Landscape trees and shrubs constitute a major investment and add significantly to the beauty and value of residential and commercial properties.

Landscape managers need to be familiar with woody plants, their requirements for survival and vitality and their pest problems to implement effective pest control programs. Most native trees and shrubs on undisturbed sites suffer only rarely from ravages of insect pests.

However, trees growing in landscapes are commonly stressed by construction damage, lack of water (or too much water if there is poor drainage), high temperatures, compacted soils, and other factors that reduce the tree's ability to either repel or withstand insect attacking without suffering decline.

Many major pests of trees and shrubs are probably opportunists that exploit hosts that have been weakened by physical factors.

This article is designed to help landscape managers develop strategies for controlling insect pests of woody plants.

The information is organized according to seasonal insect activity. The time or times an insect is vulnerable to a direct control tactic and up-to-date insect control recommendations are provided.

Control Strategies
In the past, pre-scheduled cover sprays were often used to control insect pests that may be present on the property, because the detrimental side effects of some pesticides were not yet known and landscape managers were not familiar enough with local pests to develop target spray programs.

Many times, all trees on a property were sprayed when only a few harbored a pest species. Today, conscientious tree care specialists use insecticidal sprays only after determining which pest(s) is present and whether or not it has reached a potentially damaging population level. They spot spray only infested plants.

This approach is cost effective in terms of material costs, landscape beauty and longevity, and environmental quality.

The life cycle of the black vine weevil (from left): egg, larva, pupa, adult. Four foliar sprays at three-to-four week intervals are required for control.

Dr. D.G. Nielsen is a professor of entomology at Ohio State University, and Dr. J.R. Baker is an extension entomologist at North Carolina State University.
as young nymphs on the undersides of branches on spruce or on the lower leaf surface of Douglas fir, the alternate host of the Cooley gall adelgid.

Pine bark adelgid overwinters as eggs, nymphs, and adults in bark cracks and crevices on white pine.

By late winter the trunks of infested pines may be snow-white from huge numbers of adelgids.

Adelgids can be controlled on all hosts any time after spruce galls open in late summer until just prior to bud break the following spring.

Horticultural oil may reduce the overwintering population, but oil may remove the waxy bloom from the needles of spruces and pines, causing them to become unsightly.

Sevin (carbaryl) or lindane can also be used in a thorough-coverage, hydraulic spray, making sure to cover the underside of spruce branches and Douglas fir needles. A wetting agent may be useful to help penetrate the fluffy wax covering that surrounds the insect, especially when treating the pine bark adelgid.

Mites

Spider mites, including spruce spider mite on coniferous evergreens and southern red mites on broadleaf evergreens, suck plant juices and deposit silk and waste material on their hosts, causing foliage to become dull and bronze-colored.

Mites tend to feed in spring and fall but populations usually crash in very hot or very cold weather. They overwinter in the egg stage which is susceptible to control with horticultural oil used at the dormant season rate.

False spider mites are tiny, flat mites which feed and reproduce slowly throughout the year. Most "winter injury" symptoms on aucuba, azalea, and Japanese hollies are due to false spider mites.

Horticultural oils or other miticides give adequate control of these pests. Treatment is appropriate at any time of the year except in early spring when new, tender growth is emerging.

Aphids

Aphids are small, soft-bodied insects that insert their mouthparts into the phloem of leaves, stems, and roots to suck out sap.

Aphids excrete honeydew, a sweet liquid that coats heavily infested plants. Some species (melon aphid, apple aphid) feed on the most succulent part of the plant. Other species (giant willow aphid, giant bark aphid, Cinara aphids) feed on stems. High aphid populations can cause leaves to yellow and fall prematurely.

The honeydew they excrete serves as a substrate for a black sooty mold fungus that reduces the aesthetic appeal of the plant and reduces its ability to manufacture food.

Many aphids overwinter as exposed eggs on conifer needles or on stems and buds of other woody plants.

If a damaging aphid population was detected the previous summer or fall, an application of horticultural oil before bud break will reduce the spring aphid population, thereby giving the tree a chance to recover before aphids build up again during the spring and summer.

Soft Scales

Soft scales are another kind of sucking insect that drain a tree's energy and reduce its ability to manufacture food.

They suck sap from the phloem and produce honeydew. Some (e.g. the tulip tree scale) seriously weaken or kill their hosts.

Heavily infested trees and shrubs often become blackened with sooty molds. Some soft scales overwinter as immature forms (cottony maple, cottony maple leaf, magnolia, Pine tortise, and Fletcher scales) that are somewhat vulnerable to horticultural oils used at the dormant application rate.

Spring (April-late June)

Most insects become active in the
Insect Control Guide

Cinara aphids feeding on a juniper in the early spring.

Spring, responding to warmer weather and resumption of plant growth and development.

Monitoring trees and shrubs for pests during spring is one of the most important tactics in a modern insect control program.

Newly expanding or expanded leaves should be checked for the presence of sucking insects, leafminers, and defoliators.

Tree limbs and trunks should be inspected to determine presence of active borer galleries as early detection will permit time for learning the identity of the pest and determining if a spray program is justified.

Defoliators

Eastern tent caterpillar, fall cankerworm, whitemarked tussock moth, and pine sawflies are among the first defoliators to begin feeding in spring.

The eastern tent caterpillar is obvious and readily detectable because it forms a silken tent in tree crotches, especially flowering fruit and nut trees.

During years of high caterpillar numbers, entire trees may be defoliated. These pests often reach maturity before defoliation is noticed.

The tent caterpillars and their relatives, including mimosa webworm, fall webworm, bagworm, and gypsy moth, are readily controlled with a number of conventional insecticides or with the bacterium, _Bacillus thurengiensis_, commonly known as _B.t._

Pine sawflies are often difficult to detect since they blend-in with needles on their hosts. They often reach maturity before defoliation is noticed.

Sawflies are related to bees and wasps and are highly susceptible to Sevin. Orthene (acephate) is also labeled for this use.

Elm leaf beetle larvae and adults consume foliage. There are two generations each summer. Sevin, Orthene, or Turcam/Dycarb (bendiocarb) can be used when trees leaf-out in spring. A second generation may require a second application in July.

Armored Scales

Armored scales, soft-bodied sucking insects that suck juices from leaves and stems but do not produce honeydew, are named armored scales because after the first stage molts, later stages are covered by cast skins and tough wax.

Consequently, they are vulnerable to contact insecticides only during the crawler and settled first nymph stages.

Armored scales overwinter as eggs (pine needle and oystershell scale), as mated females (euonymus and white peach scales), or in more than one stage (hemlock and tea scales). As indicated, all of them are most easily controlled with crawler sprays.

Armored scales that overwinter as eggs can usually be controlled with a single application of an insecticide, if thorough coverage is achieved. If application timing is not precise, a systemic insecticide like Metasystox-R (oxydemetonmethyl) or Orthene should be used.

Species like euonymus scale require more than one crawler spray, since the first hatching crawlers molt before the last spring generation eggs are laid.

Three thorough coverage, hydraulic sprays at 10-to-14 day intervals are needed to provide an adequate level of control.

All armored scales that have more than one generation per year (pine needle, euonymus and white peach scales) should always be controlled during the spring crawler hatch because the hatching period is shorter at that time, so fewer sprays are required to provide control.

Horticultural oils may be effective for armored scale control. Use the summer rate after new plant growth has hardened-off.

Aphids

Aphid populations can explode in a short time, since a new generation can be produced every 10-to-15 days in the North and even faster in the South.

In the North, aphids are often at high population density during summer droughts, or just after a drought period, and should be controlled before they cause premature leaf drop.

In the South, aphid populations are often high in late winter and early spring before lady beetles and other predators become active. However, crate myrtle aphid populations often become damaging later in the summer.

Mistblower applications are excellent against free-living aphids.

Adelgids

Remember, overwintering forms on spruce are protected as their galls form. They become vulnerable again in fall after their galls open. Pine bark adelgids can be controlled in spring or summer as long as the pines are not under water stress and after the new growth has begun to harden off.

Leafminers

Birch, boxwood, and holly leafminers are highly specialized insects whose larval stages damage trees and shrubs by destroying tissues within the leaf.

Birch leafminer is a sawfly (closely related to bees and wasps) who emerge as adults in May.

Foliage can be protected by spraying when the adult sawflies are actively mating and feeding on birch trees.

Sevin, malathion, and lindane are effective before eggs are laid within leaf tissue. After egg laying begins or...
INSECTICIDE DIRECTORY

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Brand Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>acephate</td>
<td>Orthene</td>
<td>Ortho/Chevron</td>
</tr>
<tr>
<td>B. t.</td>
<td>Thuricide</td>
<td>Zoecon</td>
</tr>
<tr>
<td>bendiocarb</td>
<td>Dipel</td>
<td>Abbott Labs</td>
</tr>
<tr>
<td>carbaryl</td>
<td>SOK Bt</td>
<td>Nor-Am</td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>Turcam</td>
<td>Nor-Am</td>
</tr>
<tr>
<td>diazinon</td>
<td>Sevin</td>
<td>Union Carbide</td>
</tr>
<tr>
<td>dimethoate</td>
<td>Dursban</td>
<td>Dow</td>
</tr>
<tr>
<td>dicrotophos</td>
<td>Diazinon</td>
<td>Ciba Geigy</td>
</tr>
<tr>
<td>fenvalinate</td>
<td>Sarolex</td>
<td>Ciba Geigy</td>
</tr>
<tr>
<td>fenvalerate</td>
<td>Kelthane</td>
<td>Rohm & Haas</td>
</tr>
<tr>
<td>fluvalinate</td>
<td>Bidrin</td>
<td>Shell</td>
</tr>
<tr>
<td>isofenphos</td>
<td>Cygon</td>
<td>American Cyanamid</td>
</tr>
<tr>
<td>malathion</td>
<td>Deltic</td>
<td>Nor-Am</td>
</tr>
<tr>
<td>methoxychlor</td>
<td>Dymet</td>
<td>Mallinckrodt</td>
</tr>
<tr>
<td>morestan</td>
<td>Vendex</td>
<td>Shell</td>
</tr>
<tr>
<td>oxydemetonmethyl</td>
<td>Pydrin</td>
<td>Shell</td>
</tr>
<tr>
<td>phosmet</td>
<td>Mavrik</td>
<td>Zoecon</td>
</tr>
<tr>
<td>trichlorfon</td>
<td>Ottanol</td>
<td>Mobay</td>
</tr>
<tr>
<td></td>
<td>Malathion</td>
<td>American Cyanamid</td>
</tr>
<tr>
<td></td>
<td>Marlate</td>
<td>Kincaid</td>
</tr>
<tr>
<td></td>
<td>Imidan</td>
<td>Stauffer</td>
</tr>
<tr>
<td></td>
<td>Metasystox</td>
<td>Mobay</td>
</tr>
<tr>
<td></td>
<td>Imidan</td>
<td>Stauffer</td>
</tr>
<tr>
<td></td>
<td>Dylox</td>
<td>Mobay</td>
</tr>
<tr>
<td></td>
<td>Proxol</td>
<td>Nor-Am</td>
</tr>
</tbody>
</table>

Insecticides begin to form. A systemic insecticide should be used. Metasystox-R, Orthene, and Cygon (dimethoate) are labeled for this use.

There are several generations per year, but the first two generations seem to be most destructive.

Holly leafminer is a true fly that has only one generation per year. Spring application of Metasystox-R or Orthene after the new plant growth has hardened-off is necessary to achieve control.

Boxwood leafminer is a gall midge which also has one generation per year. A mid-to late-spring application of Cygon will adequately control boxwood leafminer.

Spider Mites

Spider mites such as two-spotted spider mite and tumble mite are common and damaging on plants under water stress and during long, hot droughts.

They complete many generations throughout the summer. Kelthane (dicrotophos), Mavrik (fluvalinate), or another miticide should be used before mites cause foliage to turn bronze. A hydraulic sprayer must be used to maximize coverage, especially on plants with dense foliage, including foundation plantings, conifers, and other evergreens.

Two sprays must be used at a seven-to-10 day interval, since most miticides do not kill eggs. A single application will not be effective against spider mites.

Root Weevils

Root weevils (black vine, strawberry root), can be destructive in both adult and larval stages.

Adults chew notches in leaf margins. Larvae consume small roots and girdle larger roots, sometimes causing death of foundation plants, including rhododendron, azaleas, and yews (taxus).

Spray foliage with Orthene or Turcam/Dycarb in mid-June, followed by repeat applications at three-to-four week intervals until August.

Level of control is directly related to the degree of coverage, so use a hydraulic sprayer to control root weevils. Drenching soil beneath host plants may help reduce larval populations.

Borers

Clearwing moth borers are common in lilac, ash, dogwood, rhododendron, oak, and flowering cherries. Flatheaded borers (adults are called metallic wood borers) are common in white-barked birches, oaks, and other stressed hardwoods.

Larvae do the damage by feeding beneath bark, disrupting movement of food and water, destroying the cambium (the growth layer of cells), and causing structural weakness. Clearwing presence and flight periods can be monitored with pheromone traps (see insert).

A single, thorough-coverage bark spray of Dursban (chlorpyrifos) or lindane, 10-to-14 days after first male moth capture, will provide season-long control of most clearwing moths.

Three applications of bark/foliation sprays with Turcam/Dycarb, Dursban, or lindane are required to control flatheaded borers.

Summer (July-Sept.) Defoliators

Mimosa webworm, bagworm, fall webworm, Japanese beetle adults, and second generation elm leaf beetles sometimes become common in early summer.

All of these pests should be controlled when larvae are small to minimize damage and maximize effectiveness of the insecticide. Caterpillars can be controlled with one of the B.t. formulations. Sevin, Orthene, Turcam/Dycarb, and several other common insecticides will also control these pests.

Mistblower application may be cost-effective but may result in unacceptable drift of insecticidal sprays, especially in windy weather.

Japanese beetle adults defoliate many kinds of woody plants and roses in July and August. They are most easily controlled with weekly sprays of Sevin or Turcam/Dycarb.

Mavrik also gives long-term control of Japanese beetle adults. Japanese beetle traps can be used to capture large numbers of beetles, but they do not reduce defoliation or control the beetle population.

Area-wide grub control is the most effective way to reduce numbers of Japanese beetle adults and defoliation they cause.

Second generation elm leaf beetles
can cause significant defoliation if heavily infested trees are not sprayed. Birch leafminer can be controlled, if trees are sprayed when second or third generation adults are mating and ovipositing.

Scales

Crawlers of several soft scales (Fletcher, cottony maple, cottony maple leaf, pine tortoise, wax and tulip tree) hatch in late June or early July (earlier in the South).

They and settled nymphs are susceptible to scaldicides (Sevin, Orthene, Diazinon, Dursban, Turcam/Dycarb and Mavrik) in early July. A single, thorough-coverage, hydraulic spray should provide control.

Settled nymphs and other nymphal stages are vulnerable to contact insecticides, because they are not protected by cast skins and wax. Sprays to control soft scales should always be applied after all eggs have hatched to minimize the impact of pesticides on lady beetles and other predaceous insects, to minimize insecticide usage, and to maximize control.

Second generation pine needle scale, euonymus scale, and white peach scale crawlers hatch during July and early August. Two sprays at a 10-day interval may be required to control pine needle scale and white peach scale because crawlers hatch over a three week period.

Summer generation euonymus scale crawlers hatch over a longer period, so three applications at 10-day intervals are required.

Aphids

Aphid populations should be controlled before they secrete copious amounts of honeydew or do irreversible damage to leaves.

If aphids are allowed to build-up in high numbers, plant growth may be distorted and leaves may fall prematurely. Once honeydew and sooty mold are present they may persist long after aphids have been controlled by pesticides or natural enemies. Aphids are vulnerable to contact sprays whenever they are active.

Spider Mites

Spider mites can be controlled whenever they are active by spraying twice with a five-day (South) or 10-day (North) interval.

If trees are receiving repeated applications of Sevin to control other insects, be especially watchful for build-up of spider mites. Sevin selectively kills natural enemies of mites, thereby contributing to increases in spider mite populations.

Woody ornamentals—such as some euonymus varieties, roses, and bedding plants—are frequently infested by twospotted spider mites and tupid spider mites. These mites are dispersed on air currents and may appear suddenly in large numbers in hot dry weather.

Root Weevils

The second and third applications of black vine weevil adulticides should be applied in July and August.

In the South, Japanese weevils and Fuller rose beetles can be controlled with Orthene as a spray and drench during July. A single spring application will not control black vine weevil or other weevils mentioned earlier.

Area-wide grub control is the most effective way to reduce numbers of Japanese beetle adults...

Borers

White-barked birches determined to be infested by bronze birch borer during the summer can be injected with Inject-A-Cide B (Bidrin) using microinjection procedures developed by the J. J. Maugel Company.

Injection must be done by a trained technician between early July and early August but should not be used as an annual, preventive tactic.

Infested trees should be watered weekly during summer and fall drought and fertilized in the fall after the first hard frost.

The following year, bark/foliage sprays should be implemented as indicated earlier.

The peachtree borer can be controlled with a single application of Dursban or Lindane in early July (in the North) or late August (in the South). The second application for control of lesser peach tree borer should also be applied at this time to infested flowering cherries.

Fall (Sept.-Oct.) Defoliators

Mimosa and fall webworms reach their highest population density and cause most defoliation during late summer and early fall. They should be controlled as soon as first generation larval webs are detected in early summer.

However, both pests are susceptible to larvicides in late August and early September. If Bt. is to be used, it must be applied when larvae are small to achieve an acceptable level of control.

Scales

Magnolia scale and tulip tree scale crawlers are produced in late August and early September. Infested magnolias should be sprayed when goldenrod is in full bloom (early September).

A single, thorough-coverage, hydraulic spray with Orthene or Sevin will provide excellent control. Magnolias and tulip trees may be severely stunted or even killed by heavy infestations of these scales.

Gall Adelgids

Galls on spruce caused by eastern and Cooley spruce gall adelgids turn brown and open in August and September. After galls open, adelgids are vulnerable to contact insecticides. Adelgids on spruce, Douglas fir, and pine remain vulnerable to insecticidal sprays until the following spring when new buds open.

Root Weevils

Attempts to control root weevil larvae should be made in early September and early October. Two drenches with Turcam/Dycarb have been effective against larvae established in soil surrounding roots of field plants.

A single drench with Turcam/Dycarb, Orthene, or Furadan (carbofuran) controls larvae infesting containerized plants. Recent evidence indicates that overwintered larvae may also be susceptible to drenches in early spring.

Closing Thought

We believe that the best way to minimize insect damage is to maintain healthy trees and shrubs. Trees should be matched to sites, watered during the first two years after planting and during summer and fall drought, pruned properly, fertilized in late fall, mulched, and aerated to promote root vitality.

Adherence to these basic horticultural practices will promote tree vitality and improve their ability to withstand attack by most insect pest species.

Throughout this article we have stressed the importance of pest identification, proper timing, and thorough coverage for achieving a high level of insect control.

Coverage and timing are often more important than the insecticide or miticide used. So, make sure of proper pest identification, determine when it is most vulnerable to control, and apply a pesticidal spray thoroughly to only infested trees following label directions.