"I like to send trees into winter in good, healthy condition. That's why I feed in the fall with Jobe's Spikes."

"Last winter, we had three weeks when the temperature was never above 10 degrees. Weather like that is rough on trees, so I believe in sending them into winter in the best possible condition. We use Jobe's Spikes on everything in the fall...willows, evergreens, maples, all our trees and shrubs."

Frank Lamphier, Superintendent
Aspetuck Valley Country Club, Weston, Connecticut

Jobe's makes good fall or winter fill-in work.
When work slacks off, it's time to get busy with Jobe's® Tree and Shrub Spikes. It helps eliminate one chore from the busy spring-summer months, and it's good for the trees.

Roots grow in the fall, so feed them in the fall.
Feeding with Jobe's Spikes in the fall while roots are growing helps overcome weakness brought on by summer heat, lack of moisture and ravages of insects. Helps trees get through winter in shape for a strong start in the spring. Just pound Jobe's Spikes into moist ground at the dripline at the rate of 1 per inch of trunk diameter.

Frank Lamphier says, "Jobe's Spikes are long lasting. When we use them in the fall, the trees get nourishment for the winter. Then, when spring rains start, the balance of the fertilizer is released to shoot them off for spring. We think one Spike does more good than one to two pounds of ordinary fertilizer."

"Jobe's Spikes work!"
"We started 12-inch pine seedlings 4 years ago, and now they're 6 to 8 feet tall. We fed them at transplanting with Jobe's Spikes and have fed them ever since with Jobe's. Growth like that really sold me." University leaching studies have shown that Jobe's Spikes are as effective as drilled fertilizer. Rainwater carries nutrients from the Spike to the root zone to a depth of at least 24 inches. Jobe's Spikes are better than surface-applied fertilizer. You don't worry about run-off losses or about burning turf or causing excessive turf growth around trees.

"You can just tap them in with a hammer in moist ground."
A hammer is all the equipment you need with Jobe's Spikes. No bulky auger to carry from job to job. Nothing to break. No maintenance costs. No fertilizer bags to tear or spill.

Jobe's Spikes are a pre-measured amount of 16-8-8 fertilizer formed into a rigid, easy-to-drive spike.

"Jobe's Spikes don't take much space, or time."
"I can send a man out on a 3-wheel cart with enough Spikes to last all day. "Working fast is important because I have just 7 men, and only 4 year-round. We're working on a major landscape program with trees and shrubs to improve the looks of the course. Jobe's Spikes really save us time."

Jobe's Evergreen Spikes 12-6-8 and Fruit Tree Spikes 5-15-15 are now available in bulk packs. They can be combined for shipping with Tree and Shrub Spikes.

Call your local Jobe's distributor or order direct. $30 per case (105 Spikes) prepaid, 5 case minimum. 15 or more cases, $25 per case.
Robert J. Nicolazzi has been appointed general marketing manager for Ford Motor Company's worldwide tractor operations. Nicolazzi joined the company in 1963 as a purchasing coordinator. He has held numerous positions in planning, marketing, purchasing and sales at the company's European tractor operations and at Ford's North American Tractor & Implement Operations. He holds a degree in business administration from the University of Notre Dame.

Diamond Shamrock announces three new appointments in the agricultural chemicals division. Doctors Myron Bliss Jr. and Gary L. Eilrich have been named managers of field development and L. F. Cherry has been named president and manager of system engineering.

Robert M. Morgan was graduated from the Oregon State University School of Agriculture.

Diamond Shamrock announces three new appointments in the agricultural chemicals division. Doctors Myron Bliss Jr. and Gary L. Eilrich have been named managers of field development and L. F. Cherry has been named manager of system engineering.

Monsanto Agricultural Products Company has named Daniel M. Donahue Roundup herbicide industrial sales representative for the southeastern United States. Donahue joined the company in 1972 as a sales representative for the company's agricultural division. His most recent prior position was merchandising specialist. Ted Ramirez joins the company as a field sales representative serving 41 counties in southern Louisiana. He comes from the U.S. Department of Agriculture Statistical Reporting Service.

Joining the Toro Company sales staff as marketing representative for the Pacific Northwest is Robert M. Morgan. Morgan, a native of Portland, Ore., and a former president of the Sprinkler Irrigation Assn., has over 40 years in the sprinkler irrigation and farm equipment areas. He
Good things come in small packages.

Whether you purchase seedlings for permanent planting or prefer to grow your own stock for later transplanting, you'll be impressed with our wide variety of fir, pine and spruce seedlings. Northern-grown for hardiness, they've all been personally cared for by the owner to assure that you receive only the very best.

As a businessman, you'll appreciate our dependability almost as much as our reasonable prices.

Write, wire or call us today for complete details and pricing.

CANALE'S NURSERY

Department 08-11
Sheloea (Indiana County), Pennsylvania 15774
412/354-2801
WHY A FERTILIZER BURNS

by William Knoop

In the development of a nitrogen nutrition program, the turfgrass manager has the choice of applying soluble nitrogen or slowly soluble nitrogen, or applying a fertilizer that contains a combination of soluble and slowly soluble nitrogen sources. As a result of higher fertilizer prices and supply shortages during the past few years, turfgrass managers have tended to use more soluble nitrogen fertilizers than before.

One of the characteristics of soluble nitrogen fertilizers is their increased tendency to "burn" turfgrasses. The risk of fertilizer burn is one of the reasons why many turfgrass managers have tended to use nitrogen fertilizers that contain a high percentage of slowly soluble nitrogen rather than the totally soluble nitrogen fertilizers.

Soluble nitrogen fertilizers, if applied properly, can be just as effective (as a slowly soluble nitrogen source) in providing the turfgrass plant with the nitrogen it requires. The risk of burn may be minimized if the factors that contribute to a burn are understood.

Fertilizers contain salts. These salts are not unlike table salt except that they contain various plant nutrients. When a salt is added to water the osmotic pressure of the solution is increased. Osmotic pressure is, in a sense, a measure of how tightly water is held in a solution. When a fertilizer, either as a solid or a liquid, is applied to the surface of the soil, the fertilizer salts must sooner or later enter and become a part of the soil solution before the nutrients can enter the roots and be used by the turfgrass plant. The increase in the osmotic pressure of the soil solution associated with the application of a fertilizer may determine whether the plant will survive or will die from a fertilizer burn.

For a plant's root system to take in water, the water must pass through a root cell membrane. Water can pass through this membrane only when the osmotic pressure of the solution inside the cell is higher than the osmotic pressure of the soil solution outside the cell. Water moves from a solution with low osmotic pressure into a solution with higher osmotic pressure. If the osmotic pressure of the soil solution becomes higher than that of the solution inside the cell, water cannot enter the cell and may even move out of it. This results in the death of the cell. When root cells die, the whole plant may die. The end result is termed a "fertilizer burn."

An understanding of the potential salt effect of the various fertilizer materials can help prevent possible fertilizer burn. Salt index values are a measure of a material's relative tendency to increase the osmotic pressure of the soil solution as compared with the increase caused by an equal weight of sodium nitrate. The salt index of sodium nitrate is 100. The higher the salt index, the greater the potential of a material to increase the osmotic pressure of the soil solution and thus the potential for burn. As indicated in Tables 1 and 2, there are wide differences in the salt indexes of those fertilizer materials used.

Note that Table 1 also lists the salt indexes of selected nitrogen fertilizers in terms of single units of N. Nitrogen is applied on a unit basis (i.e., pounds per 1000 sq. ft.). Although a material such as ammonium sulfate has a lower salt index than urea, the salt effect of applied urea is lower because it contains a higher percentage of N.

The potential for burn is not totally dependent on the salt index of the fertilizer material. The moisture status of the soil and of the turfgrass plant is also important. If the level of the soil solution is low, a fertilizer will have a greater effect on increasing the osmotic pressure of the soil solution. When a fertilizer is "watered in," the volume of the soil solution increases and thus the osmotic pressure of the soil solution is reduced. In well drained soils, however, heavy applications of water, while having the beneficial effect of reducing the osmotic pressure of the soil solution, may also have the harmful effect of leaching nutrients past the root system.

The water status of the plant is affected by both the air temperature and the humidity, which is the amount of water in the air surrounding the plant. These factors to a large degree affect the plant's water requirements. As the air temperature increases, the plant requires more water and as the humidity decreases the plant requires more water. As the osmotic pressure of the soil solution increases, less and less water is available to the plant. Watering in a fertilizer material may increase the water available to the root system by decreasing the osmotic pressure of the soil solution, but may also aid in reducing the plant's water requirements by cooling the plant and increasing the humidity of the plant's microenvironment.

Soluble fertilizer materials may be used at any time of the year with minimal risk of damage to turf if the factors that contribute to a burn are understood. The salt index of a fertilizer material is extremely important, especially when the fertilizer is highly soluble. The rates of application must be lower when a fertilizer with a high salt index is used, basically because of the salt effect.

Fertilizers with a low salt index should be used when soil test results indicate the presence of excessive levels of soluble salts in the soil.

Mr. Knoop is assistant professor of horticulture at Iowa State University.
TABLE 1. Salt Index Values for commonly used nitrogen fertilizer materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Approx. % N</th>
<th>Salt Index</th>
<th>Salt Index per Unit of N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium Nitrate</td>
<td>33</td>
<td>105</td>
<td>3.2</td>
</tr>
<tr>
<td>Ammonium Sulfate</td>
<td>21</td>
<td>69</td>
<td>3.3</td>
</tr>
<tr>
<td>Calcium Nitrate</td>
<td>12</td>
<td>53</td>
<td>4.4</td>
</tr>
<tr>
<td>I.B.D.U.</td>
<td>31</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>Potassium Nitrate</td>
<td>14</td>
<td>74</td>
<td>5.3</td>
</tr>
<tr>
<td>Natural Organic</td>
<td>5</td>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>UF</td>
<td>38</td>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>Urea</td>
<td>45</td>
<td>75</td>
<td>1.7</td>
</tr>
</tbody>
</table>

TABLE 2. Salt Index values for other commonly used materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Approx. Nutrient Level</th>
<th>Salt Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superphosphate</td>
<td>20% P₂O₅</td>
<td>8</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>60% K₂O</td>
<td>114</td>
</tr>
<tr>
<td>Potassium Sulfate</td>
<td>50% K₂O</td>
<td>46</td>
</tr>
<tr>
<td>Dolomite</td>
<td>30% CaO 20% MgO</td>
<td>1</td>
</tr>
<tr>
<td>Gypsum</td>
<td>33% CaO</td>
<td>8</td>
</tr>
<tr>
<td>Epsom Salts</td>
<td>16% MgO</td>
<td>44</td>
</tr>
</tbody>
</table>

WHAT’S DIFFERENT ABOUT THIS CHAIN SAW IS WHAT MAKES THE DIFFERENCE.

1. **It’s a Brush Cutter.** The same engine that powers our lightweight pro saw takes the shakes out of brush cutting with our patented Anti-Vibration System. The world’s first.
2. **It’s a Poly Cut.** A quick change of the blade lets you safely trim around the close places with flexible nylon cutters.
3. **It’s an Earth Auger.** It’ll work for one man or two in any position you want for posthole or horizontal digging.
4. **It’s a Cutquik Saw.** Streamlined design and super speed makes for easy cutting through most anything.
5. **It’s a Hedge Trimmer.** From a chain saw to a portable hedge trimmer in less time than it would take to drag out the cord for a less powerful electric model.

The Stihl 020AVP. It’s one powerhead and six tools that’ll make a big difference in your productivity. And a small difference in your budget.

For more information, write to Stihl Incorporated, Department I.P. P.O. Box 5514, Virginia Beach, Va. 23455

Circle 109 on free information card
“Green Team” helps customer

Ted Collins, president of the Victor-based tree and landscape company bearing his name, has begun a new policy of giving employees a greater voice in company management.

With the formation of “The Green Team,” the sales, production and office staffs appoint representatives to meet regularly with Collins to air differences, provide suggestions for smoother operation of their departments, and keep Collins in tune with employee needs and desires.

“This is not,” says Collins, “A squaring off of management and employees. Department heads and other company officers are not invited to Green Team meetings. It’s simply the team and me around a table. Many of their suggestions have been implemented, others are under further consideration.

“The real benefactor of this management system is our customer. Every suggestion made so far by The Green Team has been for better customer service. We in management are often removed from direct contact with the customers, whereas our Green Team members are in constant touch with the public, so their advice has been very service oriented.

“Of course, this works both ways,” Collins continued, “Green Team meetings give me an opportunity to candidly discuss management’s views without it sounding like an edict. And, when a situation is thoroughly reviewed and team members know the reasons for our position, they can better communicate that to their peers.”
Take a knife and cut out a small section of turf. Then take a look at the brown, dead material over the top of the soil around the blades of grass. This is thatch. And it may be choking your grass.

A small amount of thatch is desirable to protect tender shoots from the sun and hold moisture in the soil. But if you have more than a one-half inch build-up, it can keep air, water, and fertilizer from reaching the root zone.

That's when you need the Ryan Ren-O-Thin IV. Its 7-hp engine easily handles deeply embedded thatch. The floating front axle keeps the blade height even and the spring-loaded reel clutch control on the handlebar gives you fingertip control.

The Ren-O-Thin IV not only dethatches, it also thins running stem grasses, cuts out low-growing weeds, and leaves tiny slits to trap water and fertilizer. And it catches what it rakes in a 6-bushel catcher attachment. So dethatching is a once-over job.

Take a knife to your grass. And if you've got a thatch problem, give your turf room to breathe with the Ren-O-Thin IV.

Write for your Ryan catalog today.
Grading and shaping for erosion control and rapid vegetative establishment

Erosion control of lands in humid areas drastically disturbed by coal surface mining is strongly influenced by four principal factors: climate, soils, vegetation, and topography. The climate for any given region is fixed. Man's control over climate is very limited. But he can schedule sensitive field operations around the local weather patterns. Vegetation is the most flexible of these factors. Plant materials are available for almost any situation in the humid regions of the United States, provided their establishment is supported by known conservation measures and if the soils and topography are suitable.

Objectives

The basic objective of an erosion control program for a surface mined area is to stabilize the disturbed area. When the area is stabilized, the volume of sediment generated will be minimized and off-site damage reduced. Therefore the principal objective of grading and shaping operations should be to manipulate the soil and topography to assist in the control of surface runoff, thus reducing erosion and improving effective vegetative establishment.

In addition, there are several secondary objectives. The grading and shaping features of an erosion control program must also be compatible with the land use planned for the area after mining and reclamation are completed. The soil and topography required should be identified before making the grading plan.

Plans for grading and shaping should include making full use of the materials or land resources at the site. Large rocks and boulders can be buried or they can be placed on toeslopes to make use of their properties of resistance to weathering. If durable, they can be used as rip-rap for stabilizing waterways or as special features on recreation sites. Brush and other woody materials can be windrowed at the toe of fills and used as a partial filter. They can be fed through a woodchipper and used as a mulch for soil stabilization. The potential use of all materials at the site should be considered in preparing the min-
Soil Characteristics

Soil materials resulting from mining have physical and chemical characteristics unique to each site. The physical-chemical characteristics of the soil materials at a particular site must be known and considered in planning the shaping and grading operations. The characteristics of such soils that most influence the stated objectives include the toxicity or potential toxicity of the material and the capacity to hold water.

Potentially toxic acid-forming material can be handled in two ways. It can be buried in the surface mine pit or it can be neutralized by adding lime. If the toxic material is identified, segregated, and stockpiled, it can easily be placed in the bottom of the pit. There are fewer problems in establishing and maintaining vegetation where potentially high acid-forming materials are covered with soil material favorable to plant growth.

The water-holding capacity of the material is the key to erosion control on most sites. Other soil characteristics that have a strong influence on the erosion potential of a soil are texture, organic matter content, percent slope, and effective length of slope.

Soil texture refers to the size and proportion of particles making up a particular soil. Soil texture classes...
are determined by the relative amounts of sand, silt, and clay. If sand is dominant, the soil is coarse-textured or "light" and allows water to infiltrate more rapidly. Too much sand, however, may make the soil too dry for plant establishment. Clay particles are dominant in fine-textured or "heavy" soils, which are often quite cohesive and slow to erode. Soils high in silt and very fine sand and low in clay and organic matter are generally the most erodible.

Organic matter is plant and animal residue in various stages of decomposition. The organic matter content of a soil has an inverse relationship to erodibility. As the amount of organic matter in a soil increases, the capacity of the soil to absorb surface water increases. As a result, runoff is reduced. Soil materials that result from mining operations are generally lacking in near-surface concentrations of soil organic matter. Deficiencies in near-surface organic matter can be remedied through establishment of vegetative cover and proper maintenance. Superior long-range benefits may be obtained by controlled deep incorporation of organic matter recovered from the original surface soil.

The ability of a soil to hold water depends on texture, soil depth, and organic-matter content. Soils that are able to hold large quantities of water are desirable from a plant growth standpoint, although some clays with excessive holding capacity cause problems.

Grading Considerations

Scheduling and Seasonal Limitations

Seasonal climatic variations play an important role in the scheduling of grading operations. The amount of rainfall and runoff during different periods of the year influences erosion. Because the soil is so vulnerable to erosion during the grading activities, those activities should be scheduled to coincide with the periods of low precipitation. The spring and early summer months often have the highest precipitation rates. Therefore, the bulk of grading operations, especially in critical areas, should be scheduled for mid-summer and fall.

Soil stability is another consideration. Proper compaction cannot usually be obtained during the winter months when the ground is frozen. In early spring the ground is often too wet to be handled properly, and mud can impede the operation of grading equipment.

If there is a choice, it is better to grade during the most favorable time for seeding. From a moisture and temperature point of view, April, May, and June in the spring and late August, September, and October in the fall are the best times to seed for uniform emergence and seedling growth in West Virginia, Maryland, and Virginia.

Topographic Manipulations

The rate of runoff and, correspondingly, the rate of soil erosion can be controlled by manipulating the slope gradient and effective length of slope. Such control is particularly significant in area mining and mountaintop mining.

Slope design should be based on the erodibility of the surface soils, as well as the need to stabilize against mass earth movement. Return to approximate original contour, as required by most state laws, may not be desirable in all cases. A reduction in relief and an overall flattening of the topography is not only desirable from an erosion control standpoint, but may be necessary to convert the site to another type of land use. It must be remembered that shorter and flatter slopes are less erodible.

Where there is little flexibility as to the overall configuration of the slope, as is often the case with contour mining in steep terrain, diversion structures, such as reverse benches or terraces, ditches, and dikes, can be constructed above and along the spoil slopes to decrease the overall length of the slope.

Soil Surface Manipulations

The soil surface can be manipulated to reduce and detain runoff. Manipulation includes roughening and loosening the soil, mulching and revegetation, and topsoiling and adding soil amendments.

A roughened and loosened soil surface improves water infiltration, slows the movement of surface runoff, and benefits plant growth. Common methods of loosening and/or roughening a soil surface include scarification, tracking, and contour benching or furrowing. Scarification is usually accomplished by disk or harrowing on the ground contour, but it can also be done by a crawler tractor equipped with ripper bars or by dragging the teeth on the bucket of a front-end loader over the ground.

Tracking is done on steep slopes where equipment cannot be moved safely along the ground contour. It is accomplished by running a cleated crawler tractor up and down the slope. When this method is used, it is important that the cleat marks overlap. The cleats leave shallow grooves that run parallel to the contour. If the slope is not too steep, furrows can be made on contours by angling the dozer blade. Some overtopping of these furrows occurs, but they help control erosion.

The prompt establishment of a cover of vegetation or the placement of a fibrous, organic mulch on a denuded soil surface also reduces and detains surface flow. Additionally, it stabilizes the soil. Vegetation or mulch protects the surface