Many areas around buildings, ditches, billboards, poles, factories, shops, golf courses, parking areas, parks, industrial plant sites, vacant lots, schools, airports, roadsides, fences, lawns, pipelines, and other public or non-cropland areas may harbor unwanted trees and brush.

If these undesirable woody plants re-sprout after top removal, they may be difficult to kill and remove and cause unsightly appearance or interfere with the intended use of the property. The landscape manager has many options at his disposal to control and remove undesirable woody vegetation and replace it with desirable cover.

Woody plants can be removed by two primary methods or combinations of these methods which include mechanical or chemical means. The selection of the method depends upon:

- size of the area to be cleared;
- size of the brush;
- difficulty of control and kind of brush;
- proximity to valuable vegetation, water sources, and population centers; and
- use to be made of the area following brush removal.

Control methods
It is essential that problem plants be accurately identified so the proper control methods can be used. If the species cannot be identified, consult the local county agent, extension specialists, or personnel from the State Agricultural Experiment Station or U.S. Department of Agriculture. Some well-illustrated circulars, bulletins, and books are also available.

Mechanical Control. Hand methods of brush control, although effective, are slow, costly, and laborious. They are practical on small areas or in scattered stands.

Hand methods include grubbing, cutting, girdling, and burning.

Grubbing consists of using a grubbing hoe, shovel, or similar tool to dig enough of the root system out of the soil to kill the plants. The operation is difficult and time-consuming, but effective if properly done.

Cutting down brush with axes or saws is most effective on woody species that are killed when the top growth is removed, such as eastern red cedar and blueberry juniper. Species that re-sprout can be treated with herbicides to prevent re-sprouting.

Girdling is cutting a ring through the bark and cambium layer to prevent movement of water and nutrients to top growth. Girdling is practical in scattered stands of large trees six inches in diameter or greater. It is most effective during the summer months. Herbicides can be applied to the cut ring for improved kill.

Portable chain or power saws and girdlers are available for brush control. They reduce labor, time, and cost in brush removal but have limited use in dense stands or large areas.

Dozing is one of the more widely-used methods of brush control. Much clearing is done with straight dozer blades; however, many modifications and attachments are available for specialized clearing jobs.

Ideally, dozing removes brush and
large trees by pushing or pulling the plants out with as much of the roots intact as possible. Special attachments to the straight blade include teeth or U-shaped "stingers" to allow cutting the plant off below the ground line and lifting out the roots.

Dozing is most commonly practiced in open stands of large trees and brush or on rocky soils where other mechanical control methods are limited. It is not desirable in dense stands of brush that sprout from the roots after top removal.

Dozed trees can be windrowed or stacked so the brush can be burned or left to decay. The equipment and fuel required for dozing are costly. Dozing heavily damages the turf and grounds.

Mowing and shredding are temporary control methods for weeds and small brush in landscape management. Repeated mowing, once or twice a year, is needed for maintenance on most weed-infested areas.

Mower types vary, but most consist of sharp rotary blades. Heavy duty shredders can be used on large brush and small trees, three to four inches in diameter.

Disking. Large disk plows or tandem disks will destroy stands of small brush. They may also destroy the grass stand. Disking is limited to tillable soils. Disking prepares a good seedbed, although compaction by a cultipacker, roller, or other implement may be desired. The operation is expensive.

Cost of mechanical treatments is usually closely correlated with degree of soil disturbance and size and density of brush to be removed. Dozing, disking, and grubbing are among the most effective mechanical brush control treatments, but are the most costly to perform, while mowing is less expensive. Hand methods, such as sawing, axing or grubbing, are sometimes effective, but are slow, costly, and laborious.

Chemical Control. Herbicides are important means of weed and brush control. Compared to mechanical practices, herbicides are usually less expensive, less damaging to the environment, and often more effective.

Herbicide sprays, however, are subject to drift and may damage susceptible crops or valuable vegetation on nearby areas if improperly applied. A variety of herbicides and herbicide combinations are commercially available. It is necessary to understand the properties and effects of herbicides in order to safely and effectively use them.

Individual herbicides and combinations of herbicides are used for weed and woody plant control. After manufacturing, technical (pure) herbicide must be formulated with other ingredients to prepare usable products for ease of handling and to obtain the desired effects.

Since very small amounts are sometimes required per unit of land, uniform application is essential. Herbicides are formulated as liquid concentrates, wettable powders, and granules or pellets. It is important to know the characteristics and precautions to be taken when using herbicides.

Characteristics of herbicides

Phenoxy herbicides, such as 2,4-D, 2,4-DB, dichlorprop, and MCPA have been used for over 30 years and are effective for the control of many weed and brush species. They are used to produce changes and shifts in plant cover for crops, pastures, lawns, or wildlife habitat.

The phenoxy's are not toxic to livestock or man at dosages labelled for weed control and disappear rapidly from the soil, vegetation, and water. They do not accumulate in the food chain.

Susceptible vegetation, especially broadleaf plants, may be damaged from spray drift or from volatilization. Following label instructions and making applications during favorable weather should prevent drift and volatilization problems.

Phenoxy herbicides selectively control broadleaf weeds in grasslands or grass crops. Rates of 0.25 to 2 pounds per acre effectively control many broadleaf plants.

Phenoxy compounds are relatively inexpensive and easy to apply. They are usually marketed as liquid concentrates as salts or esters.

Ester formulations are often more effective as foliar sprays on trees and brush than the salts. Amine formulations commonly available include dimethyamine, triethyamine, diethanolamine, trimethylamine, triethanolamine, and others.

Other inorganic salts of the phenoxy's that have been sold include ammonium, sodium, potassium, and lithium salts. Salts are sprayed in water carriers.

Esters are classified as high volatile or low volatile, depending upon how readily they vaporize. Low volatile esters should be used in areas where sensitive crops or vegetation are grown.

The concentration of the active ingredient, the "acid equivalent," is indicated on the label as pound-per-gallon. If a herbicide concentrate has an acid equivalent of 4 pounds per gallon, then 1 gallon of the concentrate contains 4 pounds by weight of the parent acid, regardless of formulation. Usually the most concentrated formulations cost less per pound and are more economical to use than weaker concentrates.

Phenoxy compounds are readily absorbed by leaves and are translo-
Phenoxy herbicides, however, are more commonly applied broadcast to large areas containing dense stands of brush. These herbicides are sprayed on above-ground parts and foliage since they are not effective at economical rates as soil-applied herbicides.

Organic arsenicals, available as liquid concentrates, include DSMA, MSMA, and cacodylic acid. These compounds have limited use for woody plant control as foliar sprays. DSMA and MSMA are used for postemergence weed control in tolerant lawn grasses and non-crop areas. Cacodylic acid is used as a general desiccant and defoliant (contact) spray on many crop and non-crop areas.

Organic arsenicals can be used for quick dieback of woody species, but plants tend to recover. They can be injected into the trunk to kill unwanted trees. As foliar sprays, they are applied in water. Complete coverage by spray is required for best results. They are inactivated by soil contact.

Organic arsenicals may injure desirable plants. By directed spraying, desirable plants can be avoided. Organic arsenicals have a moderate to low mammalian toxicity but are highly toxic to insects such as honey bees. They are mildly corrosive to spray equipment.

Bipyridyliums. Diquat and paraquat are desiccant (drying agents) and defoliant (contact) herbicides used for general contact activity against weeds and brush. In some situations, they are used as selective herbicides.

Paraquat is water soluble and is inactivated by soil contact. Woody species will usually re-sprout from foliar sprays of diquat and paraquat. Paraquat may be more effective as an injection treatment against some undesirable trees.

Paraquat is highly toxic when ingested. Extreme care must be taken to avoid breathing the spray mist or getting the concentrate on the skin. Use of protective clothing and respirators are recommended when making applications.

Get immediate medical care in the event of ingestion. If treated within 12 hours, chances of survival are excellent.

Benzoxics. Dicamba is a selective translocated herbicide. It controls many broadleaf weeds in pasture crops and turf and some woody plants.

Dicamba is similar to the phenoxy herbicides in activity and use. It is absorbed through roots, as well as foliage. It may be applied by either ground or aerial sprays or as granules, depending upon the weeds to be controlled and their proximity to susceptible crops.

Dicamba may be applied in mixtures with 2,4-D to broaden the spectrum of weed species controlled. It has a low order of toxicity to wildlife, fish, livestock, and humans. It rapidly degrades and does not accumulate in the environment. Dicamba has a low corrosion hazard to spray equipment.

It is formulated as a liquid as the dimethylamine or sodium salt and is sprayed in water carrier. It is also formulated as wettable powders for water sprays or as granules or pellets for dry application.

Bromacil (a uracil) will control a wide variety of woody species. If rates above 5 pounds per acre are used, it will also kill many desirable grasses and forbs on grazing lands.

Fenuron is no longer produced commercially, but a fenuron-TCA combination is available and is used to control certain woody plants and weeds on non-crop areas. Monuron and monuron-TCA combinations are commercially available, but have limited use for brush control since high rates are required for effectiveness. Monuron-TCA or fenuron-TCA combinations are generally used for non-selective, temporary sterilization in non-crop areas.

Tebuthiuron provides excellent control of a variety of undesirable woody plants. Tebuthiuron is formulated as pellets and contains 20 percent active ingredient. “Brush bullets” containing 13.8 percent active ingredient are available for woody plant control. Several new formulations are available including an 80 percent wettable powder for total vegetation control.

Hexazinone is a relatively new compound showing promise for woody plant control and use on non-crop areas. Hexazinone is recommended for forestry site preparation and pine release where loblolly, long leaf and short leaf, slash, and Virginia pines are grown.

The pelletized product can be spread in a grid pattern for hardwood brush control. It also shows promise for total vegetation control including perennial grasses. It is highly water soluble. Hexazinone is also commercially available as a liquid that can be applied undiluted near the base of woody plants with a hand-grown applicator.

The ureas and uracils mentioned are absorbed primarily through the roots of plants. They may be applied in spring or fall when weeds and brush are actively growing and when adequate rainfall leaches them into the soil.

Fall, winter, and early spring applications of tebuthiuron and hexazinone can be timed to reduce injury to forage plants and eliminate hazards of drift. These compounds may kill trees at a considerable distance from the point of application, depending upon the size of the root system and whether it extends into the treated areas. Therefore, extreme care should be taken near desirable trees.
Ureas and uracils are non-volatile and do not corrode equipment. Most urea and uracil herbicides can be injurious to some forage and turf species when applied broadcast, especially as sprays. Applying herbicides as pellets or balls to confine the herbicide to a few spots in the treated area reduces exposure to desirable forage or turf plants. Also, application of granules, pellets, or sprays to the soil surface or sprays applied subsurface in rows or bands spaced 6 to 10 feet apart may reduce injury to forage or turf and may increase kill of some woody plants.

Most of the ureas and uracils persist in the soil for several months at rates used for brush control. They are low in toxicity to warm-blooded animals.

Other organic herbicides

Arsenal (AC 252,925) is a new broad spectrum herbicide with activity against herbaceous and woody plants. It controls sedges, grasses and broadleaf weeds applied either pre-emergence or postemergence.

Arsenal is readily absorbed through foliage and roots. Complete kill may take several weeks. Most herbaceous weeds are susceptible to Arsenal at rates of 0.4 to 1 pound per acre whereas woody species may require higher rates of 0.75 to 3 pounds per acre depending upon species to be controlled.

Arsenal is being tried experimentally for conifer release and weed control in bermudagrass. Arsenal should be applied postemergence to perennial weeds when they are actively growing and the herbicide is readily translocated.

It has a low order of toxicity to warm-blooded animals. It persists for 3 to 12 months in the soil depending upon rate applied and soil moisture content.

Picolaram is a selective, translocated herbicide that effectively controls many weed and brush species in grasslands. It can be applied to the soil or foliage and is effective as injection/cut-surface treatments on many undesirable trees.

Picolaram can be applied in liquid sprays and as pellets to brush in the spring and fall, depending upon the species to be controlled. It is absorbed by both foliage and roots. Most perennial grasses are resistant. Its high activity against many woody plants at moderate rates makes it desirable for brush control. Care must be taken to prevent drift of picloram to desirable plants.

Picolaram is relatively persistent in soil, especially in cooler climates. Since it is water soluble, care must be taken to prevent its movement into water used for irrigation. It should not be applied where it can be leached or moved to sensitive plants by rainfall.

Picolaram has a low mammalian toxicity and is only slightly corrosive to spray equipment.

Triclopyr (Garlon) is a relatively new selective postemergence herbicide for use on rights-of-way, industrial and forestry sites, and experimentally for rangeland brush control. It can also be used to kill trees and brush by injection/cut-surface treatments. It is readily translocated in plants and is moderately toxic to warm-blooded animals. It degrades rapidly in the soil.

Ester formulations are available. Glyphosate is a non-selective herbicide effective against both grasses and broadleaf plants.

Glyphosate is readily translocated from leaf and stem tissue to roots, resulting in a high degree of kill on many weeds. It is inactivated by contact with the soil and should not injure newly-seeded plants in treated soil.

Glyphosate is sprayed in water carrier. It is presently registered for use for non-crop and pre-till weed control and as a directed spray for orchards, plantations, Christmas trees, and many other crops. It is corrosive to some equipment.

Broadcast sprays over woody species will damage desirable forage plants. Applications should be made to individual plants on non-crop areas or areas to be renovated.

Glyphosate has a low order of mammalian toxicity. Amitrole is effective against poison ivy and poison oak. If amitrole is accidentally sprayed on desirable plants, they are less likely to be severely injured than sprays of phenoxyis, dicamba, or picloram.

Amitrole is available as a powder containing 50% active ingredient or as a liquid formulation. Another formulation, Amitrole-T, contains 2 pounds per gallon of ammonium thiocyanate in addition to 2 pounds per gallon of amitrole.

Amitrole is effective through the roots and tops of plants. Amitrole cannot be used where there is any possibility of residues on food or feed crops.

Fosamine (Krenite) applied as foliar spray will kill or suppress several different woody species on non-crop land. If it is applied to trees or brush in late summer or early fall, susceptible species will fail to leaf out following spring and subsequently die.

Rates of 1 1/2 to 3 gallons of fosamine are applied per acre during the two month period before fall leaf coloration. If rainfall occurs within 24 hours of application, effectiveness may be decreased. Use only in accordance with recommendations on the label. Fosamine cannot be used on cultivated land or in pastures.

Inorganic herbicides

Ammonium sulfamate (AMS, Ammate) is a non-selective herbicide used extensively to kill all plants growing on rights-of-way.

AMS kills trees. It can be used as a foliage spray or in cuts through the bark. When applied to stumps, it prevents sprouting. AMS kills or suppresses herbaceous plants as readily as woody plants.

It is corrosive. Spray equipment should be cleaned immediately and coated with diesel oil or similar light oils after use.

Oils

Diesel oil and kerosene are commonly used to control control honey mesquite and huisache. One cup to 1 gallon of oil is used per tree, depending upon its size. The oil is applied around the base of the tree during dry weather when the soil is pulled away from the trunk. Application at this time enables the oil to penetrate to the lower buds on the stem.

Oils alone are not very effective herbicides when applied to the foliage of woody plants. However, diesel fuel is commonly used as a diluent and carrier for some oil soluble herbicides.

It is also used as a carrier in aircraft spraying, usually as a 1:4 oil-in-water emulsion. The oil reduces evaporation of the herbicide in arid areas and aids in penetrating stems and foliage of some woody plants. Water carrier, however, is equally as effective as oil carriers in some situations, such as use of 2,4-D on sagebrush.