Moving the players through the course

‘Ready Golf’ keeps public golfers moving and helps run 400+ people through 45 holes in a day.

- There is no dawdling on the city golf courses in Overland Park, Kan.

Check out these numbers: 149,400 total rounds in 1992 on two 18-hole courses and a brand new nine-hole layout.

“My favorite days are when we get more than 400 people out,” says Sandy Queen, Overland Park’s manager of golf operations.

Those days, players are moving around the course at the rate of 18 holes every four hours. At all times of the year, they are guaranteed of spending no more than 4 hours, 32 minutes on the course.

“The number one problem of golf is slow play,” Queen observes.

Overland Park’s courses are doing their best to alleviate that problem with their “Ready Golf Program,” instituted three years ago by Queen.

Ready?—Here’s how the program works:

Fivesomes tee off in eight-minute intervals, with a 16-minute gap every hour. Each fivesome has a “team captain” responsible for keeping the group moving. He gets a card from the starter that notes optimum times for ending each nine holes.

Golfers leave in what Queen calls “waves,” three to a day: morning, around noon, and afternoon. Fivesomes start on each of the two Overland Park nines and Westlinks. They rotate in unison for their second nine holes. “The timing on the wave gets critical,” says August Lietzen, superintendent at the Overland Park course.

“Ready Golf program after Cavanaugh’s. “The program would work at any course, modified based on public demand,” Queen contends.

Red (no) and green (yes) posts tell golfers when they can leave cart paths. Golfers are urged to adhere to the “90-degree rule” (straight to ball at a 90-degree angle from cart path and return) when leaving paths.

Course set-up also has a tremendous impact on golfer pace, Queen notes.

“We can alter play pace,” notes Lietzen, “by shortening holes and softening pin placement.”

Wear and tear—All of this play, of course, has its effects on the turf.

“General wear and tear is our biggest problem,” Queen notes. He says high-traffic areas are re-sodded every year. Each course also uses 5 lbs. of nitrogen fertilizer per year, about ½ to 1 lb. more than you might expect. And, Queen says, “players are really good in regard to repairing divots.”

The Overland Park and Westlinks courses have bluegrass fairways and Penncross bentgrass greens. St. Andrews has seven pushed-up dirt greens planted in 1955 with Cohany bentgrass and two new USGA-specified greens.

All three courses suffer through a 6- to 8-week period in the summer during which turf quality declines.

Each course has five full-time and nine seasonal maintenance people. Lietzen and Russell Bonneville (Westlinks superintendent) have degrees from Kansas State University; Terry Rodenberg (St. Andrews superintendent) is a University of Missouri grad. Two more Kansas State graduates, one of whom holds a master's degree, are also employed.

“These guys are exceptionally talented,” notes Queen. He says Lietzen is particularly inventive, and Rodenberg adds that, “we're kind of like a support group for each other.”

Year-round play the last three years has helped the course break attendance records. (Normal season is March 1 to November 1). Yet, since budgets are based...
Overland Park's "support" group includes, left to right: St. Andrews superintendent Terry Rodenberg, Westlinks superintendent Russell Bonneville, manager of golf operations Sandy Queen, Overland Park assistant super Steve Olson and Overland Park superintendent August Lietzen.

When the label says you need a non-ionic surfactant for coverage.

Activate Plus spreads herbicides more evenly over weed surfaces. And better coverage means better control. Activate Plus is highly concentrated with 90% active ingredient. It's also nonflammable, making it a lot safer to store, transport, and use. So when the label recommends adding a non-ionic surfactant to get better coverage, talk to Terra Professional Products for the best, Activate Plus.

Keeping excess water off greens

Researchers at the IFAS Fort Lauderdale Research and Education Center are finding out just how pesticides applied to a USGA green can leach into the groundwater.

For the past two years, they've been carefully monitoring pesticides on and under their own USGA-spec green, and the leachate which passes through it.

This isn't an idle exercise. Groundwater is used by 50 percent of the U.S. population (90 percent in rural areas) for its drinking water.

What the Florida researchers are discovering is both good news and bad news for golf course superintendents.

The good news—From one of the researchers, Dr. John Cisar:

For a pesticide to affect groundwater, it (or one of its metabolites) must make its way through the turfgrass. Turfgrass forms dense plant communities that contain up to 2,000 to 3,000 plants per square foot. Many turfgrasses produce thatch that's high in organic matter that can bind up pesticides.

"As a biological filter, turfgrass is second to no other plant material," says Cisar, associate professor of turfgrass management and water at the University of Florida.

The work at Fort Lauderdale confirms what other researchers have discovered—some pesticides never get very far into the soil before they're broken down. They are subject to photo-decomposition at the soil surface, also by chemical decomposition or biological degradation in the soil.

Even so, once a chemical does leach below the rootzone, because of excess irrigation or rainfall, it's less likely to degrade. And if its journey is through sand, the likelihood of groundwater con-
Today's sand-based greens—usually containing about 20 percent by volume of organic matter and little or no clay—allow, in some instances, pesticides (or their metabolites) to percolate to the groundwater. That's the case at the research green in southeast Florida where the groundwater is just five feet below turf which is maintained identically to a course there (without the play, of course).

"You have a system that's actually geared toward, and possibly favoring, moving pesticides off site," says Cisar.

The bad news—The researchers determined that there is risk of contaminating groundwater, particularly if a green is irrigated excessively. They discovered this by collecting leachate from large, stainless steel containers buried under the research green.

For instance, they found metabolites of the nematicide fenamiphos in the leachate a few days after an initial application of the material during their first study in November 1991. The parent compound is strongly absorbed by organic matter, but the metabolites (also active against nematodes) are less strongly absorbed and more leachable.

"If you are going to be using Nemacur (fenamiphos), really be careful about excess irrigation, especially after a first-time application," says Cisar. "If you irrigate excessively, you're going to lose some of the pesticide and you may not get the nematicidal activity that you want."

During the second test in January 1992 there was a substantial drop in the amount of chemical found in the leachate, says Cisar. He attributes this to decreased percolation and to enhanced degradation of the pesticide by microbes.

The research project is receiving strong backing from the USGA, the Florida Turfgrass Association and the South Florida Golf Course Superintendents Association.

—Ron Hall