we had been," he says. "I think the overall effect caused us to look at how we were doing things and we began to look at them in a whole different manner. I think we probably trimmed down some areas better than we had been doing before. We kept better track of things because we had to account for them."

Although Hueston's department is not facing the same cutbacks for next year, it still must scrutinize how much to spend on gasoline with the possibility it may be 50 percent of the budget. He thinks it is very likely that he will continue the reorganization undertaken over the summer. He must decide what emergency measures to retain and still keep quality maintenance. It is a situation many others may soon face.

Involving the community is one way Thomas Metz, superintendent of lands and buildings of Bowling Green, OH, has received response to a lack of manpower. With only five people and some CETA workers to maintain 300 acres of parkland and plant 500 trees a year, Metz took his plight to the downtown merchants.

Since all the city's trees are bought with revenue sharing funds, the dilemma for Metz once he planted the trees, was to be able to maintain them. So he started an adopt-a-tree program. He went to the downtown merchants and asked if they would maintain, water, and keep litter from around a tree outside their business. The response was very positive and Metz estimates the success rate of trees has increased from 60 to 76 percent.

"A lot of people didn't know we existed," Metz says. He and the tree commission visited many people and issued pamphlets with their names and addresses to adopt a tree. They started the program in May, and now have 15 people wanting to adopt a tree, with a list of 100 more people who are interested.

"I think this is the only way to go, especially in a recession. Let's get people interested in plants and trees and start a tree program," Metz says. He is trying to work with the downtown merchants again to persuade them to bring in more trees, because the success rate of the trees has doubled. He is hoping to expand this program to other parkland areas.

Continues on page 38
TESTS INDICATE PERSISTENCE OF VEGETATION ON TOXIC SPOILS

By Paul Sutton, Professor of Agronomy, Ohio State University

Many studies have been conducted on the establishment of vegetation on acid coal mine spoils in the eastern United States. Acidity results from exposure of sulfur-containing minerals to air during the mining operation. When exposed to air and moisture, iron disulfides oxidize to produce soluble sulfates and sulfuric acid. Exposure of toxic materials now eliminated by selective placement of spoils during mining. Under present mining methods, the toxic materials are buried and materials suitable for vegetation, usually topsoil, are replaced on the surface.

Topsoil, limestone, and municipal sewage sludge were tested as aids in establishing vegetation on acid coal mine spoils at the Eastern Ohio Resource Development Center, Unit II, near Caldwell, Ohio. The test area was contour strip-mined spoils in the eastern United States. Acidity results from exposure of sulfur-containing minerals to air during the mining operation. When exposed to air and moisture, iron disulfides oxidize to produce soluble sulfates and sulfuric acid. Exposure of toxic materials now eliminated by selective placement of spoils during mining. Under present mining methods, the toxic materials are buried and materials suitable for vegetation, usually topsoil, are replaced on the surface.

Topsoil, limestone, and municipal sewage sludge were tested as aids in establishing vegetation on acid coal mine spoils at the Eastern Ohio Resource Development Center, Unit II, near Caldwell, Ohio. The test area was contour strip-mined spoils in the eastern United States. Acidity results from exposure of sulfur-containing minerals to air during the mining operation. When exposed to air and moisture, iron disulfides oxidize to produce soluble sulfates and sulfuric acid. Exposure of toxic materials now eliminated by selective placement of spoils during mining. Under present mining methods, the toxic materials are buried and materials suitable for vegetation, usually topsoil, are replaced on the surface.

Topsoil, limestone, and municipal sewage sludge were tested as aids in establishing vegetation on acid coal mine spoils at the Eastern Ohio Resource Development Center, Unit II, near Caldwell, Ohio. The test area was contour strip-mined spoils in the eastern United States. Acidity results from exposure of sulfur-containing minerals to air during the mining operation. When exposed to air and moisture, iron disulfides oxidize to produce soluble sulfates and sulfuric acid. Exposure of toxic materials now eliminated by selective placement of spoils during mining. Under present mining methods, the toxic materials are buried and materials suitable for vegetation, usually topsoil, are replaced on the surface.

Topsoil, limestone, and municipal sewage sludge were tested as aids in establishing vegetation on acid coal mine spoils at the Eastern Ohio Resource Development Center, Unit II, near Caldwell, Ohio. The test area was contour strip-mined spoils in the eastern United States. Acidity results from exposure of sulfur-containing minerals to air during the mining operation. When exposed to air and moisture, iron disulfides oxidize to produce soluble sulfates and sulfuric acid. Exposure of toxic materials now eliminated by selective placement of spoils during mining. Under present mining methods, the toxic materials are buried and materials suitable for vegetation, usually topsoil, are replaced on the surface.

Topsoil and Forages

In spring 1968, eight plots (10 ft. x 10 ft.) were established by covering the spoil with soil material having a pH of 6.5, 14.5 lb./A of available P (phosphorus), and 288 lb./A of exchangeable K (potassium). The material was an Upshur soil removed from a road bank cut. A border of wooden planks held the soil in place. Depths of uncompacted soil were 2, 4, 6, 8, and 10 inches. Plots were seeded with Kentucky 31 fescue. The following spring, Korean lespedeza and orchardgrass were also seeded.

Some vegetation was established on the 4, 6, 8, and 10-inch depths of topsoil, but a good vegetative cover was sustained only on the 6, 8, and 10-inch depths.

First year growth of Kentucky 31 tall fescue was poor and a good vegetative cover was not obtained. The second year, growth was mostly from Korean lespedeza, suggesting a need for additional nitrogen for good growth of grasses. Using topsoil with a higher organic matter content would have reduced the need for additional nitrogen. However, grass growth should not be stimulated with fertilizer nitrogen to the point where it would eliminate the legumes.

Listed in Table 1 are the pH's of samples taken in August 1978. Initially, one major concern was that the acid from the spoil would move up into the topsoil, making it too acid for plant growth. Although there has been a decrease in pH of the topsoil, there has also been an increase in the pH of the spoil beneath the topsoil. Since the forage from the plots was not harvested, it appears that some of the bases from the topsoil moved into the spoil and acid from the spoil reduced the pH of the topsoil. After four growing seasons, the plant roots were found penetrating to within one-half inch of the spoil. After 11 growing seasons, plant roots were starting to penetrate into the spoil approximately one-fourth inch. The spoil was sampled from 0 to 0.5 inches and the pH measured. The pH's (Table 1) showed an increase as compared to the check, but pH was too low for good root growth.

The change in conditions suitable for root growth when a toxic spoil is covered with topsoil appears to be rather slow. Limestone mixed into the spoil ahead of topsoiling would probably speed up root penetration. This would become a more important consideration if shallow layers of topsoil were being applied or if steep slopes were being topsoiled where a root contact between the topsoil and spoil would reduce the possibility of the topsoil sliding.

This study shows that vegetation can be established on toxic spoil by topsoiling with a minimum of 6 inches of topsoil. Erosion control would be essential when the minimum depth of topsoil is used.

Continues on page 26
WHY

Over 1000 Harvester Users Prefer the BROUWER Sod Harvester

- No waste, cuts to fences, ditches, irrigation pipes.
- Rolls, Slabs, or Folds.
- Choice of pallet sizes from 36" to 60" wide.
- Standard tractor and parts: Maneuverable, simple, easy to operate and maintain.
- Now the new model A3A offers even more production, economy and dependability.
- Operates off uncut turf, preventing tracking and turf damage.
- Performs efficiently in wet, dry, soft, hard, rough, and weak turf conditions.
- Harvests up to 1500 square yards per hour in widths of 15", 16", 18", & 24".

ACT NOW AND GUARANTEE:

Best possible price, best trade in allowance, prompt delivery, value for your dollar.

BROUWER TURF EQUIPMENT LTD.

The Ultimate in Reliability, Versatility and Economy

Woodbine Avenue, Keswick, Ontario, Canada L4P 3C8 • Telephone (416) 476-4311
COUNT THE WAYS CUSHMAN CAN HELP CUT YOUR LABOR COSTS.

With inflation driving up your labor costs, you've got to find new ways to get more work done in less time. That's what the Cushman Turf-Care System is all about.

At the heart of our system is the Cushman 3- or 4-wheel Turf-Truckster vehicle. With a rugged 18-hp engine, and a transmission designed to allow the optional PTO to attach directly to it, the Turf-Truckster moves people, tools and equipment quickly and economically.

But the real beauty of the Turf-Truckster is that it also helps your crew finish most turf jobs fast, thanks to a full line of optional Cushman attachments.

Each attachment secures to your Turf-Truckster's chassis in minutes, through Cushman's pin-disconnect system. You don't bolt or hitch, but just put the attachment in place, snap-in two or three pull pins and you're ready to hit the turf.

And every optional Cushman Turf-Care attachment is engineered to get its job done neatly and in as little time as possible.

1. GREENSAVER® AERATOR.
The Greensaver lets you aerate greens, tees or other turf areas up to 10 times faster than walk-type units.

 Coring tines, 3/8" coring tines or slicing tines—they are all interchangeable. What's more, both coring drums collect cores as you aerate. Or remove the side plates and return the cores to the turf to be broken up as top dressing.

2. SHORT BOX & FLATBED/BOX.
Your Turf-Truckster becomes a flatbed hauler with just two pull pins in place. Bolt on the optional side panels and tailgate to the flatbed, and you've got a 1,000-lb. capacity* box that can be dumped manually or hydraulically.
3. SPRAYER.
It's a 100-gallon polyethylene tank that holds liquids for spraying greens, trees, bushes or roughs quickly and accurately. Team it with the Turf-Truckster equipped with a standard 2 to 1 auxiliary transmission, optional PTO and ground speed governor for properly controlled spraying.

6. QUICK AERATOR.
We call it the Quick Aerator because its 46" wide swath lets you finish big aeration jobs fast. It can also move from job to job fast, because it can be hydraulically lifted by controls from the driver's seat for ground transport (optional hydraulic system and dump set required). Three tine styles are available for different soil conditions: slicing, coring (2 sizes) and open spoon.

4. TOP DRESSER.
Compared to self-powered or walk-type top dressers, this unit pays for itself in the hours it can save your crew. A rubber fabric moving bed and rotating brush are regulated by the vehicle's ground speed to maintain an even spreading pattern over a 31½" swath. And the hopper holds up to 1,000 lbs. of material from rock salt to powdered fertilizer.

7. GRADER/SCARIFIER.
Now you can groom non-turf areas with your Cushman Turf-Care System. Attach the new Grader/Scarifier to your Turf-Truckster and you're ready to break up compacted dirt on ball diamond infields or golf car pathways. As a professional grading tool, it will keep your grounds even, or create new surfaces. There's a built-on dragmat holder, driver-operated controls and an optional scarifier replacement bar with extra-close 1½" tooth spacing.

5. SPREADER/SEEDER.
Mounted on the optional Short Box or Flatbed/Box, its cyclone action spreads up to 300 pounds of seed, sand, salt or fertilizer over areas up to 40' wide. The Spreader/Seeder is powered by the Turf-Truckster's optional PTO with extension shaft. And since all controls are operated from the driver's seat, one man can get the job done.

8. POWER CONVERTER.
The Cushman Power Converter turns your Turf-Truckster into a mobile power plant for electric tools, floodlights ... anything with a universal motor that draws up to 120 volts DC. So, instead of bringing every repair job back to the shop, your crew can handle them in the field. The Power Converter is inexpensive, easy to install and makes your Cushman System even more versatile.

9. CUSHMAN RUNABOUT.
If you need a vehicle for moving people and equipment efficiently, consider the Cushman Runabout. Either the two-man 18-hp Runabout, or the one-man 12-hp model. Both give you maneuverability and feature a big pick-up box, and 3-speed transmission. And both Runabout models let your crew get to the job without tying up a golf car that could be on the course earning a profit.
Also, the topsoil should be limed and fertilized according to soil test recommendations.

Sewage Sludge and Forages

Another study conducted on this spoil used sewage sludge to help establish vegetation. Digested sewage sludge was obtained from the Caldwell (Ohio) treatment plant. It was removed from the drying beds and applied to the spoil at the rate of 294 air dry tons per acre. One area had sludge incorporated with a disc to a depth of approximately 6 inches. In a nearby area, sludge was applied to the surface but not disked in.

Results

- at least 6 inches of topsoil is needed over toxic spoil for plant establishment
- fertilizer is necessary for initial growth
- additional fertilization is critical for growing in materials that consist largely of subsoil
- digested sewage sludge is an excellent material for reclaiming toxic spoils
- trees can be established on toxic spoil if enough topsoil is used to support root growth
- amendments should be thoroughly mixed with the spoil

In fall 1971, both areas were seeded to rye and in March 1972, Kentucky 31 tall fescue, orchardgrass, and sweet clover were broadcast seeded. The pH of the 0-4 inch layer was 5.4.

One initial question with the use of sewage sludge was: "Will the sludge oxidize over a period of time and the spoil become too acid to support plant growth?" This situation did not occur during seven growing seasons. Vegetative growth and the pH of the spoil indicates that this area will continue to support vegetation. Also, bluegrass has started to appear in part of the area.

Where the sewage sludge was not incorporated, vegetation was established but the plant roots were confined to the sludge layer. Although there was no visual difference in growth, this shallower root system may result in a more severe drought stress.

Limestone and Forages

In an earlier attempt to establish vegetation on this type of spoil, 31 tons per acre of limestone were applied but the spoil remained too acid to support plant growth. In fall 1969, 2 pounds of limestone per square foot were applied to spoil and mixed to a depth of 6 inches. An additional 2 pounds of lime per square foot were applied in fall 1970 and incorporated to 6 inches. Following these lime applications, equivalent to 87 tons per acre, the area was seeded to rye and fertilized with 544 lb/A 6-24-12. In March 1972, a mixture of Korean lespedeza, sweetclover, Kentucky 31 tall fescue, and orchardgrass was seeded. At first, plant growth was very poor, probably because of a shortage of moisture and a nutritional disorder associated with the acid spoil. Plant growth increased with time. The pH of the limestone-amended spoil was 5.6 in August 1978. Possibly, an increase in the organic matter of the spoil, resulting from the decay of plant roots, increased water infiltration and moisture availability.

When limestone is added to toxic spoil for establishing vegetation, a sufficient amount must be added to neutralize both the spoil acidity and the acid spoil. Plant growth increased with time. The pH of the limestone-amended spoil was 5.6 in August 1978. Possibly, an increase in the organic matter of the spoil, resulting from the decay of plant roots, increased water infiltration and moisture availability.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Topsoil</th>
<th>Spoil 0-4" Under Topsoil</th>
<th>Spoil 0-0.5" Under Topsoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 inches topsoil</td>
<td>pH</td>
<td>pH</td>
<td>pH</td>
</tr>
<tr>
<td>4 inches topsoil</td>
<td>2.8</td>
<td>2.9</td>
<td>—</td>
</tr>
<tr>
<td>6 inches topsoil</td>
<td>5.2</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>8 inches topsoil</td>
<td>5.5</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>10 inches topsoil</td>
<td>5.7</td>
<td>2.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Check</td>
<td></td>
<td></td>
<td>2.4</td>
</tr>
</tbody>
</table>
Weeds Trees & Turf FREE INFORMATION

Want free information on products and services advertised and featured in this issue? Use this card. Circle the numbers on which you want information and mail today.

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248 249 250 700 701 702 703 704 705 706 707 708 709
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

NAME
COMPANY
ADDRESS
CITY
STATE
TELEPHONE
ZIP

Do you want to receive Weeds Trees & Turf? □ YES □ NO
Are you interested in receiving or continuing to receive WEEDS TREES & TURF? If you are, complete all the information on this card and mail today.

DATE
SIGNATURE

1. What is your primary business/industry? (Check one only)

☐ Rights-of-Way Maintenance
☐ Commercial/Industrial Contract
☐ Aerial Applicator
☐ Extension Services/Federal or State Regulatory Agency
☐ Parks or Grounds Management (Federal, State, Municipal) Forestry
☐ Golf Course Management
☐ Cemetery Grounds Maintenance
☐ Industrial Park Grounds Maintenance
☐ Shopping Centers Grounds Maintenance
☐ Hospital, Nursing Home (grounds maintenance)
☐ School, College and University (grounds maintenance)
☐ Athletic Fields Management

If you are not personally receiving WEEDS TREES & TURF and want your own subscription, circle number 101. Subscription price is $12.00 per year, U.S. and Canada.
My question or comment to the editor is . . .

Weeds Trees and Turf is glad to answer your questions or publish your comments on any green industry topic. Questions will be answered by industry experts in the Vegetation Management or Proscape columns. Comments will appear in the Letters or Viewpoint columns.
Weeds Trees & Turf
FREE INFORMATION

Want free information on products and services advertised and featured in this issue? Use this card. Circle the numbers on which you want information and mail today.

| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
| 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
| 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
| 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |

COMPANY

TELEPHONE

Do you want to receive Weeds Trees & Turf? ☐ YES ☐ NO

Are you interested in receiving or continuing to receive WEEDS TREES & TURF? If you are, complete all the information on this card and mail today.

DATE

SIGNATURE

1. What is your primary business/industry? (Check one only)
 - Rights-of-Way Maintenance
 - (highway, utility, railroad)
 - Commercial/Industrial contract
 - chemical applicator
 - Aerial applicator
 - Extension Services/Federal or State Regulatory Agency
 - Parks or Grounds Management
 - (Federal, State, Municipal) Forestry
 - Golf Course Management
 - Cemetery Grounds Maintenance
 - Industrial Park Grounds Maintenance
 - Shopping Centers Grounds Maintenance
 - Hospital, Nursing Home (grounds maintenance)
 - School, College and University (grounds maintenance)
 - Athletic Fields Management
 - Airport Grounds Management
 - Military Installation Management
 - Land Reclamation/Erosion Control Specialists
 - Lawn Care Company
 - Lawn Maintenance Company
 - Landscape Contractor
 - Landscape Architect
 - Sod Grower
 - Seed Grower
 - Tree Service Company/Arborist
 - Wholesale nursery
 - Tree Farm
 - Dealer/Distributor
 - Other (Specify)

If you are not personally receiving WEEDS TREES & TURF and want your own subscription, circle number 101. Subscription price is $12.00 per year, U.S. and Canada.
Weeds Trees & Turf
Box 6049
Duluth, Minnesota 55806

Send my personal subscription of Weeds Trees & Turf

NAME

TITLE

COMPANY

ADDRESS

CITY

STATE

ZIP

Signature ____________________________

☐ 1 YEAR ($12) ☐ 2 YEARS ($22) ☐ 3 YEARS ($30)

☐ Check here if you want bulk (5 or more) subscription rate information.

☐ Check Enclosed ☐ Bill Me

☐ 1 YEAR FOREIGN ($15) ☐ Foreign Air Mail per year ($39)

1. What is your primary business/industry? (Check one only)

☐ Rights-of-Way Maintenance (highway, utility, railroad

☐ Commercial/Industrial contract chemical applicator

☐ Aerial applicator

☐ Extension Services/Federal or State Regulatory Agencies

☐ Parks or Grounds Management (Federal State, Municipal) Forestry

☐ Golf Courses Management

☐ Cemetery Grounds Maintenance

☐ Industrial Park Grounds Maintenance

☐ Shopping Center Grounds Maintenance

☐ Hospitals, Nursing Homes, (grounds maintenance)

☐ Schools, Colleges and Universities (grounds maintenance)

☐ Athletic Field Management

☐ Airport Grounds Management

☐ Military Installation Management

☐ Land Reclamation/Erosion Control Specialists

☐ Lawn Care Company

☐ Lawn Maintenance Company

☐ Landscape Contractor

☐ Landscape Architect

☐ Sod Grower

☐ Seed Grower

☐ Tree Service Company/Arborist

☐ Wholesale Nursery

☐ Tree Farm

☐ Dealer/Distributor.

☐ Other (Specify) ____________________________
Topsoil and Trees

A study was conducted to establish trees on the outer slope of a toxic spoil by making holes approximately 12 inches in diameter and 15 inches deep. The holes were filled with soil and one-year-old black locust and European black locust and European alder trees were planted in spring 1969. Initial tree survival was good but growth was poor. After 10 growing seasons, the roots are confined to the soil material and the trees have made very little growth. In some cases, there was movement of acid into the soil and the trees died.

This method could be used if large enough holes were made to give a sufficient volume of soil for root growth to support the trees. In another area where 18 inches of nontoxic spoil were used to cover toxic spoil, trees have made relatively good growth and cover over a period of 8 years.

Summary

At least 6 inches of topsoil cover over toxic spoil was needed for establishment of healthy plants. Initial growth of grass without the addition of fertilizer was poor. This emphasizes the need for fertilizing in accordance with soil test recommendations. Also, maintenance applications of fertilizer may be needed to maintain a good vegetative cover. The need for additional applications of nitrogen will be critical where the forage stand consists of grasses growing on materials that largely consist of sub-soil.

Excellent plant growth was obtained with 294 tons per acre of air dry sewage sludge. Because of varying composition, each source of sewage sludge must be evaluated to determine its value in reclamation. If sludge does not contain substances detrimental to plant growth, it is an excellent material for use in reclaiming toxic spoils.

When sufficient quantities of limestone are added to neutralize most of the acidity, vegetation can be established. When large quantities are added, the limestone should be thoroughly mixed with the spoil to obtain a uniform pH throughout the mixing zone. Also, the area should be fertilized according to soil test recommendations. Regular soil tests used for undisturbed lands will not measure the acid-producing potential resulting from unoxidized sulfur in spoils. Direct oxidation of reduced sulfur to acid with hydrogen peroxide has been used to evaluate the acid potential of spoils.

Trees can be established on toxic spoil if a sufficient volume of topsoil is used to support root growth. Drainage should be good or acid seepage into the root zone may reduce growth or even kill the tree.

WTT
Q: How do you tell maple wilt from maple decline? Is there anything you can do to treat these diseases?

A: Maple wilt is caused by the fungus *Verticillium albo-atrum* and is first evidenced by the sudden wilting and dying of leaves on individual limbs. Sometimes the wilting is preceded by a slight yellowing of the leaves. The sapwood may be discolored (olive-green), particularly near the base of the tree. However, since other fungi may cause a similar staining, a positive diagnosis can be made only by culturing the discolored tissue.

Infected trees may die within a few weeks or over a period of several years depending upon the degree of infection and whether the infection occurred through the roots or branches. Occasionally an infected tree will recover and “wall off” the infection with subsequent new growth.

Treatments with high nitrogen fertilizer in the spring have reportedly aided the walling-off process by stimulating new growth.

Maple decline is not associated with any particular insect or disease but apparently is caused by environmental and other abiotic factors. Among those suggested to trigger the decline are drought, road salt, mechanical injury and nutrient deficiencies. Other problems such as root rot are thought to be of a secondary nature.

The symptoms are twig and branch dieback involving initially the upper crown, premature fall coloration, chlorosis, scorch and leaf dwarving. Sugar maples are more often affected than other maple species and appear to be especially susceptible along roadsides.

Fertilization with high nitrogen fertilizer often dramatically improves declining maples, particularly when supplemented with trunk injections of manganese salts. Of course, if road salts are involved, any action which would reduce the salts in the root area would be beneficial.

Q: I have a myrtle bed where one-third of the plants are rotten or loose from the ground, needing to be raked out. Why is so much of the planting dead or loose? There has not been any change in bedding conditions.

A: Assuming the myrtle to which you refer is *Vinca*, we have had reports of cases of both canker (*Phoma exigua*) and root rot (*Pellicularia filamentosas*) in your area of Pennsylvania. Both of these diseases can cause a dieback or decaying of stems and are usually more prevalent during rainy periods of the growing season.

Recommended controls include the removal of infected plant parts and a periodic soil drench with benlate (benomyl). Root rot is difficult to control in established plantings. Check with your local extension agent and/or refer to the product label for use and timing instructions.

Q: Many so-called “tree surgeons” make much of their living from “topping” trees, even though they are aware that the practice is unsound. These specialists often perform this service at the request of ill-advised or uninformed homeowners. Can you recommend a way to eliminate this senseless tree butchering without hurting the income or reputation of tree surgeons?

A: Topping not only is aesthetically unattractive but also results in weak crotches and a greater potential for decay in the “nests” of branches.

Topping requires less skill and time than selective pruning and allows an untrained person to “trim” a tree for less money than a more knowledgeable tree surgeon. Unfortunately, many homeowners are unable to appreciate the quality difference and judge service by the size of the bill.

We all need to do a better job of educating our industry as well as the public. Organizations such as the National Arborist Association (NAA) and the International Society of Arboriculture (ISA) help to set industry standards and promote public awareness. On a more local basis, each of us can become involved in community activities involving tree planting and maintenance, and participate in civic and garden club programs.

Q: I have a garden center and during the summer I have to weed every ten days. I want to eliminate this as it can become very expensive. I keep the plants above ground, but what can I use to prevent weeds from coming up?

A: Without knowing the major weeds or the nursery plants involved, I cannot recommend herbicides for application around a variety of existing plants.

Prior to bringing in the nursery plants, the area could be treated with an herbicide such as Roundup which would kill existing weeds but would not affect subsequent weed germination. Soil fumigants such as methyl bromide could also be applied and would control most weeds for a season. However, fumigants are dangerous and expensive to use and should be handled only by professionals.

Possibly the best solution would be to cover the area with black plastic and a light topping of organic mulch to provide a surface suitable for foot traffic.

Q: What causes spit spot on oaks?

A: We have not had many reports of spit spot, but in most cases it was associated with large, recently transplanted pin oaks. Generally, it appeared as small spots of froth or foam on the trunk and disappeared as the tree became established. To date we have been unable to associate an insect or disease with the spots. Perhaps one of the readers has a suggestion.
INSTANT SHADE!

TS-44T: Ball diameter, 44 in.; Ball depth, 40 in.; Maximum tree diameter, 4 in. tree trunk (approx.) Ball weight: 1173 lbs. (approx.) Available as truck-mounted trailer-mounted or Vermeer M-465 tractor mounted unit.

TS-84: Ball diameter, 84 in.; Ball depth, 54 in.; Maximum tree diameter, 8 in. tree trunk (approx.) Ball weight: 8,000 lbs. (approx.) Available as a truck-mounted unit only.

TS-66T: Ball diameter, 66 in.; ball depth, 48 in.; Maximum tree diameter, 6 in. tree trunk (approx.) Ball weight: 3168 lbs. (approx.) Available as a truck-mounted unit only.

TS-30: Ball diameter, 30 in.; Ball depth, 26 in.; Maximum tree diameter, 3 in. tree trunk (approx.) Ball weight: 355 lbs. (approx.) Trailer or tractor-mounted units. Flat-bottom tree spade option.

TS-20: Ball diameter, 20 in.; Ball diameter, 18 in.; Maximum tree diameter, 2 in. tree trunk (approx.) Ball weight: 109 lbs. (approx.) Tractor-mounted unit, or in combination with Vermeer T-218 Trencher.

NEW! TS-44M . . . far greater maneuverability than ever before. No more guesswork. The TS-44M hydraulically extends (up to 21 in.) and shifts (up to 15 in. left and right of center). It’s fast, accurate. Cuts set-up time.

YOU CAN DIG IT WITH VERMEER

Better yet, “instant beauty!” Nothing improves landscape more than trees and shrubs. And no one creates it as quickly and efficiently as The Diggin’ Dutchman and his patented Vermeer Tree Spades. What about efficiency? Hydraulically-operated steel spades handle the entire job quickly and gently. No coffee breaks. No lunch hours. No overtime wages. It’s a one-man operation! Choose from six quality built machines . . . and transplant or “package” small shrubs and trees — up to 8 inches in diameter — in minutes. Ask your Vermeer dealer for a demonstration today.

Vermeer

6311 New Sharon Road • Pella, Iowa 50219 • (515) 628-3141 • Telex 478-309

Circle 147 on free information card
Compact Diesel Tractors: Versatility Plus Durability

Engineers have combined the versatility of the compact tractor with the durability and strength of the diesel engine to produce a useful professional tool.

These tractors, usually in the 16 to 30 h.p. range, provide landscape firms, industrial groundskeepers, and large estate and school maintenance supervisors with a front line or backup tool that has great flexibility and ruggedness. In times of tight budgets, such a tractor and its attachments could substitute for a single-function device and provide a backup for existing machinery during maintenance or repair.

The versatile, compact tractor is receiving serious attention by tractor manufacturers as one of the biggest growth markets in the equipment business in the next five to ten years. The lawn and garden tractor has grown up into a professional grade machine.

Typical versatility with available attachments includes:
- reel, rotary, and flail mowing
- tilling and cultivating
- raking
- trenching
- discing
- posthole digging
- snow throwing
- backhoe and loader use

Bolens division of FMC Corp. and Iseki have combined resources to produce a line of water-cooled diesel tractors in the 15 to 24 h.p. range. All models are powered by four-cycle, two-cylinder water cooled diesel engines. The largest, 24-h.p. model, the G244 weighs 1,900 lbs. and is approximately four ft. wide and nine ft. long with a 56 in. wheelbase. The tractor includes a three-point hitch, hydraulically activated, and a two or three-speed PTO. A full line of attachments are available from Bolens. Available with switchable four-wheel drive.

Circle 701 on free information card

John Deere offers three diesel-powered compact tractors from 22 to 33 h.p. Called 850, 950, and 1050 models, the tractors are powered by

Continues on page 32