John Bean leads the way when you “spray for pay”. You select from four basic sprayer series... plenty of choice to let you get size, type, capacity and price just right for your needs. Bean Bond lined tanks and lifetime Sapphite cylinders assure long, trouble free service. Trailertype, skid-mounted or PTO models. Wide choice of accessories. Versatility unlimited: weed and brush control, turf spraying, applying liquid fertilizer, shrub and tree spraying, root feeding, dust abatement, row crop spraying. To be sure sprayday is payday, get the facts on John Bean high-pressure sprayers.
CONSULT THE LEADER IN

SOIL FUMIGATION DEVELOPERS AND FORMULATORS OF

WEEDFUME • PATHOFUME B • TRIFUME

CONTROL

• MOST WEEDS
• GRASSES – INCLUDING NUTGRASS, BERMUDA-GRASS, AND JOHNSON GRASS
• NEMATODES
• SOIL-BORNE INSECTS
• CERTAIN SOIL DISEASES INCLUDING DAMPING-OFF ORGANISMS SUCH AS PYTHIUM, FUSARIUM AND RHIZOCTONIA
• SCLEROTIA OF SCLEROTINIA ROT
• VERTICILLIUM WILT

Automatic Application of Polyethylene Sheeting During Large-Scale Soil Fumigation Has Facilitated the Treatment of Areas as Large as 500 Acres

NEIL A. MACLEAN CO. INC.

EQUIPMENT • MATERIALS • TECHNICAL SUPERVISION

HOME OFFICE • BELMONT, CALIF.
(San Francisco Area)
1536 INDUSTRIAL WAY, L¥tel 1-2671

FRESNO, CALIF.
752 "H" STREET
AMhurst 6-6389

SEATTLE, WASHINGTON
423 S. Horton St.
MAin 4-1774

TUCSON, ARIZONA
110 E. 6th St.
MAin 2-3331

PHOENIX, ARIZONA
120 W. Jackson St.
Alpine 3-3101

EL MONTE, CALIF.
(Los Angeles Area)
9846 E. ALPACA ST.,
Cumberland 3-8841

HONOLULU, HAWAII
1169 Mona
Phone 3-2766
Use TRITHION® insecticide for lawn chinch bug control. Chinch bugs are small sucking insects that feed on the juice in leaves and stems of grass, causing brown patches and eventual death of infested lawns. Chinch bug destruction is a growing problem around the country, but a problem you can solve for your customers with TRITHION.

Since 1960, thousands of lawns have been treated with TRITHION. Results have been spectacular!

TRITHION gives quick, positive control. It's a fast-acting compound that controls all chinch bugs, including those strains that have become resistant to other materials.

TRITHION is easy to handle safely. It is less hazardous to handle than many other organic phosphorus pesticides. TRITHION is an easy-to-apply emulsifiable liquid . . . and also is available in granular form.

TRITHION offers one-shot control . . . that lasts. Repeat sprays are rarely needed with TRITHION—"one-shot control" stops chinch bugs. Its long residual action means long-term protection . . . with resulting reduced costs.

Use TRITHION on your customers' lawns. Remember—TRITHION keeps the grass greener on their side of the fence . . . and on yours, too! For details, write Stauffer Chemical Company, Agricultural Division, 380 Madison Avenue, New York 17, N.Y.
Here’s the one unit that gives you just what you want . . . when you want it. The famous Hardie Aero-Mist Sprayer. It embodies the recommendations of State & Federal authorities; tree service organizations and foresters who sought in one unit a high-velocity ample air volume sprayer for any type job, along with low price.

With its high velocity, 150 mph, it is of special value in the treatment of trees infested with the bark beetle. Public Health officials also use the Hardie for mosquito control. With the attachment of the Hardie Duster, you have two machines in one. You can use either spray materials; dust or granular materials. Write for full details.

Speaker up now!

Applicators of chemicals for weed control and turf and tree maintenance are currently being swamped with legislation.

From the far corners of the country, with increasing frequency, this magazine receives reports that contract applicators face more and more restricting laws about the use of chemical pesticides.

Astute industry observers will no doubt agree that once the pesticide question caught the public eye, such a rash of new laws was to be expected.

What is alarming to veteran applicators, however, is the fact that too many of the new restrictions are being recommended without consultation with the people who really understand all aspects of the pesticide problem. Who is better qualified to speak about the use of pesticides than the contract applicator who makes his living in constant proximity to the compounds some people fear?

We do not doubt that most critics of this chemical age are well-meaning folks who are unduly apprehensive or just misinformed. Some “authorities,” qualified in their own fields, may not have the last word on the real or imagined dangers of pesticides. A skilled MD with a good bedside manner is not necessarily a toxicologist.

Because of the danger of unqualified guidance, we recommend that every applicator make himself heard in town hall forums, in state hearings, through local papers, and everywhere possible. Laws meant to govern CAs should not be passed without the good counsel of the governed.

There was once a revolution fought on these shores because a people refused to be taxed without fair representation. It would indeed be a sad comment on the industry if educated, experienced leaders fail to speak up now, in order to give lawmakers a truly proper perspective.
why settle for HALF the pest control business you can handle?

A booming demand for weed control and turf spraying has hit most areas. Pest control operators jumping into the weed and turf field to meet the demand find the market promising — and profitable. YOU can branch out into this “other half” of the pest control business, and make money doing it, with the help of T-H Malathion.

BRANCH OUT WITH T-H MALATHION!!

You know T-H Malathion as a potent killer of flies, mosquitoes, ants, and most other flying and crawling insects. You know T-H Malathion is easy to apply and safe to use. Well, T-H has increased the usefulness of T-H Malathion by offering it to you in several formulations which are highly effective for control of plant aphids, mealybugs, spider mites, bagworms, tent caterpillars, and other insects which infest ornamental shrubs and lawns. Malathion applied as a dust, wettable powder, or spray, is safe to use—it’s low toxicity presents no hazard to man or animals.

Low-toxicity T-H Malathion presents no hazard to man or animals. Long-lasting T-H Malathion is now available in a new low-odor grade, too! Send for complete information on T-H Malathion for use in weed and turf service, or simply ask your man from Philips Roxane. Special formulations for use on shrubs and lawns are T-H Malathion E-5, 25 W, and Dust No. 5.
With CHLORDANE and this new chart, you can control over 70 lawn, garden, and household pests!

CHLORDANE is so well established as the leading termite control chemical that you may not realize how many other uses it has. It kills lawn insects, pests of trees, shrubs, ornamentals, vegetables and fruits. It kills all common household insects. Chlordane can also be used for pre-emergence crabgrass control. And for all of these uses, you can depend on Chlordane’s quality, economy, handling ease, and unmatched safety record. To help you take advantage of Chlordane’s versatility, we’ve prepared a special chart that tells when, where, and how to use it. Included are recommended dosages and complete conversion and dilution tables. You’ll find this chart an invaluable “how-to-do-it” aid for your servicemen. Send for a copy today!

VELSICOL...interested in your success!

New! BANDANE* for CRABGRASS CONTROL!

If you want a pre-emergence crabgrass control that combines effectiveness with safety to established turf, use new Bandane. Bandane stops crabgrass before it starts, but will not “burn” or “thin” desirable grasses. It can be applied to new lawns, too, right after seeding. For complete information, request folder No. 526-5.

*Trademark Velsicol Chemical Corp.
Biology and Identification of Aquatic Weeds

MAN IS in conflict with nature at almost every turn. This fact is no less true in his use of natural or artificial water bodies. In smaller lakes and ponds, where there is no wave action or water level variation to prevent vegetation from running rampant, there is a natural progression from open water to shallow water, through various stages of vegetation, to a swamp or marsh stage. This, in turn, leads to a bog condition, and finally back to land.

This observable pattern takes many years to complete, but each year, vegetation whittles away at waters man finds useful. Gradually the progression, if not stopped by man's ingenuity, will steal the carefully cultivated usefulness of lakes and ponds.

Lakes are harnessed for food, recreation, transportation, flood control, electrical power, and water supply. Other waters, such as canals and ditches, are used for irrigation, drainage, and transportation. Aquatic weeds in these waterways annually cost millions of dollars, money which is spent to forestall, halt, or set back nature's progression that aims to create land where water is.

At other times, outbreaks of aquatic plants destroy the usefulness of existing waterways. When an alien plant, such as waterhyacinth, is released into new surroundings favorable to its growth, it multiplies rapidly and spreads over many acres of water surface. In these cases, man must attempt to correct nature's imbalance, or suffer the losses caused by weed growths.

Markets for aquatic weed control exist all over the United States. To accommodate these markets with service, chemicals, and information, competent applicators must know more about the aquatic environment and plants they want to control. This three-part series will deal with aquatic plant biology and identification, chemicals used for control, and application equipment and techniques. Aquatic World is Unique

An aquatic environment is a different world from that which is familiar to man. Weeds must be destroyed selectively; desirable animals and fish inhabitants must live. To deal with an aquatic environment, a new set of factors must be considered in addition to plant species; biological factors (waxy cuticle on leaves), pH (acidity or alkalinity), hardness (mineral content), or organic content, currents, control period (when plants are killed most easily), to name just a few. These factors will be mentioned as they arise in the discussion.

Most logical sequence for a study of aquatic weed control starts with the organisms. Knowledge of the form and function of pest plants makes them easier to control.

For general background, certain terms will have to be defined. Plants are usually divided into two arbitrary groups: higher and lower. Higher plants are thought of as more advanced on an evolutionary scale. It is generally assumed that some plants came from ancient seas when land became habitable. The flowering habit evolved on land. Since higher plants have flowers, and some aquatic plants have flowers, they are thought to have been evolved from plants which formerly lived on land and readapted to water after developing the flowering-seed habit.

Lower plants are those which never left water in the course of their development. Algae are the most widespread representatives of this group.

Lower plants, which do not flower, have a vegetative growth pattern. Some lower plants, such as algae, grow by cell division; each new cell is exactly like the original. There are other groups of lower plants which have more advanced growth patterns and unusual methods of reproduction.

Higher aquatic plants, since they are derived from land plants, have similar life cycles. They sprout from seeds, grow to maturity, develop flowers, and produce seeds. Some of the more troublesome aquatic weeds are perennial plants.

Perennials are long-lived, higher plants which resprout each year from tubers, underground rhi-
zomes, or stolons (rootlike stems); seeds are not necessary to carry on the species, but contribute to the spread of perennial weeds. Weeds which choke waterways with thick, matted growth are often perennials.

Second Grouping System

A second grouping system used by aquatic plant experts is a separation with respect to how weeds are found in the water, for this often determines the control method to be used.

If plants are found completely under water, they are called submerged aquatic plants. This distinguishes those plants naturally found under water from those which are submerged when flooded or inundated.

Plants found protruding significantly from the water, such as cattail, are called emersed aquatic plants.

Floating weeds, such as water-hyacinth and duckweed, which are not rooted but may protrude above the water line, are called surface aquatics, or unattached-floating plants. Species which are rooted and have an “anchored” leaf or “pad” are called attached-floating aquatic plants. Some variation may be found if authors wish to designate whether emersed parts have leaves, flowers, or branches.

To describe where aquatic plants are found, we can use a division from ecology (Odum, 1959). Of three zones of a lake, littoral (marginal or closest to shore), limnetic (served by sunlight but over deep, open water), and profundal (beneath the limnetic; not furnished with light), the first, littoral, is the most important. It is in shallow littoral zones where all rooted and most floating vegetation is found. Where the littoral zone may be affected by rising and falling water lines, some “amphibious” plants may live both on land and in water (Hall, 1961).

After the plants are placed and different growth habits defined, one can concentrate on specifics about aquatic plant pests.

There are 25 families covering some 185 species of plants classed as aquatic weeds. This article will include habits, identification, and distribution of the most important of these families. Names of species are in accord with the Report of the Terminology Committee of the Weed Society of America (1962). First to be considered are those emersed species with parts protruding above the surface.

Cattails Are First Invaders

A most familiar emersed species is cattail, Typha spp., family Typhaceae (family suffix -ceae; tie fay' sea ee). Cattail is found throughout the United States, and is easily recognized by its tall, slender leaves, and tannish-brown flower spike. Cattail is usually the first rooted vegetation to invade shallow margins of a man-made farm pond; it grows in any wet place where its airborne seeds may land and germinate. Cattail colonies are formed from a fast-spreading underground root system. These stems and roots catch and hold soil firmly and begin to fill in pond margins and drainage canals. A stand of cattail can significantly reduce the perimeter distance of a pond in a short time.

Cattail is found in fresh water, but will tolerate brackish waters of coastal marshes. (Muenscher 1944).

Bulrush Not Rush

Another slender-leaved emersed species is bulrush, Scirpus spp. Scirpus is a member of the sedge family, Cyperaceae; it is not a true rush. Bulrushes are generally characterized by rounded or three-angled stems. Insides of stems are solid, contrasted with true rushes which have round and hollow, or nearly hollow, stems. The point where a leaf joins the bulrush stem is covered by a leaf sheath.

Many bulrushes are tall, 3 to 5 feet above water, sprouting from sturdy rootstocks. Reproductive parts are nutlike or conelike seeds borne near the end of an erect shoot. Seed clusters may sit directly on the naked stem or may hang on a branched spikelet, depending upon the species.

Two species of bulrush are especially troublesome across the United States, hardstem bulrush or tule, Scirpus acutus, and great or softstem bulrush, Scirpus validus. Both have solid circular stems and spikelets (seeds) borne on a branch or panicle, as it is called. Groups of nutlike spikelets of hardstem bulrush are ovate or rounded, while softstem bulrush has spikelets more pointed or lanceolate. A small portion of the main stem extends above seed clusters in both species.

There are many other species of bulrush distributed throughout the United States. They are recognized by a rounded or triangular stem, sheathed leaf
bases, and the subterminal nature of reproductive structures.

True Rushes

Commonly confused with sedges are true rushes, *Juncus* spp. (*Juncaceae*). Rushes can be spotted by a round, hollow, or pith-filled stem (pith is a large-celled, airy or spongy tissue). Species of *Juncus* are adapted to grow in shallow pond margins and along stream edges. Rushes commonly do not grow as high as some sedges. Usually found in grasslike clumps, most rush species do not have extensive underground roots from which to sprout new plants. Reproductive parts are not nutlike as sedges, but bear seeds on subterminal branchlets. Seeds are smaller with subtending stiff hairy parts.

Keep “Reeds” Straight

A so-called reed or reedlike species is burreed, *Sparganium* spp. (*Sparganiaceae*). Burreed are widespread throughout the United States.

Leaves of burreed are of two types, erect or floating. Several species have limp leaves which float on top of the water; others stand up, typical of reedlike species. The character of burreed which serves for identification is that burreed is borne on an erect, leafless, crooked stem. Parts of female flowers persist to form stiff hooks on seed clusters; this gives burreed its name, although it is not generally like a reed.

Giant reed, *Phragmites communis,* is the true reed of marshes, lakes, and ditchbanks. It is a perennial with hard, jointed, erect stems. Roots are coarse and scaly. Giant reed may grow to a height of 12 feet and be topped with the large feathery head of seeds. Growth is often so thick and hedge-like that access to the water is hindered (Klingman, 1961).

The time of chemical application which will give maximum control is an important factor when dealing with giant reed. When giant reed, which usually grows on land, becomes inundated with water, it becomes particularly resistant to herbicides which normally control it. The control period, or time span within which the weed can be more easily controlled, is significantly reduced.

Alligatorweed, *Alternanthera philoxeroides,* is a southern resident which was imported from South America. It is prominent in the Gulf States, and southeast coastal areas. Alligatorweed is a hardy weed which grows well as a floating, rooted, or dry land plant. Plants on land or rooted in shallow water arise from relatively stout rootstocks. Plants in floating mats have only fibrous roots arising from stem joints. Stems are erect, with opposite leaves at regular intervals. Leaves are long, tapering to a point (lanceolate); leaf edges are smooth. Many tiny white flowers are on a head which arises either from a terminal shoot or long straight petioles from axes of uppermost leaves. Seeds of alligatorweed are seldom found; this weed propagates mainly by spreading roots or stem shoots, each of which may sprout and grow a new colony (Weldon 1962). It easily forms a mat from the shoreline over all shallow open water. Other plants are crowded out by this persistent growth habit.

“Arrowheads” Can Confuse

Three different aquatic weeds have arrow-shaped leaves which can confound hasty identification. A close look confirms that these three species are different in the way the veins are placed in leaves. Once noticed, this difference is not difficult to see.

Arrowarum, *Peltandra virginica,* is a member of the same family as the terrestrial Jack-in-the-Pulpit and skunk cabbage. As such, arrowarum has a flower spike (spadix) which is enclosed in a wraparound leaf (spathe). Arrowarum has three distinct leaf veins radiating from the petiole attachment. One vein goes to the tip, the other two go to the base—points (arrow bars). Secondary veins branch off horizontally from the midrib. Margins of arrowarum are sometimes wavy or uneven.

Pickerelweed, *Pontederia cordata,* is another erect emersed species which has arrow-shaped leaves. In the family Pontederiaceae, of which waterhyacinth is also a member, pickerelweed, with exposed purplish flowers, is distinguished from arrowarum when flowering. When not in flower, leaves of pickerelweed differ in that there is no main vein or midrib. All veins originate at the petiole attachment and travel singularly to the tip. Veins are curved into the lobe portions of this “arrowhead.”

Most familiar genus in the spot family, *Alismaceae,* is arrowhead or duck potato, *Sagittaria* spp. Arrowhead is common and widespread throughout the country.

Flowers of arrowhead are distinctive. They are borne on a tall stalk, usually in groups of three about a stem. Flower structure is simple; there are three small, white, or sometimes pink, petals. Several groups of three will be found at different levels on the erect stem. Stems of *Sagittaria* are fleshy and have a milky juice. Although leaf shape varies from one species of *Sagittaria* to another; (some are broad; others very slender), they retain an arrowhead shape. At times species have two different kinds of leaves on one plant; one kind above water and one below. Submerged leaves are usually slender and ribbonlike.

Venation will help distinguish *Sagittaria* from other “arrowhead” plants. Veins of *Sagittaria* are parallel, similar to those of terrestrial plantains. There is no strong midrib; veins which supply nourishment to basal lobes are branches of those which run to the tip. *Sagittaria* is considered a valuable food plant for waterfowl, and is often introduced into a lake for duck food (Fassett 1960). Ducks