of water.

To prevent condensation from forming in the fuel tank, keep it full at all times when not in use. In addition, condensation and other types of contamination can enter the system from the fuel storage tank.

Quality is another key for diesel fuel users as fuel contamination is a major concern. The following fuel factors must be considered to keep on top of this potential problem:

- Cetane number: reduces lag time. A longer lag time means a harder start engine, especially in cold weather. It is also more likely to smoke and knock.
- Flash point: the temperature at which fuel ignites. If too low, white smoke will appear.
- Cloud point: approximately 10-15° F.

White smoke will continue and may indicate low pressure, ring or piston problems, or leaky valves.

Black smoke: caused by unburned fuel. This may indicate nozzle problems of injecting more fuel than can be properly burned with the given horsepower and time.

Gray smoke: caused by excessive amount of oil in the combustion chamber. It indicates worn rings or valve guide wear.

For his test results, see accompanying chart below.

Treating oak leaf spot

- During the past two years, leaf spot (Tubakia dryina) has increased in container-grown oaks, according to Dr. Jim Strandberg, plant pathologist at the Central Florida Research and Extension Center.

 The fungus produces small lesions and a blight that deforms the plant's leaves. It affects many species of oak, including the popular laurel oak.

 Tubakia spores reproduce best in humid, damp weather. At one time, this devastating disease was common only in Eastern states. Severe oak leaf spot losses, however, recently have been recorded in several Southeastern nurseries.

 Strandberg has studied the fungus since 1989. In addition to investigating its biology, he has so done a comparison of control products.

 "Traditional control methods include copper fungicides," says Strandberg. "But these aren't always effective because they're non-systemic. Oaks may produce several growth flushes a season, so there's a constant chance that young, susceptible foliage may need protectant sprays.

 "Ornamental nurseries are at particular risk because sprinkler irrigation spreads Tubakia spores," he adds.

 Strandberg tested seven fungicides in three classes: systemic, copper and non-systemic. Efficacy was determined by measuring the percentage of leaf area damage (indicated by "LAD") on new foliage of infected one-year-old laurel oaks. Overhead irrigation was performed nightly for two months, and fungicide applications were made bi-weekly.

 "All the fungicides reduced leaf damage," Strandberg notes. "Only the systemic fungicides reduced the damage enough to satisfy the strict requirements of nursery production."

 For his test results, see accompanying chart below.

<table>
<thead>
<tr>
<th>FUNGICIDE</th>
<th>JUNE 14</th>
<th>JULY 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Bayleton</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Copper hydroxide</td>
<td>1.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Daconil</td>
<td>2.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Control</td>
<td>3.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>

| Source: Standberg, 1991 |