Spring fertilization

by J.B. Sartain, Ph.D.
University of Florida

Early spring is a time to review your turfgrass fertilization program. Did your turfgrass flourish last season, or was growth poor with noticeable thinning? Was growth non-responsive to fertilization?

Poor turfgrass growth is often related to too much shade, cutting too low, or soil chemical properties. Knowledgeably selecting a turfgrass species for shade tolerance and proper mowing height can eliminate some common problems. Soil nutritional deficiencies, however—the topic of this month's cover story—can only be assessed through soil tests.

Turfgrass fertilization should be based on a recent soil analysis, but if an analysis does not exist, the nutritional requirements of the turfgrass can generally be met by applying 1, 1/2 and 1/2 lb. of N, P and K, respectively, per 1000 sq. ft. as an initial application.

These nutrients can be supplied by applying 6 lbs. of a 16-4-8 analysis fertilizer. It is recommended that this mixture be composed of approximately 70% slow-release and 30% soluble N sources. If the soil is prone to leaching losses, a K source with reduced K loss potential should be used.

Nitrogen—Turfgrasses need more nitrogen (N) than either of the other primary nutrients, potassium or phosphorus. Most soil testing laboratories do not test for N because this nutrient is highly mobile and is typically deficient in the turfgrass rooting zone.

Some turfgrass species, such as bermudagrass grown on sandy soils, require relatively high rates of N application on an annual basis; other species such as bluegrass grown on clayey soils, require much less annual N. However, the early spring fertilization of turfgrasses on all soil types is generally similar, with initial application of approximately 1 lb. N/1000 sq. ft. being typical.

Using slow-release N sources permits increased rates of N application without the threat of turfgrass "burn," and can reduce application frequency from 30 days to as much as 90 days. A combination of slow-release and soluble N sources (70% slow-release, 30% soluble N) promotes optimum warm-season turfgrass growth.

Slow-release N sources are also less susceptible to N losses through leaching (Fig. 1). Soluble N sources tend to leach more in sandy soils than slow-release N sources. They should be used with care when large applications of N are made on an annual basis, particularly if groundwater pollution potential exists.

Phosphorus—Few soils used for turfgrass cultivation over an extended time exhibit phosphorus (P) deficiencies. A Mehlich 1-extractable P level of less than 15 ppm is considered low, and indicates a probable response to applied P.

Shallow rooting, low turfgrass root mass in early spring, and cool soil conditions often influence P fertilization response more than actual soil-test P level.

In long-term research, ryegrass positively responded to P fertilization, even though bermudagrass grown on the same phosphatic soil was negatively influenced by P fertilization. This suggests that cool-season turfgrasses can respond to P fertilization, even on soils testing high in P.

If overseeding is used in the turf management program, best response to P may be obtained during the cool-season turfgrass growth period. Early spring turfgrass growth may respond to P fertilization if the root mass of the warm-season turfgrass is restricted and the soil is cool.

Adequate fertilization can be achieved by applying 1/2 to 1/2 lb. P/1000 sq. ft., using any of the commercially-available P fertilizer sources. No differences in growth response to P fertilizer sources have been observed.

Potassium—Considerable confusion exists regarding potassium (K) fertilization. Turfgrasses accumulate approximately one-half as much K as N. In some turfgrass cultures, this represents a considerable quantity of K over an entire season, especially if the clippings are removed.

In sandy soils, K leaches readily and is rarely found at high levels. Turfgrasses...

ELSEWHERE

Effectively pruning trees, page 51
Maintaining turf in shade, page 54
Shade-tolerant turf species, page 54
Soil deficiencies occur most frequently in sandy soils, acidic soils (pH less than 5.0) or sodium-saturated soils (rare). True Ca deficiencies are very uncommon in turfgrasses.

Magnesium—Turfgrasses growing on soils testing below 20 ppm Mehlich I extractable magnesium (Mg) usually respond to Mg applications. A Mg deficiency prior to spring growth can be corrected by applying dolomitic lime (if required for soil pH adjustment), magnesium sulfate, or potassium-magnesium sulfate.

Application of 4 lbs. Mg/1000 sq. ft. should correct the deficiency for an entire growing season. Annual monitoring is recommended if a deficiency has been noted.

If the soil Mg status is marginal, high rates of K fertilization can induce Mg deficiencies. There is no "magic" Ca:Mg ratio required in soils for optimum turfgrass growth; rather, the absolute soil test Mg level is of paramount importance.

—The author is in the Soil and Water Science Department at the University of Florida.

Pruning tips for aesthetics, tree health, from Dr. Wade

- "The key to pruning is knowing the difference between heading and thinning," says Dr. Gary Wade of the University of Georgia. "Thick, dense canopies increase disease and insects, and the plant uses more water."

Wade, in a presentation at the Georgia Turfgrass Conference, told the audience to try and maintain nature's natural plant shape when pruning. You should try to cut right outside the branch collar, and not leave stubs. "When pruning is done properly, there is no need to paint or dress wounds," he noted.

Pruning should be done with a purpose, he said, and should be done "with low maintenance in mind."

Why prune at all? For various good reasons, including:

- To maintain the correct size of the plants. This is a common problem with residential landscapes.
- To improve flowering or fruiting performance.
- To repair what Mother Nature has inflicted upon us.
- To rejuvenate plants in the dormant season.
- To increase ornate value in high-priced landscapes.

Some Wade tips:

- Prune six weeks before the start of the new growing season.
- Do not severely prune boxwood or conifers (pine, spruce, junipers).
- Prune in stages over two to three years, if possible.
- Be careful pruning crepe myrtle, the most abused plant in our landscapes.