twigs. This adelgid was imported from Europe during the 19th century and subsequently has spread throughout North America wherever hosts are planted. It overwinters as a dormant stem mother with its mouthparts inserted into the twig at the base of a bud. The following spring, overwintering adelgids mature and lay eggs just prior to budbreak. Adelgid crawlers hatch and begin feeding at the base of bursting buds. As the new shoot and needles grow, they are stimulated by the adelgids to produce a basal swelling that eventually forms a closed gall with many chambers. Feeding by both the stem mothers and their progeny is required for normal gall formation. In late summer the succulent green galls begin to dry out and turn brown. Soon the chambers split open, and the nymphs migrate to needles where they molt to the winged adult stage. All of the individuals are females that produce viable eggs without mating. Crawlers that hatch from these eggs are the overwintering stem mothers that produce the next, annual generation. This scenario, including galling, occurs each year on Norway and white spruce.

Cooley Spruce Gall Adelgid. The Cooley spruce gall adelgid, Adelges cooleyi (Gillette), causes pineapple-like swellings at the apical ends of twigs on Colorado blue, Engelmann, and white spruce. This pest produces life forms that migrate to the alternate host, Douglas-fir. On Douglas-fir the adelgids feed on the undersides of leaves where they cause chlorosis and leaf distortion and sometimes premature needle drop. Galling does not occur on the alternate host. Most authors who have studied Cooley spruce gall adelgid have indicated that galls are not formed year after year on spruce unless migrants immigrate from Douglas-fir.

Choosing Suitable Tactics. Although galling caused by spruce gall adelgids is not a threat to tree survival, heavily infested trees are unsightly and often more of an esthetic liability than an asset in the landscape. Nurserymen must minimize galling because infested trees cannot be shipped in interstate commerce.

Several tactics can be employed to minimize galling on spruce trees. Individual landscape managers can choose those tactics which best fit their management practices and goals.

An obvious tactic to minimize terminal galling on Colorado blue, Engelmann, and white spruce is to not plant Douglas-fir nearby. Although we do not know how far migrants can disperse and still survive, crawlers have been trapped more than a mile away from the closest conifer planting. Consequently, if spruce are used on a golf course or cemetery, Douglas-fir should not be planted. The same logic applies to nurserymen and Christmas tree growers. If you plan to grow both Douglas-fir and susceptible spruce, expect annual galling on spruce and increased production costs.

The most common direct control method for spruce gall adelgids is a thorough application of hydraulic, insecticidal spray, after stem mothers are established in late summer and before they begin egg production the following spring. Spraying should be accomplished when temperatures are warmer than 60°F (15°C) and cooler than 80°F (27°C). The level of control achieved is directly related to how thoroughly you wet the twigs where stem mothers are feeding.

Nurserymen and Christmas tree growers who sell live spruce can reduce adelgid populations and eliminate new, unopened galls by pruning them during the shearing operation. This procedure is unnecessary in the landscape, providing trees are inspected annually and an insecticidal spray is applied before galling threatens to reduce aesthetic quality. Fall and spring inspections are effective since galls remain on the trees. Low-level infestations in the landscape neither constitute a pest situation nor justify use of an insecticidal spray, because tree vigor and appearance are not significantly reduced.

Cooley spruce gall adelgid on Douglas-fir can be controlled with a thorough-coverage spray in spring when buds begin to shed their scales. They are also vulnerable throughout the summer whenever they are in a nymphal stage. Adults are often
systemic insecticides. The insecticide, formulated for spruce gall adelgid control strategy is use of granules in holes or a shallow trench at the drip line. A white, waxy material is applied, making it more difficult to control because they are covered with a white, waxy material.

Another tactic that may be employed in a spruce gall adelgid control strategy is use of systemic insecticides. The insecticide, formulated in a slow-release granule, is applied to the soil surface at the drip line of a tree and cultivated into the top several inches (8-12 cm) of soil. An alternative application technique would be to place the granules in holes or a shallow trench at the drip line. The treated area is watered immediately after application and again in 2 weeks unless there is about one inch (2.54 cm) of rainfall. This tactic, employed in mid-April in northeastern Ohio, has precluded formation of new galls on trees that were heavily galled in previous years.

Union Carbide Corporation is currently pursuing a special local needs, 24C, registration for Temik 10 G (aldicarb) for this usage in Ohio. I believe it is an excellent alternative to foliar sprays because it (1) eliminates drift of toxic materials, minimizing contact with non-target organisms, including man, and (2) it eliminates galling. If used on an area-wide basis, annual application would not be required. Indeed, once an infestation is eliminated, galling will not recur until an infested tree is moved to the area.

In the future, spruce trees resistant to adelgids may be available. Dr. D. B. Houston, OARDC, is developing resistant Norway and white spruce and investigating the basis for resistance and a technique capable of detecting resistant trees when they are still small. Availability of trees resistant to spruce gall adelgids will dramatically reduce production and maintenance costs associated with spruce.

Black Vine Weevil

The black vine weevil, Otiorhynchus sulcatus F., was imported accidentally to the United States from Europe more than 100 years ago. It has established itself as one of the most common and damaging insect pests of woody ornamentals and small fruits throughout the northern portions of this country and southern Canada. During the past 10 years its status as a pest has been increasing at an alarming rate.

Damage — Although adults consume foliage, they rarely eat enough to reduce plant health. Instead, the grub or larval stage causes the significant damage. Young larvae consume small feeder roots while becoming established and large larvae eventually strip bark from larger roots, cutting off supply of water and minerals to stems and foliage and sugars from leaves to roots. Extensive larval feeding reduces plant vigor and may cause death of the plant. Weevil presence is commonly overlooked until plants have been seriously damaged.

Life Cycle and Seasonal History — Black vine weevil overwinters in the larval stage near the root zone of host plants. Larvae resume feeding in spring and pupate in the top 4-6 inches (10-15 cm) of soil during May, June, and July. Adults usually begin emerging at the end of May in northern latitudes (Cleveland area); about 3 weeks earlier in the southern parts of its range (Cincinnati area). In the north, they continue to emerge through early August; egg laying begins in early July and continues throughout October. Only large larvae overwinter successfully.

All black vine weevils are females that reproduce without mating, a phenomenon called parthenogenicity. Newly emerged weevils must feed about 4 weeks before their eggs develop. Since they are flightless, they feed and lay eggs near their emergence site, and oviposition continues throughout the summer. One female may lay 1000 eggs during her lifetime. Consequently, a dense and damaging population can develop in a localized area in only a few years, even though there is only one generation each year.

Developing a Control Strategy — Dieldrin, aldrin, and chlordane were used as foliar sprays to kill adults and as soil treatments in an attempt to kill larvae until the early 1970's. Although some pest control operators reported good results with soil treatments, established larval infestations have always been difficult to control. Since these insecticides have been banned, and other soil insecticides have not proven effective against black vine weevil larvae, we must rely on foliar sprays and drenches to kill adults before they begin production.

Detecting Adult Emergence. The first step in implementing a black vine weevil pest management strategy is determining when adults begin to emerge in spring. Although we know emergence begins about June 1 in northern Ohio, accurate local information can optimize the strategy. If a dense infestation has been located, pit-fall traps can be installed to detect first emergence. Traps should be inserted in the ground so their upper lip is just beneath the soil surface in a location near infested plants and convenient for frequent inspection. Traps should be installed at least 2-3 weeks before emergence is expected and checked at least weekly. RECORD FIRST TRAP CAPTURE ON YOUR CALENDAR.

Timing First Spray. The first insecticidal spray should be applied 3 weeks after the first weevil is observed.
ORTHENE® TREE AND ORNAMENTAL SPRAY is a truly remarkable insecticide that destroys destructive worms with incredible efficiency.

Specially recommended for use on landscape trees and shrubs, ORTHENE kills gypsy moth larvae, bagworms, spring and fall cankerworms and, on oak trees, California oakworm larvae.

ORTHENE works two ways. It kills on contact, then penetrates plant tissue for continuing local residual control of chewing and sucking insects.

ORTHENE offers flexibility, too. It can be applied with any type of spray equipment, and no special protective clothing is required. Formulated as a soluble powder with a wetting agent, ORTHENE won't harm plants, won't leave unsightly residue.

At rates as low as 1/3 to 2/3 pound per 100 gallons of spray, ORTHENE Tree and Ornamental Spray delivers the kind of economical control you need.

AVOID ACCIDENTS: For safety, read the entire label including cautions. Use all chemicals only as directed.

Orthene doesn't give insects a fighting chance

Please send me more information on ORTHENE:
Name:
Company:
Street Address:
City________________________State_________Zip_________

Mail this coupon to: R. G. Gras
Chevron Chemical Co.
575 Market Street
San Francisco, CA 94105
TRIM COSTS YEAR 'ROUND!

Spring, summer, winter, fall. Ford tractors do it all!

You work all year long. Why expect less from your equipment? Ford tractors earn their keep all year round!

Selection? Ford offers you a fitting choice—24 different tractor models ranging from 13 to 163-horsepower. You get just the power you need without paying for horsepower you'll never use. And you can team most of these tractors with a wide range of mowing equipment, loaders, landscaping rakes, box scrapers, blades, backhoes, and a lot more.

Two Ford LCG tractors are designed with low center of gravity for maximum stability. For extra flotation, order wide, low-pressure tires.

Four new industrial tractors, 44 to 56 net engine hp, are engineered for tough duty. Optional three-point hitch with precision hydraulic control helps make these tractors a productive choice for a wide range of grounds maintenance work.

Eighteen all-purpose tractors range in power from 13 to 163-horsepower. And Ford offers the all-weather comfort of a factory-installed cab on every size all-purpose tractor from 32-hp up!

Five thrifty new 1000 Series tractors, from 13 to 30 engine hp, are included in the Ford all-purpose line. Standard equipment includes liquid-cooled diesel engines, three-point hitch and PTO. Optional front-wheel drive gives you extra traction for tough conditions.

Whatever tractor you select, Ford easy-care design simplifies regular maintenance. Fluid check and fill points are within easy reach. Easy-to-service dry air cleaners are used on most models.

Talk with your Ford tractor dealer. He's a specialist in industrial tractors and equipment and you can count on him for Ford parts and service. He's listed in the Yellow Pages under “Contractors' Equipment and Supplies,” “Tractor Dealers,” and/or “Lawn mowers.”
detected. Remember, weevils must feed about 4 weeks before they can produce eggs. Consequently, effectiveness of a single spray can be maximized and the number of sprays required to achieve excellent control can be reduced by allowing emergence to continue for 3 weeks before application. Some leaf notching will occur, but the weevils will be killed before they can reproduce.

If you are unable to determine when emergence begins in your area, you may be forced to make the first application based on calendar date. Emergence begins about the first of June in the northern half of New York, Ohio, and Illinois, and 3 weeks earlier in Philadelphia, Cincinnati, and St. Louis. In northern localities, first application should be made about June 20; in more southern areas about June 1.

Repeat Application Required. The second application should be applied 3 weeks after the first spray has lost its effectiveness. Some insecticides have been surprisingly persistent in our studies of black vine weevil control. However, this persistence may be associated with use of taxus, a plant with a thick waxy leaf surface. Consequently, until we know that a material persists more than a few days re-application should occur 3 weeks after first treatment (≈ 6 weeks after first adult emergence). If this spray interval is followed, a third application will be required 9-10 weeks after first application, because adults sometimes continue to emerge through early August.

State Registration. Growers and pest control operators in Ohio are taking advantage of a state registration for use of Guthion 50 WP at 0.5 pounds of active ingredient per 100 gallons of water to control black vine weevil adults. Guthion persists at least one week, so re-application is not required until 4 weeks after first application.

Ortho Division of Chevron Chemical Company is in the process of receiving a national label for Orthene Tree and Ornamental Spray for black vine weevil control. Orthene is as toxic as Guthion to black vine weevil adults. Orthene persists at least one week, so re-application is not required until 4 weeks after first application.

Borers

Borers comprise another damaging group of insect pests on trees and shrubs. Larvae destroy tissues in which food and water move, and they construct galleries that weaken trunks and branches. Furthermore, larvae operate beneath bark where they are invulnerable to insecticidal sprays. Consequently, borer control strategies must rely upon preventing larval establishment beneath bark.

Most borers are beetles or moths in the adult stage. Common beetle borers include, bronze birch borer, flatheaded appletree borer, red oak borer, and locust borer. Carpenterworm, lilac/ash borer, lesser peachtree and peachtree borers, and dogwood borer are moths when adults. Most authors who have studied borers have reported that trees in poor vigor are most susceptible to borer attack and damage.

Life Cycle and Seasonal History — Borers overwinter as larvae in galleries beneath tree bark. The following spring or summer they complete development, pupate, and emerge as adults, if there is one generation per year. Some borers require more than one year to complete development. Mating occurs soon after emergence, followed by egg laying on or in bark or on plants growing near host trees. Larvae hatch within 2-3 weeks and chew their way beneath the bark where they remain until mature.

Developing a Control Strategy — The most important and effective approach to minimizing borer infestation is to maintain vigorous trees. Consequently, cultural practices including watering, fertilization and pruning should be used to promote tree health. Furthermore, aphids, leafminers and similar pests should be controlled on trees like white birch that are prone to borer attack.
Bronze birch borer, Agrilus anxius Gory, attacks apparently healthy white birches and annually kills thousands of trees in the northern United States and southern Canada. This native insect attacks only unhealthy trees in the forest, but is apparently a primary pest of birch in nurseries and landscape plantings. There has been an unconfirmed report that Monarch birch is resistant to this pest; river birch is not attacked.

Lindane is the only insecticide registered for use against bronze birch borer. It should be applied when adults first begin emerging (about June 1 in northeastern Ohio) and repeated at least twice at 2 week intervals. All branches should be thoroughly covered, especially tree tops where bronze birch borer attacks first.

Birches should be irrigated every 10-14 days with about 1 inch (2.54 cm) of water during the summer when rainfall is low. They should also be fertilized annually with a lawn-type, high nitrogen fertilizer. Additionally, birch leafminer and birch aphids should be controlled to reduce chances of trees becoming predisposed to borer attack. Although these procedures may seem overwhelming and costly, the relative costs associated with maintaining healthy trees is low compared to replacing trees killed by borers.

If bronze birch borer is detected when only top branches are infested, corrective pruning and insecticidal sprays may be used to save the tree. All limbs distal to D-shaped emergence holes and sinuate larval galleries should be removed in May before adults emerge. Lindane should be applied in the aforementioned manner, beginning in late May or early June. Although heavily pruned birch will look unsightly for about 2 years, new branches will grow quickly and fill-in the canopy. This procedure has been accomplished with excellent results in Wooster, Ohio.

Clearwing Moth Borers. Last year I wrote an article for WTT explaining how sex pheromone traps can be used to detect presence of clearwing moth borers. When these traps are used according to directions, pest control operators, landscape managers, and others can determine which clearwing borers are present in your local area, when adults begin to emerge, and how long adults continue to emerge. This information can be used to plan ahead regarding need for borer sprays, pinpoint the time when the first spray should be applied, and determine if additional applications are necessary.

Chlorpyrifos (Dursban®) has provided excellent control of all clearwings against which it has been evaluated, including lilac/ash borer, peachtree borer, and lesser peachtree borer. It is probably equally effective against other clearwings, including dogwood borer, rhododendron borer, banded ash borer, and sequoia pitch moth. Although Dursban® is not labeled for use against these borers, I will be asking the U. S. Environmental Protection Agency to approve a general clearwing moth label for it on woody trees and shrubs. If EPA grants this request, the combination of clearwing borer traps and Dursban® should provide a pest management strategy useful for dramatically reducing damage by clearwing moth borers.

Developing Control Strategies — Landscape managers interested in developing Insect Pest Management strategies to optimize control of particular pests or groups of pests should consult their extension entomologist or appropriate publications. Make an effort to learn all you can about the pest's life cycle and seasonal history and the stage(s) most vulnerable to manipulation or control. Determine how tree management practices influence susceptibility or resistance to attack and damage. Learn how to detect presence of the stage that will key your chemical control efforts. Perhaps scouts will be employed in the future to monitor tree health and make prescriptions regarding the what, when, and how of tree management. After all, IPM and Insect Pest Management efforts are designed to improve overall tree health while reducing production, management, and environmental costs.

Footnotes
1 Consult your local county agent regarding insecticides registered for specific uses.
2 Chlordane may be used for control of black vine weevil until January 1, 1980.
3 Pit-fall traps are available from Carolina Biological Supply, Burlington, NC 27215.
4 Clearwing borer traps are available from CONREL, 110 A Street, Needham Heights, MA 02194
DERBY
Turf-Type Perennial Ryegrass

Setting a New Standard of Excellence

Derby is the dark green beauty which joined Manhattan and Pennfine on the "highly preferred list of ryegrasses." That was last year. Now Derby is setting a new standard of excellence.

In the eyes of many Golf Superintendents it reigns supreme among the turf-type ryegrasses today. Why? Because it performs! And a Superintendent knows that claims are great, but performance counts.

- Consistently performs better than other leading varieties from California to Florida
- Durable, dark green and has excellent mowing qualities
- Tolerates a variety of soils & responds rapidly to fertilization
- Germinates in a week (or even less) under ideal conditions
- Better-than-average heat and drought tolerance
- An adaptable and disease resistant cool-season turf grass
- An excellent record as a Southern winter grass
- Thrives when close-cut

INTERNATIONAL SEEDS, INC.
Dept. D • P.O. Box 168 • Halsey, Oregon 97348
(503) 369-2251 • TWX 510/590-0765
Heavy tree trimming can be an effective way to reduce pest bird populations according to biologists at Rice University in Houston, Tx., and Tennessee State University, Johnson City, Tn.

Heidi Good of Rice and Dan Johnson of Tennessee State found that trimming approximately one third of the tree canopy in areas where birds reach pest proportions caused birds to seek other roosting sites. This type of bird control is termed habitat modification.

Good and Johnson studied numerous blackbird species including grackles, cowbirds, and starlings. The birds roost in dense, bushy trees because they offer the most protection from weather and predators. Roosting (the term implies large numbers of birds) is thought to occur as a way for the birds to protect themselves from predators, to gain warmth and reduce exposure to weather, and to es-

Trimming about one third of the canopy of trees favored by birds for roosting causes them to seek other trees to roost in.
Forget all the claims. Banvel® Herbicides give you what you really need—exceptional weed control, without turf damage, at a more than competitive cost per acre. Banvel 4S gives you broad control of tough weeds, while Banvel® + 2,4-D provides an even wider spectrum of control, but see the label for certain grasses susceptible to 2,4-D. Both mix readily, and are stable in storage. And, Banvel Herbicides offer special translocation properties. This means they attack the entire weed both from the roots up and the leaves down.

Effective, yet economical weed control—that's what Banvel Herbicides can add to your turf care program. When all is said and done, isn't that just what you need?

Banvel Herbicides—Tough on Weeds, Easy on Turf.
Use Banvel Herbicides on your next broadleaf weed application. For more information:

Velsicol Chemical Corporation
341 East Ohio Street
Chicago, Illinois 60611

Before using any pesticide read the label.
Establish an information center. Any modification to these benefits of dense trees and the birds will seek better roosting sites.

Blackbirds are migratory songbirds and usually are protected by state wildlife regulations. However, losses to agricultural crops at winter roost sites as well as nuisance and health problems caused by their large numbers along migratory pathways make control necessary. Other methods of non-chemical control tried are loud explosive noises and recorded distress calls. In certain emergency situations, detergent-based products to cause overexposure were sprayed on birds at roost sites.

The biggest concern is in urban areas near agricultural croplands where the birds gather in huge numbers.

Good and Johnson noticed that the birds have favorite trees in a grove. Apparently, leader birds select favorites upon arrival. Directing pruning efforts at these trees is the object.

Pruning, or removal in some cases, of these favorite trees should be completed prior to arrival of the birds. Trimming was needed each year for the favorite trees. But, according to Good and Johnson, only enough trees should be removed or pruned to create an open space within the favored site. "Elimination or heavy trimming of favorite trees should discourage birds from roosting in nearby associated trees.

Good and Johnson mentioned one case where dense bushes near an apartment building were pruned back to eliminate a sparrow roost.

The key to control by habitat modification is to find the favorite trees and bushes and prune or remove them. Trimming all trees and bushes should be unnecessary if attention is paid to the favorite trees each year. WTT

Atrinal

Systemic Plant Growth Regulator

DISTRIBUTORS

Agrotec, Inc.
Salisbury, MD
(301) 749-8496

Joe Berger & Co.
Renton, WA
(206) 235-4510

Cassco
Montgomery, AL
(205) 272-2140

Moyer Chemical Company
San Jose, CA
(408) 297-8088

Santa Ana, CA
(714) 549-2871

Oregon Horticultural Supply Co.
Portland, OR
(503) 232-7138

Southern Agricultural Insecticides, Inc.
Palmetto, FL
(813) 722-3285

Hendersonville, NC
(704) 692-2233

Boone, NC
(704) 264-8843

Target Chemical Company
Cerritos, CA
(213) 865-9541
(714) 821-9020

Phoenix, AZ
(602) 272-6867

San Jose, CA
(408) 293-6032

Regal Chemical Company
Atlanta, GA
(404) 394-0475

Knoxville, TN
(615) 577-5443

Contact one of these Atrinal distributors or write—

Maag Agrochemicals Marketing
Hoffmann-La Roche Inc.
Nutley, N.J. 07110