Improved turf quality for experimental plots on the left foreground are due to sand topdressing applied the previous year. Plots are a mixture of warm and cool season grasses.

the topdressing of turfgrasses. Engel (1967) reported on a ten-year study where topdressing was used in three out of ten treatments for thatch control.

He used a sandy loam topdressing containing 8 to 12 percent organic matter. Topdressing — containing treatments in this study were associated with reduced thatch, improved quality, reduced amounts of Poa annua, improved infiltration and freedom from dry spots.

Rice (1964) included topdressing in a relatively short term study he did on Penncross creeping bentgrass. He compared a sand, a loam and a loam-sand mixture with no topdressing. Skogley (1976) reporting on this thesis noted that the loam and the loam-sand mixtures produced the highest quality scores. Sand resulted in inferior quality scores in the spring but was better than no topdressing. In July of each year only the no topdressing treatment was rated inferior. Roots were more plentiful under topdressed turf, and in a fall sampling only sand topdressing had significantly more roots below two inches. Sand was found to be most effective in reducing the organic matter accumulation in the surface inch of soil.

Skogley (1975) also reported effects of topdressing on management of velvet bentgrass. Using a soil-sand mix he reports topdressing seven times per year resulted in reduced organic matter and improved turf quality score averages two out of four years when compared to two topdressings per year but not when compared to four topdressings.

Madison (1974), in several similar articles suggested topdressing with sand containing fertilizers and pesticides as “an alternative method of greens management”. Thompson and Ward (1965 and 1966) report topdressing to be the management method which best reduces thatch under bermudagrass. Both Cole (1975), Madison and myself suggest that topdressing will reduce disease problems. Engel, however, found more dollarspot associated with topdressed bentgrass plots than untopped dressed plots.

Most, but not all, writers on the subject favor topdressing. With those writers that do favor regular topdressing there is disagreement as to what should be used for topdressing material. Madison recommends sand and the USGA Greens Section appears to be leaning in this direction. Most of the old superintendents and most of the researchers above use or used a sandy loam, often with medium to high organic content. In the past, recommended practices were to use a material of Continued on page 32
TOPDRESSING WITH SAND

the same composition as your soil. But if you want to improve the soil, most of you would want a sandier mix which would hold promise of better drainage. So why not topdress with sand? I personally see no good reason for including organic matter in a topdress mix when reducing thatch accumulation (organic matter) is a principal goal. I would feel more comfortable in recommending straight sand topdressing if there were some research results showing that it was indeed better than a loamy sand.

A straight sand topdressing does offer advantages over a topdressing mix. It should be a lot cheaper, and secondly, one should be better able to spread it cheaply and easily with large cyclone spreaders. If you do go the straight sand route, I suggest you follow Madison's advice. Use sand less than 1mm in size. This gives you a material which will work easily into the surface mat and thus not interfere with mowers or golfers.

I agree with Madison in that the first couple of sand applications should go on after a heavy, deep aerification in which the cores are removed before topdressing. The sand should then be worked down into the holes so that there will be a transition zone of sand and old soil rather than a direct layer of sand on soil. If the soil below is extremely impervious you can still create a "Dagwood sandwich" of alternate layers of sand, thatch, calcined clay and other topdressing materials. Layers impede water, air and roots. Regardless of what you decide to do about topdressing, avoid layers of fine materials on coarse materials. Layers may cost you your turf and also your job.

Also I suggest that you topdress more frequently when creeping bentgrass stolons are growing the most. The peak growth period for stolon growth is the last half of June. Therefore, topdressing should be most frequent in the May through July period.

Holman Griffin recently wrote, "A good topdressing material (properly analyzed) can eventually modify or replace the poor soil to a depth which is adequate to give your green a new lease on life and provide a manageable situation." Properly done, topdressing can be beneficial to creeping bentgrass. Improperly done, it may cause you many more problems than it is worth.

I suggest you read the articles I mentioned by Engel, Madison, Skogley, Thompson and Ward before beginning on a topdressing program or before changing to a straight sand topdressing.

Dr. Douglas T. Hawes is assistant professor, department of agronomy, at the University of Maryland College of Agriculture at College Park.

Bibliography on Topdressing —

Reubens grass indicated for revegetation

Some of the toughest territories for revegetation in the cool season areas of the states and Canada are mining areas.

The Jacklin Seed Co. has researched a substantial number of grasses that have good revegetation characteristics. One of these, Reubens Canada bluegrass, was tested in metal mining and coal stripping areas. Results were significantly encouraging to both mining people as well as professionals who specialize in contracting for reseeding freeway cuts, county road projects, pipeline rights-of-way and other construction.

Reubens Canada bluegrass has an excellent tolerance factor that permits it to germinate faster and to establish a better density under low fertility conditions because of its aggressive rhizome growth and tiller development. It also persists in extremely dry, barren soils and regrows quickly after a fire.

Reubens is best suited for all cool season areas of Canada and the United States as well as portions of the warmer transition zones. Following establishment, Reubens survives severe extremes of cold and dry conditions.

Additional tests in progress indicate it could be included in most plans for revegetating subsoils exposed by telephone, power line and pipeline right-of-ways, ski slopes, sanitary landfills, backfilled quarries, stripmines, roadway cuts, mine tailing, earthen dams, dikes and burned areas.

Reubens appears to be a significant find in the continuing search for vegetation that can withstand poverty soils, lashing winds, and gully-washed rains, droughts and the challenge of erosion control.
Better live oaks grown with new method

A novel method of propagating the live oak tree without using seeds has been developed by horticulturists at the Texas Agricultural Experiment Station (TAES).

The technique permits live oak growers to select trees for uniformity and provide superior trees for the public, according to Dr. David L. Morgan, horticulturist with the Experiment Station at Dallas.

Desirable characteristics in live oaks which could be selected and propagated include tree shape, leaf color, leaf retention in winter, increased growth rate, drought tolerance, and possibly insect and disease resistance.

The implications of landscape design with uniform plant materials are readily obvious to growers and landscape architects, Morgan points out. Instead of growing the oaks from seed, cuttings are multiplied from selected trees. This system, called asexual propagation, gives consistently high quality, uniform trees.

At present, nurserymen grow the live oak from seed. The problem with this method is that the live oak is wind pollinated, and seed from a beautiful spreading oak may also get half of its characteristics from a nearby tree that's weak, diseased, and ugly.

In the past three years, Morgan has successfully propagated native live oaks from tip-stem cuttings. The cuttings are taken from young, select trees in the spring-summer growing season, treated with a chemical hormone, and kept in a high humidity chamber at the Experiment Station at Dallas.

Cuttings form roots in 12 weeks and when grown should be like the parent tree.

An example of the advantage of this method is the propagation of trees resistant to the mealy-oak gall. Morgan and two Experiment Station entomologists have discovered trees with apparent gall resistance. Such trees, if propagated through stem cuttings, would retain their resistance to galls.

THE SOD GROWERS WISEST INVESTMENT!

THE NEW BROUWER MODEL A3A SOD HARVESTER

NEW IMPROVED FEATURES INCLUDE —

★ Variable Cut-off Drive (Instantly adjusts to desired length)
★ Split Connecting Rods (Quick 'V' Belt replacement)
★ Safety Guards (Head Guard becomes stand for blade changes etc.)
★ Many other improved Service & Production features
★ Variable cut-off drive & split con rods available for previous models.

FOR FULL DETAILED INFORMATION OF THE NEW BROUWER A3A, or PARTS CONVERSION KITS — CALL OR WRITE

BROUWER TURF EQUIPMENT LTD.

MANUFACTURER & DISTRIBUTOR

R. R. No. 1, Keswick, Ontario L4P 3C8, Phone: (416) 476-4311

WEEDS.TREES & TURF/MAY 1977 34

Circle 145 on free information card
...sod production your bag? Then Touchdown Kentucky Bluegrass is for you. You want a Bluegrass Blend that's fast starting and has the rhizomes to make a tough solid, quickly marketable turf. Touchdown germinates fast and continues growing, developing rhizomes and side shoots to quickly form a mature turf. High capacity harvesters or rough 'n ready fieldhands—you can minimize waste and turn-around production time with Touchdown Kentucky Bluegrass.

And Touchdown will cost less in other ways too—less fertilizer. Tom Rewinski, Course Superintendent at the National Golf Links of America who discovered the variety reports "Touchdown, growing on the original area of discovery holds great quality, stays free of disease and continues spreading at nitrogen rates I figure to be about half that required by Merion."

Testing of Touchdown was initiated at Rutgers University by Dr. C. R. Funk. There it continues to rate tops among Elite varieties. It has shown good resistance to Stripe Smut, Leaf Spot and other major turf diseases. In broad testing it exhibits fast spring green up, tolerance to low mowing heights and significantly improved turf density and rhizome development.

Professional Quality, Certified seed of Touchdown Kentucky Bluegrass is now available. Contact your distributor and try some.
Newly elected officers of the National Arborist Association are: Front row, from left, Kenneth B. Kirk, first vice president, Gerald E. Farrens, president, Larry Holkenborg, second vice president; Second row, from left, Bruce M. Walgren, secretary, Walter E. Money, treasurer, Boyd Haney, past president; Top row, from left, Erik H. Haupt, George P. Tyler, Earl J. Sinnamon, and Lee L. Lesh, directors.

The Billy Goat suction sweeper is the economical and versatile way to put litter in its place – it’s a machine for all reasons.

Whether the job is to eliminate turf litter or industrial debris, the Big Wheel gets the job done quickly and thoroughly. Built for rugged use, the BT-70 works as easily on turf as it does on pavement. The 8 HP engine provides superior suction power and the BT-70 is agile enough to get it all.

You’ll like the way they eat ‘n run.

For more information, call or write:

Billy Goat Industries, Inc.

P.O. Box 308—1803 South Jefferson

Lee's Summit, MO 64063—(816) 524-9666

FSC 37 Contract Number GS-07S-01395

Circle 157 on free information card

HI-RANGER

PRODUCTIVE

Proven by owners for line clearing efficiency, and preferred by operators for precise tower control and bucket positioning. HI-RANGERS are No. 1 in utility and contractor preference for insulated aerial man-lifts. Patented HI-RANGER “3D” one-hand control, hydraulic tool line options, chip boxes, and other features may benefit your operations. Write for “4F-5F CATALOG”.

SINCE 1950

HI-RANGER

MOBILE AERIAL TOWERS, INC./Dept. N/2314 BOWSER AVE./FORT WAYNE, IND. 46803

Circle 138 on free information card
How to make your board see the value of new turf equipment.

Point #1: The Duffer Demands More.

Today’s golfer is more sophisticated than ever before. He has seen, and many times played, some of the finest courses in the world. He recognizes the value of a good course. And if yours is sub-par, he’ll go elsewhere.

With this more sophisticated golfer comes the need for more sophisticated golf course maintenance. Heavy player traffic has increased the work required to keep the turf in top condition. So jobs that were once optional are now mandatory. Where spiking a green used to be sufficient, today it also needs deep aeration.

All this dictates the use of specialized equipment that wasn’t available ten or even five years ago. Equipment that will enable you to build and maintain a top-flight course, and help avoid special turf problems that could prove extremely costly.

Point #2: Machines Do More.

In the past decade, the price of labor has tripled. The same number of men must do more work in less time to give you the same value for each labor dollar invested. Mechanized equipment allows you to trim hundreds of unnecessary man-hours. One man can now cut more sod in an hour than six men used to cut in six hours. Or that same man can aerate 18 greens in a few hours instead of a few days.

New engineering concepts coupled with precision machinery means he’ll do a consistently good job. You get better results and fewer occasions when a job must be redone.

And your turf equipment is depreciable; something your labor is not. You get an accounting break over a period of years. At the end, it’s like owning a piece of free machinery. One that will continue to save you money long after you’ve paid for it.

Which brings us to the third point.

Equipment life should be a prime consideration when you select a manufacturer. The longer a machine works, the more it does, and the less maintenance it requires, the better your investment. And here’s where we’d like to put in a little plug for Cushman and Ryan turf equipment.

Both lines of machinery are built to last... and last. It’s not unusual to see a piece of Cushman or Ryan equipment still doing it’s daily chores after ten or fifteen years of use. We believe the idea of “planned obsolescence” should be obsolete.

But performance is just as important as longevity. A Cushman Turf-Truckster and its accessories give you the capabilities to transport, spray, spike, dump, aerate, and top dress... all from one power source.

Ryan offers a machine for almost every turf task. Equipment that does a better job, in less time, and with a minimum of maintenance. For over 30 years, all Ryan equipment has been built with three goals in mind: quality, performance, and innovation.

If “A Day With the Board” is in your future, we’d like the opportunity to tell you more about the full line of Cushman and Ryan Turf equipment. Write to us and we’ll send you our catalogs, full of detailed product information. Information that may help you open a few eyes to the value of new turf equipment.
Unrivaled control of
Shepherdspurse Pigweed
Spotted Spurge Plantain
Common Chickweed Heal-AI
Carpet Weed Purslane
Lambsquarter Knotweed
Mouse-Ear Chickweed Henbit
Sheep Sorrel Ragweed
Morning Glory Peppergrass
Clover Yarrow
Black Medic Smartweed
Ground Ivy
Dandelion Curled Dock
Bindweed Wild Garlic
Bedstraw Thistle
Dichondra Wild Onion
Kills these weeds, and others:

Learn why Trimec efficiency
gives you unparalleled economy:

TRIMEC today is the standard in weed control, offering unprecedented benefits.

Perhaps you know about its efficiency. What you may not appreciate is its economy. Actually, they’re twin benefits — both remarkable, both from a common source. Here’s the story:

Synergism is the word frequently used to describe a truism — that certain chemicals combined in certain ways create a multiplying effect greater than the sum of their parts. Synergism is basic to Trimec’s renowned success.

Trimec’s active ingredients — 2, 4-D, MCP and Dicamba — are synergistic. It delivers great wallop with less chemicals. It’s hard working. And that’s the basis for yet another advantage —

Trimec Economy
Comparisons show that Trimec costs less per acre for weed-free turf than any other herbicide. You use fewer gallons ... you seldom need retreatment ... your total cost is less ... period.

Such economy/efficiency alone is reason enough to make Trimec your herbicide. And we haven’t mentioned the third great advantage —

Authorized Distributors
Gordon Professional Turf Products

ALABAMA
Birmingham • Nova Company, Inc.
Montgomery • Tecco, Inc.

ARIZONA
Phoenix • Westmead Chemical Co.
Tucson • Copper State Chemical Co.

ARKANSAS
Alexandria • Capital Equipment Co.

CALIFORNIA
Anaheim • Eagle Chemical Co.
Balboa • North-A-West Co.
Cathedral City • Butler Mill, Inc.
Castetter • Target Chemical Company
Chula Vista • Willer-Ellis Co.

COLORADO
Denver • Custom Chemicals, Inc.
Englewood • Pacesetter, Inc.
Grand Junction • Miller Chemical, Inc.

CONNECTICUT
Branford • Hawke Turf Supply
East Lyme • Old Fox Chemical Inc.

FLORIDA
Boca Raton • Cochrin Co.
Deerfield Beach • Wave Chemical Co.

ILLINOIS
Charleston • Seth Chemical Co.
Chicago • Mid-Continent Chemical Co.

INDIANA
Fort Wayne • Farnworth Chemical Co.
Indianapolis • Star Chemical Co.

IOWA
Des Moines • Midwest Turf Supply

KANSAS
Kansas City • Midwest Turf Supply

KENTUCKY
Lexington • Turf Supply Co.
Louisville • The Label Co.

MASSACHUSETTS
Cambridge • Northern Chemical Co.

MICHIGAN
Detroit • Miller Chemical, Inc.

MINNESOTA
Minneapolis • Midland Turf Supply

MONTANA
Missoula • Midland Turf Supply

NEBRASKA
Lincoln • North Central Turf Supply

NEW YORK
Buffalo • Miller Chemical, Inc.

NEW JERSEY
Cedar Grove • Miller Chemical, Inc.

NEW MEXICO
Santa Fe • Miller Chemical, Inc.

NEW YORK
Albany • Miller Chemical, Inc.

OHIO
Columbus • Miller Chemical, Inc.

OKLAHOMA
Oklahoma City • Miller Chemical, Inc.

OREGON
Portland • Miller Chemical, Inc.

PENNSYLVANIA
Philadelphia • Miller Chemical, Inc.

RHODE ISLAND
Providence • Miller Chemical, Inc.

SOUTH CAROLINA
Columbia • Miller Chemical, Inc.

TENNESSEE
Nashville • Miller Chemical, Inc.

TEXAS
Houston • Miller Chemical, Inc.

UTAH
Salt Lake City • Miller Chemical, Inc.

VERMONT
Burlington • Miller Chemical, Inc.

WASHINGTON
Seattle • Miller Chemical, Inc.

WISCONSIN
Milwaukee • Miller Chemical, Inc.

WYOMING
Cheyenne • Miller Chemical, Inc.

Trimec is a registered trademark of PBI-GORDON Corporation, U.S. Patent No. 3,284,186
Trimec is trouble-free

The same efficiency that makes Trimec less costly, makes it trouble-free. Puts less chemicals in the soil, so there is less root absorption by trees, flowers and ornamentals. Minimizes "drift." Pampers tender grasses.

- Broadleaf weeds
- Minimum hazard from root absorption
- No vapor action after application
- Effective weed control in wide temperature range
- Unique formula overcomes water hardness problems
- Treated areas may be seeded within two weeks
- Non-flammable and non-corrosive in use
- Product stable several years above 32° F.

Biodegradable: friendly to the environment

"We've used Trimec for 3 years with good results. We've found it trouble-free and efficient. The all-in-one formula stops on-site mixing errors, and that's important."

C.M. Dailey, Pres.
Liqui-Green Lawn Care, Inc.
Peoria, Ill.

“We used to use separate herbicides to control clover and broadleaf weeds. Now Trimec does the entire job and, in addition, gets such tough weeds as Filaree and Mallow. Trimec saves us money and does an outstanding job. C.M. Dailey has to be excellent — we supply it to the Camelia Bowl.”

H. B. Michelson, owner
Michelson’s Turf Grass Nursery
Elk Grove, California

If you demand professional results, use the professional's herbicide — TRIMEC. It sets the standard.

For information and prices, see your local authorized TRIMEC distributor

GORDON'S
PROFESSIONAL TURF PRODUCTS

Circle 143 on free information card

MAY 1977/WEEDS TREES & TURF
Aerial photography useful for brush control

Ecological changes following brush control were studied on two honey mesquite infested deep hardland range sites in north central Texas by the Texas Agricultural Experiment Station.

In the study, low altitude color infrared aerial photography was used to document the initial effects of brush control on secondary plant successions. The first aerial photo mission was flown prior to treatment in the spring of 1973 and has continued to be taken each spring and fall through 1976.

Supportive field data were collected in conjunction with each photo mission. Together, the field and aerial photo measures provided information on plant response to brush control which could not have been available using either technique alone. For more information, telephone K. C. McDaniel, J. H. Brock and R. H. Hass, College Station, Tex., 713-845-7012.

Maybe we'll cure cancer without your help, but don't bet your life on it.

The way it stands today, one American out of four will someday have cancer. That means it will strike some member in two out of three American families.

To change those statistics we have to bring the promise of research to everyday reality. And to expand our detection program and techniques. And that takes money. Lots of money. Money we won't have—unless you help us.

The American Cancer Society will never give up the fight. Maybe we'll find the answers even without your help. But don't bet your life on it.

American Cancer Society.