Weeds are a fact of life. No turf or landscape will remain weed-free without man’s intervention. Landscape exposed to heat, drought, poor soil, shade, and traffic will surrender to weeds. That’s why there will always be work for the landscape manager.

His job is to shift the balance in favor of the desirable species and keep it that way. He does this by putting stress on weeds and reducing stress on desirable plants.

Stress may stem from poor soil; excessive shade, slope, moisture, and wind; improper plant selection; and maintenance practices such as mowing too low, using unnecessarily heavy machinery on turf areas, over-irrigating, over-fertilization and mis-timed aerification.

Correction of stress factors is an important component of a weed control program. If stress can’t be corrected, stress-tolerant plants should be selected and planted.

In this guide, weed control is divided into four categories: turf (warm and cool season), ornamental, rights-of-way, and aquatic.

Each area may require a different approach, though many of the chemicals and weeds are the same. It’s important that a landscape manager approach each in the proper way.

Editor’s note: Throughout the sections of the Weed Control Guide, there are references to herbicides that the authors say have been shown to be effective in combating a certain weed problem. The herbicides labelled as effective are not endorsed by WEEDS TREES & TURF. They have been shown to be effective in research experiments.
Bermedagrass is the dominant turf species in warmer climates. In general, herbicides that can be used on bermudagrass can be used safely on zoysiagrass. However, special attention should be paid to herbicide labels regarding applications to centipedegrass and St. Augustine, which are similar to each other in their tolerance to herbicides.

Summer grass weeds: Large crabgrass and dallisgrass invade more turf acreage in the southern U.S. than any other grasses. Germinating seeds of both can be satisfactorily controlled with benefin, bensulide, DCPA, oryzalin, pendimethalin, atrazine, and simazine.

Certain formulations of atrazine are labelled for use on St. Augustine, zoysia, and centipede for sod production while other commercial products containing atrazine are labeled for homeowner use. A combination of acetamide (Dual) and either atrazine or simazine is currently being tested for effectiveness.

Only asulam is used for post-emergence control of crabgrass and dallisgrass in St. Augustine. MSMA and DSMA are effective post-emergence herbicides for these weeds in bermudagrass. The arsonates MSMA and DSMA are used almost exclusively in bermuda and zoysia turfs.

Goosegrass is the most difficult summer grass to control in the South. Timing of application of pre-emergence herbicides is of paramount importance if control is to be achieved. We generally think goosegrass starts germinating in significant quantities four to six weeks after crabgrass. However, this may vary. In the lower South, the two species may well germinate simultaneously.

If application of a pre-emergent herbicide is delayed, large crabgrass may escape because it germinates earlier than goosegrass. In bermudagrass and zoysia, large crabgrass can be controlled quite effectively with post-emergence applications of the arsonates.

Pre-emergence herbicides would appear to be a better approach to goosegrass control than post-emergence control with arsonates.

Oxadiazon (Ronstar) and oryzalin (Surflan) give excellent, season-long control of goosegrass. Research has shown post-emergence applications of MSMA plus metribuzin (Sencor) gives good control of goosegrass.

Sandbur and bahiagrass in bermuda and zoysia can be controlled with arsonates.

Research results over the past few years have shown that bahiagrass can be selectively controlled in established centipedegrass with sulfonyluron or metsulfuron, but neither material is currently labelled for this use.

At present, there is no selective control of torpedograss in southern turf.

Both annual and perennial sedges are problems in the South. Purple nutsedge and, to a lesser degree, yellow nutsedge are the most severe problems.

Multiple applications of arsonates or an arsonate/phenoxycarb combination are generally recommended for purple nutsedge, only on bermuda or zoysia. Basagran can be used for control of yellow nutsedge and several annual species.

Summer broadleaf weeds are a problem throughout Southern turf but not to the extent of the grassy weeds, such as dallisgrass, large crabgrass, and goosegrass.

Prostrate spurge and Virginia butterweed, along with yellow woodsor-
Dallisgrass is an important and difficult-to-control broadleaf weed. Multiple applications of 2,4-D plus dicamba, Trimec, or Trex-San are almost always necessary. Researchers suggest the use of a non-ionic surfactant with the herbicide.

Winter grass weeds: Annual bluegrass is by far the most severe grassy weed infesting southern turf during the late fall, through the dormancy period, and into the early spring. Annual bluegrass decreases the aesthetic value of turf and interferes with warm-season turfs in late spring.

Coverage is usually slow following fade out of annual bluegrass, leaving large sections of bare ground exposed. Other weeds, such as goosegrass, tend to move into bare areas.

Annual bluegrass control with pre-emergence herbicides is usually accomplished with either benefin, bensulide, DCPA, oryzalin, pendimethalin, pronamide, simazine, or oxadiazon. Two applications may be necessary during the dormant season for acceptable control, except with pronamide, oryzalin, or simazine, all of which provide pre-emergence and post-emergence control of annual bluegrass in bermudagrass.

There are three choices for annual bluegrass control on bermudagrass greens overseeded with perennial ryegrass. Bensulide may be applied prior to overseeding as a pre-emergence approach. Ethofumesate may be applied 15 to 30 days after overseeding. Check label for timing to avoid delaying spring transition back to bermudagrass.

Fenarimol, a fungicide, applied two weeks prior to overseeding, controls several turf diseases in addition to controlling annual bluegrass.

Another approach employed particularly on golf courses, is to use a post-emergence, non-selective herbicide such as paraquat, glyphosate, or cacocyclic acid prior to the warm-season turf breaking dormancy. This
WEED CONTROL GUIDE

Herbicide Directory

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Brand Name(s)</th>
<th>Company</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>bromacil</td>
<td>Hyvar</td>
<td>DuPont</td>
<td>Non-selective control of weeds and grasses in non-crop areas, usually mixed with diuron for roadsides.</td>
</tr>
<tr>
<td>bromoxynil</td>
<td>Buctril</td>
<td>Union Carbide Rhone Poulenc</td>
<td>Post-emergence control of broadleaf weeds in seedling turf, established turf and non-crop areas.</td>
</tr>
<tr>
<td>cedocyclacid</td>
<td>Phytol</td>
<td>Verac, Red-E-Cate</td>
<td>Non-selective control for turf renovation, edging and in stock tanks.</td>
</tr>
<tr>
<td>chloramben</td>
<td>Asulox</td>
<td>Amiben</td>
<td>Pre-emergence control in ornamentals.</td>
</tr>
<tr>
<td>chlorflurenol</td>
<td>copper</td>
<td>Dalapon 85 Dowron M</td>
<td>Growth regulator also controls broadleaf weeds and vines.</td>
</tr>
<tr>
<td>dalapon</td>
<td>dalapon</td>
<td>Dalapon 85 Dowron M</td>
<td>Pre-emergence control of perennial and annual grasses and ditches.</td>
</tr>
<tr>
<td>dacronet</td>
<td>dacronet</td>
<td>Dacronet</td>
<td>Preplant herbicide for turf and ornamental beds.</td>
</tr>
<tr>
<td>benzinide</td>
<td>benzinide</td>
<td>Elanco</td>
<td>Preemergence control of ornamentals.</td>
</tr>
<tr>
<td>bentazon</td>
<td>Bentazon</td>
<td>BASF</td>
<td>Post-emergence control of annual grasses and broadleaf weeds in established turf.</td>
</tr>
<tr>
<td>asulam</td>
<td>Asulox</td>
<td>Rhone Poulenc</td>
<td>Non-selective control of ornamentals.</td>
</tr>
<tr>
<td>ammonium sulphanate</td>
<td>ammonium sulphanate</td>
<td>Amate</td>
<td>Post-emergence control of grassy, ornamental, non-crop areas.</td>
</tr>
<tr>
<td>atrazine</td>
<td>Atrantil</td>
<td>BASF</td>
<td>Pre-emergence control of broadleaf weeds in established turf.</td>
</tr>
<tr>
<td>benifin</td>
<td>benifin</td>
<td>Elanco</td>
<td>Preemergence control of annual grasses and broadleaf weeds in established turf.</td>
</tr>
<tr>
<td>bensulide</td>
<td>Betasan</td>
<td>Union Carbide</td>
<td>Selective control of annual grasses and broadleaf weeds.</td>
</tr>
<tr>
<td>bensulide</td>
<td>Betasan</td>
<td>Union Carbide</td>
<td>Selective control of annual grasses and broadleaf weeds.</td>
</tr>
<tr>
<td>bensulide</td>
<td>Betasan</td>
<td>Union Carbide</td>
<td>Selective control of annual grasses and broadleaf weeds.</td>
</tr>
<tr>
<td>bentazon</td>
<td>Bentazon</td>
<td>BASF</td>
<td>Selective postemergence control of nutsedge in warm-season turf.</td>
</tr>
<tr>
<td>bentazon</td>
<td>Bentazon</td>
<td>BASF</td>
<td>Selective postemergence control of nutsedge in warm-season turf.</td>
</tr>
<tr>
<td>bentazon</td>
<td>Bentazon</td>
<td>BASF</td>
<td>Selective postemergence control of nutsedge in warm-season turf.</td>
</tr>
</tbody>
</table>

Prostrate and Spotted Spurge Control

Benefin—Poor

Bensulide—Poor

DCPA—Excellent

Oxadiazon—Variable

Pendimethalin—Excellent

Siduron—Variable

Henbit, chickweed, and clovers usually require something other than 2,4-D for post-emergence control. In dormant bermudagrass and zoysiagrass, dicamba or combinations with dicamba are used often for post-emergence control.

The phenoxy’s are safe on completely dormant turfs. However, actively growing turfs vary considerably in tolerance to phenoxy materials.

St. Augustine will usually tolerate 0.5 lbs./acre of 2,4-D with only minimal injury. At rates above that, St. Augustine is usually injured.

This may be unimportant when using phenoxy’s on dormant warm-season turfs, but invariably application is made during spring transition. All turfgrasses are more susceptible to phenoxy injury during this transition period.

The combination of mecoprop plus chlorfurecol is often used, especially by the homeowner on St. Augustine.

Several experimental herbicides show promise for control of wild garlic and numerous winter broadleaf weeds. Single applications of imazaquin, sulfofuron, and metsulfuron have provided control of wild garlic equal to that obtained from multiple applications of phenoxy herbicides.

WT&T
WEED CONTROL GUIDE

Winter Broadleaf Weeds:
- Impertant winter broadleaf weeds include:
 - common chickweed
 - henbit
 - clovers
 - spurweed
 - mouse-ear chickweed
 - lawn burweed
 - common dandelion
 - wild onion
 - wild garlic
 - plantains
 - speedwells

Pre-emergence control of some species can be obtained with benefin, bensulide, DCPA, pendimethalin, simazine, and other herbicides.

PROSTRATE AND SPOTTED SPURGE CONTROL

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Company</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefin</td>
<td>Elanco</td>
<td>Preemergence control of ornamentals.</td>
</tr>
<tr>
<td>Bensulide</td>
<td>Stauffer</td>
<td>Preemergence control of annual grasses and broadleaf weeds in established turf.</td>
</tr>
<tr>
<td>DCPA</td>
<td></td>
<td>Excellent for pre-emergence control of annual grasses and broadleaf weeds in established turf.</td>
</tr>
<tr>
<td>Oxadiazon</td>
<td></td>
<td>Variable performance.</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td></td>
<td>Excellent for pre-emergence control of annual grasses and broadleaf weeds in established turf.</td>
</tr>
<tr>
<td>Siluron</td>
<td></td>
<td>Variable performance.</td>
</tr>
</tbody>
</table>

Henbit, chickweed, and clovers usually require something other than 2,4-D for post-emergence control. In dormant bermudagrass and zoysiagrass, dicamba or combinations with dicamba are used often for post-emergence control.

The phenoxys are safe on completely dormant turfs. However, actively growing turfs vary considerably in tolerance to phenoxy materials. St. Augustine will usually tolerate 0.5 lbs./acre of 2,4-D with only minimal injury. At rates above that, St. Augustine is usually injured. This may be unimportant when using phenoxys on dormant warm-season turf, but invariably application is made during spring transition. All turfgrasses are more susceptible to phenoxy injury during this transition period.

The combination of imazapyr plus the phenoxys is used, especially on St. Augustine. Single applications of wild garlic and several other winter broadleaf weeds have provided control of wild garlic and numerous winter broadleaf weeds. Single applications of imazaquin, sulfometuron, and metsulfuron have provided control of wild garlic and numerous winter broadleaf weeds.

Herbicide Directory

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Company</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitrole</td>
<td>Union Carbide</td>
<td>Non-selective grass and broadleaf control in non-crop areas including weed control in non-crop areas.</td>
</tr>
<tr>
<td>Bromacil</td>
<td>DuPont</td>
<td>Nonselective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Bentazon</td>
<td>BASF</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Union Carbide</td>
<td>Selective postemergence control of annual grasses and broadleaf weeds in non-crop areas.</td>
</tr>
<tr>
<td>Chloramben</td>
<td>Amiben</td>
<td>Preemergence control in non-crop areas.</td>
</tr>
<tr>
<td>Benzoate 4</td>
<td>PBI Gordon</td>
<td>Preemergence control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Betamec-4</td>
<td>Betamec</td>
<td>Preemergence control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Dalapon</td>
<td>Biotech</td>
<td>Selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Basagran</td>
<td>BASF</td>
<td>Selective postemergence control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Emet</td>
<td>Emt</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Malathion</td>
<td>Bayer</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>Monsanto</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Mecoprop</td>
<td>Uniroyal</td>
<td>Growth regulator. Also controls broadleaf weeds and vines.</td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Dicamba</td>
<td></td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Lescosan</td>
<td>Lescosan</td>
<td>Broadleaf weeds in non-crop areas.</td>
</tr>
<tr>
<td>Betanil</td>
<td>Betanil</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Dupont</td>
<td>Union Carbide</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Aatrex</td>
<td>Ciba Geigy</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Aatrex</td>
<td>Ciba Geigy</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Ardent</td>
<td>Ardent</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Eeemco</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
<tr>
<td>Amine</td>
<td>Amine</td>
<td>Non-selective control of annual grasses and weeds in non-crop areas.</td>
</tr>
</tbody>
</table>
Herbicide Directory

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Brand Name(s)</th>
<th>Company</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCPA</td>
<td>Dacthal</td>
<td>SDS Biotech</td>
<td>Preemergence control of annual grasses and broadleaf weeds in turf and ornamental beds.</td>
</tr>
<tr>
<td>dicamba</td>
<td>Banvel</td>
<td>Velsicol</td>
<td>Selective postemergence control of broadleaf weeds in turf and for noncrop control of brush.</td>
</tr>
<tr>
<td>dichlobenil</td>
<td>Dyclomec</td>
<td>PBI Gordon</td>
<td>Selective weed control in ornamental beds and for total weed control on roadsides, fencerows, etc.</td>
</tr>
<tr>
<td>dichlorprop</td>
<td>2,4-DP</td>
<td>SDS Biotech</td>
<td>Brush control and aquatic weed control.</td>
</tr>
<tr>
<td>diphenamid</td>
<td>Enide</td>
<td>Nor-Am, Upjohn</td>
<td>Selective control of annual grasses and broadleaf weeds in bermudagrass, dichondra and around ornamentals.</td>
</tr>
<tr>
<td>DSMA</td>
<td>Methar 30</td>
<td>W.A. Cleary</td>
<td>Selective postemergence control of sedges and grasses in turf and ditchbanks and storage yard.</td>
</tr>
<tr>
<td>diuron</td>
<td>Karmex</td>
<td>DuPont</td>
<td>Generally used at high rates for nonselective total weed control in industrial sites.</td>
</tr>
<tr>
<td>diquat</td>
<td>Diquat</td>
<td>Ortho, Chevron</td>
<td>Aquatic weed control.</td>
</tr>
<tr>
<td>endothall</td>
<td>Aquathol K</td>
<td>Pennwalt</td>
<td>Aquatic weed control and turf herbicide and desiccant.</td>
</tr>
<tr>
<td>EPTC</td>
<td>Eptam</td>
<td>Stauffer</td>
<td>Selective control of annual grassy weeds, nutgrass, and perennial weeds.</td>
</tr>
<tr>
<td>ethofumesate</td>
<td>Prograss</td>
<td>Nor-Am</td>
<td>For control of Poa annua and white clover in fairways.</td>
</tr>
<tr>
<td>fenac</td>
<td>Fenac</td>
<td>Union Carbide</td>
<td>Preemergence long-term control of weeds, usually mixed with other herbicides.</td>
</tr>
</tbody>
</table>

Herbicide Directory (continued)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Brand Name(s)</th>
<th>Company</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>fosamine</td>
<td>Krenite</td>
<td>DuPont</td>
<td>Brush control.</td>
</tr>
<tr>
<td>flurprimidol</td>
<td>Cutless</td>
<td>Elanco</td>
<td>Growth regulator that suppresses annual bluegrass.</td>
</tr>
<tr>
<td>fluazifop-butyl</td>
<td>Fusilade</td>
<td>ICI Americas</td>
<td>Selective postemergence control of grassy weeds in ornamentals.</td>
</tr>
<tr>
<td>fluridone</td>
<td>Sonar</td>
<td>Elanco</td>
<td>Broad spectrum herbicide for submerged and emersed aquatic weeds.</td>
</tr>
<tr>
<td>glyphosate</td>
<td>Rodeo</td>
<td>Monsanto</td>
<td>For control of emerged aquatic weeds and broad leaf weeds in or near aquatic sites, such as ditchbanks.</td>
</tr>
<tr>
<td>glyphosate</td>
<td>Roundup</td>
<td>Monsanto</td>
<td>Nonselective, short-term herbicide for turf renovation and total weed control along fences and plant beds.</td>
</tr>
<tr>
<td>imazaquin</td>
<td>American Cyanamid</td>
<td>Experimental herbicide for turf</td>
<td></td>
</tr>
<tr>
<td>imazapyr</td>
<td>Arsenal</td>
<td>American Cyanamid</td>
<td>Broad spectrum systemic industrial herbicide</td>
</tr>
<tr>
<td>linuron</td>
<td>Lorox</td>
<td>DuPont</td>
<td>Short-term control of annual weeds in roadsides and fence rows.</td>
</tr>
<tr>
<td>mefluidide</td>
<td></td>
<td></td>
<td>Growth regulator that suppresses Poa annua.</td>
</tr>
<tr>
<td>methyl bromide</td>
<td>Dowfume</td>
<td>Dow</td>
<td>Fumigant for pre-plant control. Also kills weed seed.</td>
</tr>
<tr>
<td>metham</td>
<td>Vepam</td>
<td>Stauffer</td>
<td>Preplant soil fumigant killing weeds, weed seed, insects and fungi.</td>
</tr>
<tr>
<td>metribuzin</td>
<td>Sencor</td>
<td>Mobay</td>
<td>Postemergence control of goosegrass in warm-season turf.</td>
</tr>
<tr>
<td>Herbicide</td>
<td>Brand Name(s)</td>
<td>Company</td>
<td>Uses</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>MCPP</td>
<td>MCPP</td>
<td>SDS Biotech</td>
<td>Selective broadleaf weed control in turf. Often combined with other herbicides.</td>
</tr>
<tr>
<td></td>
<td>Mecomec</td>
<td>PBI Gordon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPP</td>
<td>WA Cleary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chipco Turf</td>
<td>Rhone Poulenc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbicide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSMA</td>
<td>Ansar</td>
<td>SDS Biotech</td>
<td>Postemergence selective control of crabgrass and broadleaf weeds in turf. Also, grassy weed control in ditchbanks, roadsides, industrial areas.</td>
</tr>
<tr>
<td></td>
<td>Broadside</td>
<td>Vertac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ansar</td>
<td>Drexel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weed-Hoe</td>
<td>Vineland</td>
<td></td>
</tr>
<tr>
<td>napropamide</td>
<td>Devrinol</td>
<td>Stauffer</td>
<td>Selective control of weeds in ornamental beds and containers. Experimental combination with Delasar for season-long crabgrass control in turf.</td>
</tr>
<tr>
<td>oryzalin</td>
<td>Surfian</td>
<td>Elanco</td>
<td>Preemergence control of weeds in established ornamentals and warm-season turf.</td>
</tr>
<tr>
<td>oxadiazon</td>
<td>Ronstar</td>
<td>Rhone Poulenc</td>
<td>Preemergence control of weeds in ornamentals and turf.</td>
</tr>
<tr>
<td>oxyfluorfen</td>
<td>Goal</td>
<td>Rohm & Haas</td>
<td>Selective control of weeds in ornamentals.</td>
</tr>
<tr>
<td>paraquat</td>
<td>Paraquat</td>
<td>Ortho, Chevron</td>
<td>Nonselective control of weeds in rights-of-way, industrial areas and fencerows.</td>
</tr>
<tr>
<td>pendimethalin</td>
<td>Proturf</td>
<td>Scotts</td>
<td>Preemergence turf herbicide for control of grassy and broadleaf weeds.</td>
</tr>
<tr>
<td>Weedgrass Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>picloram</td>
<td>Tordon</td>
<td>Dow</td>
<td>Systemic, long-term killer of woody plants and broadleaf weeds.</td>
</tr>
<tr>
<td>prometon</td>
<td>Pramitol</td>
<td>Ciba Geigy</td>
<td>Nonselective herbicide with long residual for industrial weed control.</td>
</tr>
</tbody>
</table>

Herbicide Directory

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Brand Name(s)</th>
<th>Company</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>pronamide</td>
<td>Kerb</td>
<td>Rohm & Haas</td>
<td>Poa annua control in warm season grasses. Also weed and grass control around woody ornamentals and Christmas trees.</td>
</tr>
<tr>
<td>sethoxydim</td>
<td>Poast</td>
<td>BASF</td>
<td>Postemergence control of grassy weeds around broadleaf ornamentals.</td>
</tr>
<tr>
<td>siduron</td>
<td>Tupersan</td>
<td>DuPont</td>
<td>Preemergence control of annual grasses in newly seeded turf areas.</td>
</tr>
<tr>
<td>simazine</td>
<td>Princep</td>
<td>Ciba Geigy</td>
<td>Selective control of annual grasses and broadleaf weeds in established bermudagrass. Also, used in industrial and aquatic weed control.</td>
</tr>
<tr>
<td>sulfometuron</td>
<td>Oust</td>
<td>DuPont</td>
<td>Non-selective industrial and selective in bermudagrass.</td>
</tr>
<tr>
<td>tebuthiuron</td>
<td>Spike</td>
<td>Elanco</td>
<td>Brush control and total vegetation control in non-crop areas.</td>
</tr>
<tr>
<td>trifluralin</td>
<td>Treflan</td>
<td>Elanco</td>
<td>Selective preemergence weed control in established ornamentals and under asphalt.</td>
</tr>
<tr>
<td>trichlopyr</td>
<td>Garlon</td>
<td>Dow</td>
<td>Systemic control of woody plants in rights-of-way and industrial sites.</td>
</tr>
<tr>
<td>2, 4-D</td>
<td>2, 4-D</td>
<td>SDS Biotech</td>
<td>Selective control of weeds in turf and numerous other areas. Usually mixed with other herbicides.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhone Poulenc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertac</td>
<td></td>
</tr>
<tr>
<td>Vorlex</td>
<td>Vorlex</td>
<td>Nor-Am</td>
<td>Preplant fumigant. Broadleaf weed control in established turf.</td>
</tr>
</tbody>
</table>
Herbicide Combinations

<table>
<thead>
<tr>
<th>Broadleaf Weed Control</th>
<th>Broadside</th>
<th>Crystal</th>
<th>Nonselective, broad spectrum weed control.</th>
</tr>
</thead>
<tbody>
<tr>
<td>diuron plus sodium chlorate plus sodium metaborate</td>
<td>Chlorella</td>
<td>Rhone Poulenc</td>
<td>Nonselective weed and grass killer.</td>
</tr>
<tr>
<td>Amitrole plus fenac plus strazine</td>
<td>Fenamine</td>
<td>Union Carbide</td>
<td>Pre- and postemergence control of weeds for industrial sites and rights-of-way</td>
</tr>
<tr>
<td>benefin plus cryzalin benefin plus trifluralin</td>
<td>XL</td>
<td>Elanco</td>
<td>Preemergence control of annual grasses and broadleaf weeds in established turf.</td>
</tr>
<tr>
<td>bensulide plus oxadiazon</td>
<td>ProTurf</td>
<td>OM Scott</td>
<td>Broad-spectrum preemergence control of annual grasses</td>
</tr>
<tr>
<td>bromacil plus diuron</td>
<td>Rout</td>
<td>Hopkins</td>
<td>Wide range control of weeds in industrial sites and rights-of-way</td>
</tr>
<tr>
<td>MSMA plus diuron</td>
<td>Krovair</td>
<td>DuPont</td>
<td>Noncropland general weed control.</td>
</tr>
<tr>
<td>prometon, simazine and chlorate</td>
<td>Pramitol</td>
<td>Ciba Geigy</td>
<td>Full-season weed control in industrial sites.</td>
</tr>
<tr>
<td>tebuthiuron plus trifluralin</td>
<td>Spike</td>
<td>Treflan</td>
<td>Non-selective, season-long, preemergence and postemergence control of weeds industrial and non-cropland areas.</td>
</tr>
</tbody>
</table>

BROADLEAF WEEDS POST-EMERGENT HERBICIDE COMBINATIONS:

- TRIMEC
- TREXSAN
- SUPER TRIMEC
- TURFLON
- DCPA
- WEEDONE
- BENEFIN
- PENDIMETHALIN
- BENSULIDE
- OXADIAZON

SOIL LONGEVITY:

- TRIMEC
- TREXSAN
- SUPER TRIMEC
- TURFLON
- DCPA
- WEEDONE
- BENEFIN
- PENDIMETHALIN
- BENSULIDE
- OXADIAZON
A complete weed control program includes both pre-emergence and post-emergence herbicides, as well as cultural practices.

The primary pre-emergence herbicides for grassy and broadleaf weeds in cool-season turf are benefin, bensulide, DCPA, pendimethalin, oxadiazon, and siduron.

Siduron is the only pre-emergence herbicide that can be applied near time of seeding. Bensulide and DCPA can be applied in the spring following a fall seeding.

Pre-emergence herbicides should be watered in so the chemical can form a barrier in the soil prior to weed seed germination.

The resulting chemical barrier should not be disturbed during key weed germination periods.

The herbicides should be applied two weeks prior to the expected weed seed germination period. Second applications may be necessary to provide control over the entire germination period. Contact your local university or industry turf specialist for germination times of primary weeds. Also, see the germination map for crabgrass and annual bluegrass in this guide.

Post-emergence herbicides. The primary post-emergence herbicides for grassy weeds in turf are the arsonates; MSMA, DSMA, CMA, and MAMA. Treated areas should not be reseeded for a month or more after application. See pesticide labels for details.

Bentgrass and fescue are more sensitive to arsonates than other cool-season grasses. CMA is the safest for bentgrass.

Weed foliage should be sprayed while still young (two- or three-leaf stage), if possible. The effectiveness of arsonates improves with temperature, so rates need to be increased for temperatures below 80 degrees F.

A new post-emergent herbicide for annual grass control has been introduced this season.

Acclaim offers a wider window of post-emergence control than the arsonates with less potential for turfgrass injury.

The primary post-emergence herbicides for broadleaf weeds are 2,4-D.
WEED CONTROL GUIDE

2,4-D, dicamba, and MCPP. Formulations of these products, such as Trimec and Weedone DPC, provide increased effectiveness on hard-to-control species. Turflon-D (triclopyr plus 2,4-D) is effective on some of the more difficult-to-control broadleaf weeds, such as knotweed and yellow woodssorrel.

These herbicides should not be applied until a new lawn has been mowed at least three times. The target weeds should be actively growing for best results.

The temperature at applications should be at least 60 degrees F. Applications during extreme heat or drought can cause severe damage to desirable turf.

Two treatments of post-emergence herbicides are generally necessary to control broadleaf weeds. See labels for the proper interval between applications.

Winter annuals can be sprayed early in the year, followed by summer annuals and perennials. Fall treatment for perennials is possible.

Post-emergence herbicides are often combined to achieve improved control and reduce the need for repeat applications.

Occasionally, a landscape manager or sod producer chooses to fumigate a seedbed prior to planting to reduce weed seed, control insects and disease, and eliminate off-type grasses.

Methyl bromide (Dowfume), metham (Vapam), dazomet (Mylone), and Vorlex are used for pre-plant fumigation. See labels for delay period following treatment and before seeding.

Renovation of turf stands is gaining acceptance, especially since the development of glyphosate (Roundup).

During renovation all existing vegetation is killed, and the area is reseeded in a matter of weeks without major cultivation. Glyphosate is deactivated within a few days after application. Amitrole, cacodylic acid, and dalapon can also be used, but the delay period for seeding may be from four to eight weeks.

Progress is being made in selectively killing annual bluegrass in perennial ryegrass, Kentucky bluegrass, and bentgrass fairways.

Late-summer and early-fall applications of ethofumesate (Progress) are particularly promising.

Late-season applications of mepfuidide and flurprimidol have also reduced annual bluegrass competition in cool-season turfs.

HERBICIDE MANUFACTURERS

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Cyanamid</td>
<td>1 Cyanamid Plaza, Wayne, NJ 07470</td>
<td>(201) 831-2000</td>
</tr>
<tr>
<td>The Andersons</td>
<td>PO Box 119, Maumee, OH 43537</td>
<td>(419) 893-5050</td>
</tr>
<tr>
<td>Applied Biochemists</td>
<td>5300 West County Line Rd., Mequon, WI 53092</td>
<td>(414) 242-5870</td>
</tr>
<tr>
<td>BASF Wyandotte</td>
<td>100 Cherry Hill Rd., Parsippany, NJ 07054</td>
<td>(201) 263-3400</td>
</tr>
<tr>
<td>Ciba Geigy Corp.</td>
<td>PO Box 18300, Greensboro, NC 27419</td>
<td>(919) 292-0100</td>
</tr>
<tr>
<td>W.A. Cleary Chemical Corp.</td>
<td>1049 Somerset St., Somerset, NJ 08873</td>
<td>(201) 247-8000</td>
</tr>
<tr>
<td>Crystal Chemical Co.</td>
<td>1523 North Post Oak Rd., Houston, TX 77055</td>
<td>(713) 682-1221</td>
</tr>
<tr>
<td>Dow Chemical USA</td>
<td>PO Box 1706, Midland, MI 48640</td>
<td>(517) 636-1105</td>
</tr>
<tr>
<td>Drexel Chemical Co.</td>
<td>2487 Pennsylvania St., Memphis TN 38109</td>
<td>(901) 774-4370</td>
</tr>
<tr>
<td>E.I. Du Pont de Nemours</td>
<td>1007 Market St., Wilmington, DE 19898</td>
<td>(302) 774-1000</td>
</tr>
<tr>
<td>Elanco Products Co.</td>
<td>Lilly Corporate Center, Indianapolis, IN 46285</td>
<td>(317) 261-3759</td>
</tr>
<tr>
<td>PBI/Gordon Corp.</td>
<td>1217 West 12th St., Kansas City, MO 64101</td>
<td>(816) 421-0470</td>
</tr>
<tr>
<td>Hopkins Agric. Chem. Co.</td>
<td>PO Box 7532, Madison, WI 53707</td>
<td>(608) 222-0624</td>
</tr>
<tr>
<td>ICI Americas</td>
<td>PO Box 751, Wilmington, DE 19899</td>
<td>(302) 575-3000</td>
</tr>
<tr>
<td>Lennon Chemical Corp.</td>
<td>PO Box 180, Lebanon, PA 17042</td>
<td>(717) 273-1685</td>
</tr>
<tr>
<td>Lesco Products</td>
<td>20005 Lake Rd., Rocky River, OH 44116</td>
<td>(216) 333-9250</td>
</tr>
<tr>
<td>Mallinckrodt Inc.</td>
<td>PO Box 5439, St. Louis, MO 63147</td>
<td>(314) 895-2000</td>
</tr>
<tr>
<td>Mobay Chemical Group</td>
<td>PO Box 4913, Kansas City, MO 64120</td>
<td>(816) 242-2000</td>
</tr>
<tr>
<td>Monsanto Co.</td>
<td>800 North Lindbergh Blvd., St. Louis, MO 63167</td>
<td>(314) 694-1000</td>
</tr>
<tr>
<td>Nor-Am Chemical Co.</td>
<td>3509 Silverside Rd., PO Box 7495, Wilmington, DE 19803</td>
<td>(302) 575-2000</td>
</tr>
<tr>
<td>Ortho Div., Chevron</td>
<td>575 Market St., San Francisco, CA 94105</td>
<td>(415) 894-7700</td>
</tr>
<tr>
<td>Pennwalt Corp.</td>
<td>Three Pkwy., Philadelphia, PA 19102</td>
<td>(215) 587-7000</td>
</tr>
<tr>
<td>Regal Chemical Co.</td>
<td>PO Box 900, Alpharetta, GA 30021</td>
<td>(404) 475-4837</td>
</tr>
<tr>
<td>Rhone Poulenc Inc.</td>
<td>Agrichemical Div., PO Box 125, Monmouth Junc., NJ 08852</td>
<td>(201) 297-0100</td>
</tr>
<tr>
<td>Rohm & Haas Co.</td>
<td>Independence Mall West, Philadelphia, PA 19105</td>
<td>(215) 592-3000</td>
</tr>
<tr>
<td>OM Scott & Sons</td>
<td>Proturf Div., Marysville, OH 43041</td>
<td>(513) 544-0011</td>
</tr>
<tr>
<td>SDS Biotech</td>
<td>7528 Auburn Rd., Painesville, OH 44077</td>
<td>(216) 357-3000</td>
</tr>
<tr>
<td>Stauffer Chemical Co.</td>
<td>Agricultural Chem. Div., Westport, CT 06881</td>
<td>(203) 222-3294</td>
</tr>
<tr>
<td>Union Carbide</td>
<td>Agricultural Products</td>
<td></td>
</tr>
<tr>
<td>Velsicol Chemical Corp.</td>
<td>341 E. Ohio, Chicago, IL 60611</td>
<td>(312) 670-4665</td>
</tr>
<tr>
<td>Vertac Chemical Corp.</td>
<td>5100 Poplar Ave., Memphis, TN 38137</td>
<td>(901) 767-6851</td>
</tr>
<tr>
<td>Vineland Chemical Co.</td>
<td>1611 W. Wheat Rd., PO Box 745, Vineland, NJ 08360</td>
<td>(609) 691-3535</td>
</tr>
</tbody>
</table>

WT&T
Many areas around buildings, ditches, billboards, poles, factories, shops, golf courses, parking areas, parks, industrial plant sites, vacant lots, schools, airports, roadsides, fences, lawns, pipelines, and other public or non-cropland areas may harbor unwanted trees and brush. If these undesirable woody plants re-sprout after top removal, they may be difficult to kill and remove and cause unsightly appearance or interfere with the intended use of the property. The landscape manager has many options at his disposal to control and remove undesirable woody vegetation and replace it with desirable cover.

Woody plants can be removed by two primary methods or combinations of these methods which include mechanical or chemical means. The selection of the method depends upon:

- size of the area to be cleared;
- size of the brush;
- difficulty of control and kind of brush;
- proximity to valuable vegetation, water sources, and population centers; and
- use to be made of the area following brush removal.

Control methods

It is essential that problem plants be accurately identified so the proper control methods can be used. If the species cannot be identified, consult the local county agent, extension specialists, or personnel from the State Agricultural Experiment Station or U.S. Department of Agriculture. Some well-illustrated circulars, bulletins, and books are also available.

Mechanical Control. Hand methods of brush control, although effective, are slow, costly, and laborious. They are practical on small areas or in scattered stands. Hand methods include grubbing, cutting, girdling, and burning.

Grubbing consists of using a grubbing hoe, shovel, or similar tool to dig enough of the root system out of the soil to kill the plants. The operation is difficult and time consuming, but effective if properly done.

Cutting down brush with axes or saws is most effective on woody species that are killed when the top growth is removed, such as eastern red cedar and blueberry juniper. Species that re-sprout can be treated with herbicides to prevent re-sprouting.

Girdling is cutting a ring through the bark and cambium layer to prevent movement of water and nutrients to top growth. Girdling is practical in scattered stands of large trees six inches in diameter or greater. It is most effective during the summer months. Herbicides can be applied to the cut ring for improved kill.

Portable chain or power saws and girdlers are available for brush control. They reduce labor, time, and cost in brush removal but have limited use in dense stands or large areas.

Dozing is one of the more widely-used methods of brush control. Much clearing is done with straight dozer blades; however, many modifications and attachments are available for specialized clearing jobs.

Ideally, dozing removes brush and
The Virginia Department of Highways and Transportation was conducting comparison applications of two new Du Pont herbicides, Telar and Escort, when this photo was taken.

large trees by pushing or pulling the plants out with as much of the roots intact as possible. Special attachments to the straight blade include teeth or U-shaped "stingers" to allow cutting the plant off below the ground line and lifting out the roots.

Dozing is most commonly practiced in open stands of large trees and brush or on rocky soils where other mechanical control methods are limited. It is not desirable in dense stands of brush that sprout from the roots after top removal.

Dozed trees can be windrowed or stacked so the brush can be burned or left to decay. The equipment and fuel required for dozing are costly. Dozing heavily damages the turf and grounds.

Mowing and shredding are temporary control methods for weeds and small brush in landscape management. Repeated mowing, once or twice a year, is needed for maintenance on most weed-infested areas. Mower types vary, but most consist of sharp rotary blades. Heavy duty shredders can be used on large brush and small trees, three to four inches in diameter.

Disking. Large disk plows or tandem disks will destroy stands of small brush. They may also destroy the grass stand. Disking is limited to tillable soils. Disking prepares a good seedbed, although compaction by a cultipacker, roller, or other implement may be desired. The operation is expensive.

Cost of mechanical treatments is usually closely correlated with degree of soil disturbance and size and density of brush to be removed. Dozing, disking, and grubbing are among the most effective mechanical brush control treatments, but are the most costly to perform, while mowing is less expensive. Hand methods, such as sawing, axing or grubbing, are sometimes effective, but are slow, costly, and laborious.

Chemical Control. Herbicides are an important means of weed and brush control. Compared to mechanical practices, herbicides are usually less expensive, less damaging to the environment, and often more effective.

Herbicide sprays, however, are subject to drift and may damage susceptible crops or valuable vegetation on nearby areas if improperly applied. A variety of herbicides and herbicide combinations are commercially available. It is necessary to understand the properties and effects of herbicides in order to safely and effectively use them.

Individual herbicides and combinations of herbicides are used for weed and woody plant control. After manufacturing, technical (pure) herbicide must be formulated with other ingredients to prepare usable products for ease of handling and to obtain the desired effects.

Since very small amounts are sometimes required per unit of land, uniform application is essential. Herbicides are formulated as liquid concentrates, wettable powders, and granules or pellets. It is important to know the characteristics and precautions to be taken when using herbicides.

Characteristics of herbicides

Phenoxy herbicides, such as 2,4-D, 2,4-DB, dichlorprop, and MCPA have been used for over 30 years and are effective for the control of many weed and brush species. They are used to produce changes and shifts in plant cover for crops, pastures, lawns, or wildlife habitat.

The phenoxy herbicides are not toxic to livestock or man at dosages labeled for weed control and disappear rapidly from the soil, vegetation, and water. They do not accumulate in the food chain.

Susceptible vegetation, especially broadleaf plants, may be damaged from spray drift or from volatilization. Following label instructions and making applications during favorable weather should prevent drift and volatilization problems.

Phenoxy herbicides selectively control broadleaf weeds in grasslands or grass crops. Rates of 0.25 to 2 pounds per acre effectively control many broadleaf plants.

Phenoxy compounds are relatively inexpensive and easy to apply. They are usually marketed as liquid concentrates as salts or esters.

Ester formulations are often more effective as foliar sprays on trees and brush than the salts. Amine formulations commonly available include dimethylamine, triethyamine, dithanolamine, trimethylamines, triethanolamine, and others.

Other inorganic salts of the phenoxy herbicides that have been sold include the ammonium, sodium, potassium, and lithium salts. Salts are sprayed in water carriers.

Esters are classified as high volatile or low volatile, depending upon how readily they vaporize. Low volatile esters should be used in areas where sensitive crops or vegetation are grown.

The concentration of the active ingredient, the "acid equivalent," is indicated on the label as pound-per-gallon. If a herbicide concentrate has an acid equivalent of 4 pounds per gallon, then 1 gallon of the concentrate contains 4 pounds by weight of the parent acid, regardless of formulation. Usually the most concentrated formulations cost less per pound and are more economical to use than weaker concentrates.

Phenoxy compounds are readily absorbed by leaves and are translo-
cated throughout the plant along with the products of photosynthesis. Oil soluble formulations, usually esters, applied in kerosene or diesel oil will penetrate the bark of most woody plants, and can be used as basal sprays or foliar sprays to individual plants.

Phenoxy herbicides, however, are more commonly applied broadcast to large areas containing dense stands of brush. These herbicides are sprayed on above-ground parts and foliage since they are not effective at economical rates as soil-applied herbicides.

Organic arsenicals, available as liquid concentrates, include DSMA, MSMA, and cacodylic acid. These compounds have limited use for woody plant control as foliar sprays. DSMA and MSMA are used for postemergence weed control in tolerant lawn grasses and non-crop areas. Cacodylic acid is used as a general desiccant and defoliant (contact) spray on many crop and non-crop areas.

Organic arsenicals can be used for quick dieback of woody species, but plants tend to recover. They can be injected into the trunk to kill unwanted trees. As foliar sprays, they are applied in water. Complete coverage by spray is required for best results. They are inactivated by soil contact.

Organic arsenicals may injure desirable plants. By directed spraying, desirable plants can be avoided. Organic arsenicals have a moderate to low mammalian toxicity but are highly toxic to insects such as honey bees. They are mildly corrosive to spray equipment.

Bipyridyliums. Diquat and paraquat are desiccant (drying agents) and defoliant herbicides used for general contact activity against weeds and brush. In some situations, they are used as selective herbicides.

Paraquat is water soluble and is inactivated by soil contact. Woody species will usually re-sprout from foliar sprays of diquat and paraquat. Paraquat may be more effective as an injection treatment against some undesirable trees.

Paraquat is highly toxic when ingested. Extreme care must be taken to avoid breathing the spray mist or getting the concentrate on the skin. Use of protective clothing and respirators are recommended when making applications.

Get immediate medical care in the event of ingestion. If treated within 12 hours, chances of survival are excellent.

Benzoics. Dicamba is a selective translocated herbicide. It controls many broadleaf weeds in pasture crops and turf and some woody plants.

Dicamba is similar to the phenoxy herbicides in activity and use. It is absorbed through roots, as well as foliage. It may be applied by either ground or aerial sprays or as granules, depending upon the weeds to be controlled and their proximity to susceptible crops.

Dicamba may be applied in mixtures with 2,4-D to broaden the spectrum of weed species controlled. It has a low order of toxicity to wildlife, fish, livestock, and humans. It rapidly degrades and does not accumulate in the environment. Dicamba has a low corrosion hazard to spray equipment.

It is formulated as a liquid as the dimethylamine or sodium salt and is sprayed in water carrier. It is also formulated as wettable powders for water sprays or as granules or pellets for dry application.

Bromacil (a uracil) will control a wide variety of woody species. If rates above 5 pounds per acre are used, it will also kill many desirable grasses and forbs on grazing lands.

Paraquat is highly toxic to insects such as honey bees. They are mildly corrosive to spray equipment.

Organic arsenicals may injure desirable plants. By directed spraying, desirable plants can be avoided. Organic arsenicals have a moderate to low mammalian toxicity but are highly toxic to insects such as honey bees. They are mildly corrosive to spray equipment.

Bipyridyliums. Diquat and paraquat are desiccant (drying agents) and defoliant herbicides used for general contact activity against weeds and brush. In some situations, they are used as selective herbicides.

Paraquat is water soluble and is inactivated by soil contact. Woody species will usually re-sprout from foliar sprays of diquat and paraquat. Paraquat may be more effective as an injection treatment against some undesirable trees.

Paraquat is highly toxic when ingested. Extreme care must be taken to avoid breathing the spray mist or getting the concentrate on the skin. Use of protective clothing and respirators are recommended when making applications.

Get immediate medical care in the event of ingestion. If treated within 12 hours, chances of survival are excellent.

Benzoics. Dicamba is a selective translocated herbicide. It controls many broadleaf weeds in pasture crops and turf and some woody plants.

Dicamba is similar to the phenoxy herbicides in activity and use. It is absorbed through roots, as well as foliage. It may be applied by either ground or aerial sprays or as granules, depending upon the weeds to be controlled and their proximity to susceptible crops.

Dicamba may be applied in mixtures with 2,4-D to broaden the spectrum of weed species controlled. It has a low order of toxicity to wildlife, fish, livestock, and humans. It rapidly degrades and does not accumulate in the environment. Dicamba has a low corrosion hazard to spray equipment.

It is formulated as a liquid as the dimethylamine or sodium salt and is sprayed in water carrier. It is also formulated as wettable powders for water sprays or as granules or pellets for dry application.
WEED CONTROL GUIDE

Ureas and uracils are non-volatile and do not corrode equipment. Most urea and uracil herbicides can be injurious to some forage and turf species when applied broadcast, especially as sprays. Applying herbicides as pellets or balls to confine the herbicide to a few spots in the treated area reduces exposure to desirable forage or turf plants. Also, application of granules, pellets, or sprays to the soil surface or sprays applied subsurface in rows or bands spaced 6 to 10 feet apart may reduce injury to forage or turf and may increase kill of some woody plants.

Most of the ureas and uracils persist in the soil for several months at rates used for brush control. They are low in toxicity to warm-blooded animals.

Other organic herbicides

Arsenal (AC 252,925) is a new broad spectrum herbicide with activity against herbaceous and woody plants. It controls sedges, grasses and broadleaf weeds applied either pre-emergence or postemergence.

Arsenal is readily absorbed through foliage and roots. Complete kill may take several weeks. Most herbaceous weeds are susceptible to Arsenal at rates of 0.4 to 1 pound per acre whereas woody species may require higher rates of 0.75 to 3 pounds per acre depending upon species to be controlled.

Arsenal is being tried experimentally for conifer release and weed control in bermedagrass. Arsenal should be applied postemergence to perennial weeds when they are actively growing and the herbicide is readily translocated.

It has a low order of toxicity to warm-blooded animals. It persists for 3 to 12 months in the soil depending upon rate applied and soil moisture content.

Picloram is a selective, translocated herbicide that effectively controls many weed and brush species in grasslands. It can be applied to the soil or foliage and is effective as injection/cut-surface treatments on many undesirable trees.

Picloram can be applied in liquid sprays and as pellets to brush in the spring and fall, depending upon the species to be controlled. It is absorbed by both foliage and roots. Most perennial grasses are resistant. Its high activity against many woody plants at moderate rates makes it desirable for brush control. Care must be taken to prevent drift of picloram to desirable plants.

Picloram is relatively persistent in the soil, especially in cooler climates. Since it is water soluble, care must be taken to prevent its movement into water used for irrigation. It should not be applied where it can be leached or moved to sensitive plants by rainfall.

Picloram has a low mammalian toxicity and is only slightly corrosive to spray equipment.

Triclopyr (Garlon) is a relatively new selective postemergence herbicide for use on rights-of-way, industrial and forestry sites, and experimentally for rangeland brush control. It can also be used to kill trees and brush by injection/cut-surface treatments.

It is readily translocated in plants and is moderately toxic to warm-blooded animals. It degrades rapidly in the soil.

Exer formulations are available.

Glyphosate is a non-selective herbicide effective against both grasses and broadleaf plants.

Glyphosate is readily translocated from leaf and stem tissue to roots, resulting in a high degree of kill on many weeds. It is inactivated by contact with the soil and should not injure newly-seeded plants in treated soil.

Glyphosate is sprayed in water carrier. It is presently registered for use for non-crop and pre-till weed control and as a directed spray for orchards, plantations, Christmas trees, and many other crops. It is corrosive to some equipment.

Broadcast sprays over woody species will damage desirable forage plants. Applications should be made to individual plants on non-crop areas or areas to be renovated.

Glyphosate has a low order of mammalian toxicity.

Amitrole is effective against poison ivy and poison oak. If amitrole is accidentally sprayed on desirable plants, they are less likely to be severely injured than sprays of phenoxyis, dicamba, or picloram.

Amitrole is available as a powder containing 50% active ingredient or as a liquid formulation. Another formulation, Amitrole-T, contains 2 pounds per gallon of ammonium thiocyanate in addition to 2 pounds per gallon of amitrole.

Amitrole is effective through the roots and tops of plants. Amitrole cannot be used where there is any possibility of residues on food or feed crops.

Fosamine (Krenite) applied as foliar spray will kill or suppress several different woody species on non-crop land. If it is applied to trees or brush in late summer or early fall, susceptible species will fail to leaf out the following spring and subsequently die.

Rates of 1½ to 3 gallons of fosamine are applied per acre during the two month period before fall leaf coloration. If rainfall occurs within 24 hours of application, effectiveness may be decreased. Use only in accordance with recommendations on the label. Fosamine cannot be used on cultivated land or in pastures.

Inorganic herbicides

Ammonium sulfamate (AMS, Ammate) is a non-selective herbicide used extensively to kill all plants growing on rights-of-way.

AMS kills trees. It can be used as a foliage spray or in cuts through the bark. When applied to stumps, it prevents sprouting. AMS kills or suppresses herbaceous plants as readily as woody plants.

It is corrosive. Spray equipment should be cleaned immediately and coated with diesel oil or similar light oils after use.

Oils Diesel oil and kerosene are commonly used to control honey mesquite and huisache. One cup to 1 gallon of oil is used per tree, depending upon its size. The oil is applied around the base of the tree during dry weather when the soil is pulled away from the trunk. Application at this time enables the oil to penetrate to the lower buds on the stem.

Oils alone are not very effective herbicides when applied to the foliage of woody plants. However, diesel fuel is commonly used as a diluent and carrier for some oil soluble herbicides.

It is also used as a carrier in aircraft spraying, usually as a 1:4 oil-in-water emulsion. The oil reduces evaporation of the herbicide in arid areas and aids in penetrating stems and foliage of some woody plants. Water carrier, however, is equally as effective as oil carriers in some situations, such as use of 2.4-D on sagebrush.
Ornamentals can increase the beauty of any landscape.

WEED CONTROL IN THE LANDSCAPE

by Elton Smith, Ph.D., Ohio State University

A n increase in the use of trees, shrubs, ground cover, and herbaceous plants in commercial and residential landscapes has caused a corresponding increase in the use of both pre-emergence and post-emergence herbicides in landscape maintenance.

The landscape manager has to control weeds around a variety of desirable plant material, including deciduous and evergreen shrubs, trees, groundcovers, annual and perennial flowers, bulbs, and ornamental grasses. These plants are located in a wide variety of locations, such as plant beds, containers, greenhouses, atria, and even in sand traps.

Attention to the label is especially important in ornamental weed control due to the varying sensitivity of plants to herbicides. Manufacturers attempt to provide products safe to the largest possible number of species.

Before planting
The most successful approach to a weed-free landscape is to control perennial grasses and broadleaf weeds prior to planting.

Spraying the weeds in the planting area with post-emergence systemic herbicides will kill the root system as well as the topgrowth.

Such herbicides include 2,4-D and related products for broadleaf weed control, dalapon for grass control, and amitrole for general weed control. These may have to be applied more than once for complete kill.

Each has a specific waiting period prior to planting. Highly-used glyphosate is very effective and has no soil residue.

Fumigation of plant beds is another alternative.

Vapam is one of the simplest fumigants to use. It is applied and watered into the soil. The water seals the surface, but plastic can also be used to cover the bed after the fumigant is applied and watered in.

The fumigant will also kill insects and some fungi detrimental to plants. Planting can take place within days following treatment.

Fumigants and non-selective herbicides will kill desirable plant material contacted by them. Care must be taken to protect nearby trees and shrubs.

A number of pre-emergence herbicides are labelled for ornamentals and two are recommended for use prior to planting.

Eptam or Treflan can be incorporated into the soil, following tillage, to control annual and some perennial weeds for a period of four to six weeks.

Following incorporation to a depth specified on the label, ornamentals can be planted.
WEED CONTROL GUIDE

Chart 1

Growth and treatment periods

<table>
<thead>
<tr>
<th>Weed</th>
<th>SPRING</th>
<th>SUMMER</th>
<th>FALL</th>
<th>WINTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnyardgrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedstraw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellflower, creeping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bindweed, field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluegrass, annual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brome, smooth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpetweed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chickweed, common</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chickweed, mouseear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clover, white</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crabgrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dandelion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deadnettle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fescue, tall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxtail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garlic, wild</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goosegrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henbit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivy ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knotweed, prostrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kochia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medic, black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nimblewill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutsedge, yellow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigweed, prostrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puncturevine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purslane, common</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quackgrass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanbur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shepherdspurse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorrel, red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speedwell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spurge, prostrate*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thistle, Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thistle, musk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vervain, prostrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterleaf (nyctelea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodsorrel, yellow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yarrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Active period of plant growth.** Varies from year to year and from north to south.
- **Apply preemergence chemicals.**
- **Apply postemergence treatments.** Approximate periods may vary two weeks from season to season.

*Preemergence herbicide applications should be made a second time in late June or early July.
HUSTLER Hi-Lift BAC-VAC™ gives turf a clean sweep and puts clippings in a truck or container.

It's HUSTLER tough and built to last.

Introducing the Hi-Lift BAC-VAC™ attachment from HUSTLER. It's out to make a clean sweep in the grounds keeping industry.

Teamed with HUSTLER's 60-inch or 72-inch 3-Way Deck, the Hi-Lift BAC-VAC will quickly cut and vacuum your turf to perfection, and, just as perfectly, the Hi Lift BAC-VAC hydraulically raises 4.5 feet to easily deposit its 15-bushel capacity load into a container or the bed of a pickup truck. Plus, you do it all without ever leaving the operator's seat! In moments you're off mowing again.

The Hi-Lift BAC-VAC hopper stows behind the operator's position. This permits an unobstructed view out front and to both sides. It also permits the same close trimming capabilities HUSTLER is known for.

The HUSTLER Hi-Lift BAC-VAC attachment and drive-wheel steering saves time and labor costs, plus you cut more grass faster with a finer cut than any other mower in its class.

The low profile design allows the Hi-Lift BAC-VAC to maneuver easily around trees and obstacles.

CALL TOLL FREE
1-800-835-3260
In Kansas - 1-800-362-1049
or write for free literature:

WEED CONTROL GUIDE

Weeping hemlock (left) and weeping crabapple adorn a patio area.

This method has been used extensively by commercial nurseriesmen and is now being used by landscape contractors to a large extent, especially where maintenance for a specified period of time is in a planting contract.

Tillage as a method of weed control prior to planting is a successful practice for the control of annual weeds but not perennial weeds. In some cases, tillage only cuts up the root systems of perennials into smaller pieces and distributes them.

After planting

In recent years, the landscape industry has made extensive use of mulches to prevent weeds in the landscape. Mulches should be applied two inches deep and renewed to that depth annually.

Mulch layers deeper than two inches accomplish little and actually harm shallow-rooted ornamentals which will root into the mulch instead of into the soil.

The most popular mulches are hardwood, pine, and cypress barks, as well as wood chips, peat moss, and various hulls. Materials which are not composted or inorganic can rob the soil below of important nitrogen.

An application of one pound of actual nitrogen per 1,000 sq. ft. will offset the nitrogen draw from the soil or organic mulches.

Landscape fabrics are growing in use for low maintenance areas. The fabrics have been improved and are useful in mulched beds where plants are spaced out. They are impractical for groundcover areas and they do not control germination of weed seeds in the mulch above the fabric.

Pre-emergence herbicides can be used in combination with mulches to stop germination of weed seeds in the mulch or those deposited by birds and wind. They control annual weeds for a period of four to eight weeks. Reapplication is usually necessary for season-long control.

Determine the amount of pre-emergence herbicide to be applied by figuring the area of the plant bed, measuring the proper amount for that area, and distributing it evenly in the area.
AQUATIC WEED CONTROL

Those nasty water weeds taint the look of any landscape. Effective control is possible. Prudence on the controller’s part is the key.

You have this beautiful pond on an area that you landscape but unsightly weeds dominate the water. Water weeds not only destroy the appearance of ponds, lakes, and streams, they also ruin the impact of the entire landscape.

Lagoons, holding ponds, and ditches, although not landscape features, serve useful functions which are inhibited by weeds.

What do you do? Well, first you should check local regulations to make sure your planned control measure is acceptable.

Control measures are limited not only by local regulations, but also by desirable plants in the water, and uses, such as swimming, irrigation, fish farming, and air conditioning.

If a lake is part of a natural watershed area, there may be restrictions on the use of certain chemicals or weed-eating fish. Check with your local extension agent before treating, diverting, draining, or filling in any lake, even if it is on private property.

It should be noted that chemical aquatic weed control is a very difficult science. It may be beneficial to hire a private applicator as the environmental and legal concerns involved are numerous.

Preventative control
Before we discuss chemical aquatic weed control, let’s discuss what can be done to prevent weed growth in the first place.
Aquatic weeds may reduce or severely restrict water flow (as much as 90 percent) in irrigation canals and drainage ditches.

Application of an aquatic herbicide with a sprayer.

Conditions that may cause an aquatic weed problem are water depth (water less than 8 feet deep is conducive to weed growth), poor circulation of water in the lake and air above the lake, fertilizer runoff, and presence of dead organic material (such as fish, plants, or sewage).

Bottom-rooted aquatic plants require light to grow. The light below 8 feet is inadequate for many aquatic plants. If a lake cannot be deepened, dyes or bottom liners can be added to shade the lake bottom.

Pond aerators add needed oxygen to water and help avoid temperature stratification of water layers. Without mixing, water tends to form layers based on temperature, the warmest layer on top.

By keeping surface water temperatures down through mixing layers, you may discourage algae growth.

Algae does not readily establish until surface water temperature reaches 60 degrees F.

Drawdown, or draining to expose aquatic plants to full sun or freezing temperatures, is used where fish or irrigation aren’t factors. Dredging and aquatic weed harvesters are expensive and cause a disposal problem, but they may be the only way to get initial control over a serious aquatic weed problem.

Lakes require some vegetation to produce needed oxygen, to provide cover for fish and wildlife, and to appear a natural part of the landscape. As such, portions of the lake can be kept shallow to provide for aquatic plants.

Another method is to place plants in removable containers, close to the water’s surface.

Desirable native plants, such as rushes, are available from specialized nurseries. These container plants can be removed if necessary during treatment periods.

Curative control

Whether in a warmer climate where aquatic weed control is perpetual or in the North where control is needed only seasonally, control is similar.

So is the action of the aquatic herbicide.

Certain aquatic herbicides may be absorbed by roots of nearby trees or plants which extend into the water. Read labels carefully for susceptible land plant species.

Algae. Copper compounds (Cutrine-Plus, copper sulfate) are effective and when used at correct rates, do not restrict water use.

If a lake has a history of algae problems, start using copper compounds as soon as water temperatures get above 60 degrees F. Periodic retreatment may be necessary for season-long control.

Copper compounds are often mixed with other aquatic herbicides for control of a variety of weeds.

Floating Weeds. Floating weeds are either free-floating or bottom-rooted plants, having leaves on the surface.

They include hyacinths, duckweed, water lettuce, floating fern, and salvinia.

The primary herbicides for floating weeds are 2,4-D and Diquat. Sonar (Fluridone) is a broad-spectrum aquatic herbicide pending EPA registration.

Submersed Weeds. Weeds which are bottom-rooted and totally under water are called submersed weeds. They include hydrilla, pondweed, watermilfoil, fanwort, naiad, and coontail.

The primary herbicides for submersed weeds are 2,4-D, endothall (Aquatrol K), Diquat, and Sonar (pending EPA registration.) Combinations of endothall and Diquat with copper are often used.

Emersed Weeds. These are weeds growing in shallow areas with stems and leaves above the water surface. They include cattails, pennywort, alligatorweed, torpedo grass, and arrowhead.

Primary herbicides for these are Banvel, 2,4-D, dalapon (Dowpon), Rodeo (glyphosate), Sonar (pending EPA registration), and amitrole.

Products registered for aquatic weeds are also the best to use for ditchbank weed control, since there is always a possibility water containing herbicides in ditches will drift to other locations. Check labels for ditchbank applications.

WT&T