SUPERINTENDENTS DIFFER IN WILT TREATMENTS

Can you imagine what would happen if bacterial wilt began attacking the Penncross and Penneagle bentgrasses? Nasty thought, isn’t it? Yet there have been unconfirmed reports that it’s been found on Penncross, Penneagle, Seaside, and bermudagrass.

Dr. D.L. Roberts of Michigan State University, who along with colleague Dr. Joe Vargas discovered disease. The treatments varied and for good reason. Firestone Country Club’s South Course (Akron, Ohio), and Hazeltine National Golf Course (Chaska, Minn.) spent the spring and summer devising a game plan to combat the wilt and began the long recovery process in the fall.

Firestone

In 1984, Firestone’s greens were sluggish, allowing no percolation. Firestone had the wilt. The decision? “We decided that, to maintain a world-class facility, a major renovation was needed—not a minor overseeding,” says Padgett.

Firestone would wait it out, “baby” the greens through the summer of 1985, and begin work immediately after the World Series of Golf (Aug. 22-26).

Course superintendent Brian Mabie and crew controlled the disease with the antibiotic Mycoshield, applying at night because of the chemical’s phytotoxicity. They upped the nitrogen application rate, raised the cutting height to 3/ie-inch from 1/ie, and made weekly applications of iron with the normal fungicide.

On August 26, the practice greens were stripped. The other greens followed the next day, the same day coring began. Mabie says it took 11 days to core all greens to the depth of 16 inches.

At the same time, drainage systems were built for all greens. By Sept. 18, all drainage systems were in and all mix (85 percent sand, 15 percent humus) was in place.

The crew seeded (Penncross bentgrass) from Sept. 27-30, took a short breather, and prayed that Mother Nature be kind.

She was. The greens, some reshaped and recontoured, took and were mowed on Oct. 28.

“They just never came around,” general manager Don Padgett II says. “Anytime we disturbed the turf at all they regressed.”

Padgett knew the greens were sub-standard by professional standards yet he and Firestone officials were at a loss to explain the problem. Bacterial wilt was ruled out: the greens were seeded with Nimisilia bent, not the C-15 Toronto.

Then came the 1984 World Series of Golf. Enter the “Golden Bear.”

“On tournament Saturday, Jack (Nicklaus) came to me and said he thought we had the bacterial decline that they had at Muirfield,” remembers Padgett.

Padgett thought that was implausible. “The wilt had been reported only on the C-15.

“Jack came back to me on Sunday and said, ‘Don, I’m almost sure that’s it. I’ve been spending more time looking at the greens than playing golf.’ Well, we sent a greens sample to Dr. (Philip) Larsen at Ohio State,” says Padgett.

Dr. Larsen, now at the University of Minnesota, identified the disease and Michigan State University’s Dr. D.L. Roberts confirmed.

Firestone did have the wilt. The decision? “We decided that, to maintain a world-class facility, a major renovation was needed—not a minor overseeding,” says Padgett.

Firestone would wait it out, “baby” the greens through the summer of 1985, and begin work immediately after the World Series of Golf (Aug. 22-26).

Course superintendent Brian Mabie and crew controlled the disease with the antibiotic Mycoshield, applying at night because of the chemical’s phytotoxicity. They upped the nitrogen application rate, raised the cutting height to 3/ie-inch from 1/ie, and made weekly applications of iron with the normal fungicide.

On August 26, the practice greens were stripped. The other greens followed the next day, the same day coring began. Mabie says it took 11 days to core all greens to the depth of 16 inches.

At the same time, drainage systems were built for all greens. By Sept. 18, all drainage systems were in and all mix (85 percent sand, 15 percent humus) was in place.

The crew seeded (Penncross bentgrass) from Sept. 27-30, took a short breather, and prayed that Mother Nature be kind.

She was. The greens, some reshaped and recontoured, took and were mowed on Oct. 28.

“I think the course will be in the best shape it’s been in since the 60s,” says Padgett.

Hazeltine

Superintendent Chris Hague noticed a problem with his C-15 Toronto bentgrass greens in May 1985. “I saw something that looked like fertilizer pellet burns,” he recalls. “Four greens were particularly slow to come around.”

continued on page 38
The greens of numbers 3 through 6, located in slightly shielded areas, have poor drainage capabilities, he says.

The C-15, original turf at Hazeltine, had held up well since the course was built 23 years ago.

The problem spread. “By process of elimination we finally determined that it was bacterial wilt,” says Hague. “You hate to admit it because there’s only two things you can do—fumigate and resod or fumigate and reseed.”

(Other alternative is to tear out all greens to a sufficient depth, as Firestone chose to do.)

Drs. Vargas and Roberts at Michigan State confirmed the disease in late June. This information was relayed to the greens chairman.

Membership was informed on July 8 by bulletins explaining the history of bacterial wilt. “The bulletins helped people understand that we were not alone, that this wasn’t a first incidence,” says Hague.

On July 17, Dr. Vargas and a USGA greens section official attended an open membership meeting to better explain the problem. The members, somewhat angry over the problem, “really eased off” after the meeting, says Hague. “From then on, it was ‘how are we going to take care of this?’”

They decided not to use a bactericide for expense reasons. “Luckily we had the kind of summer where all greens stayed very puttable,” says Hague. Nine different options were hammered out.

Hague and Hazeltine took a novel approach—they chose to fumigate in the fall and resod Penncross bentgrass in the spring. It’s a technique that has not been tried previously, claims Hague.

There was one catch—members decided not to give up the course until Sept. 23! In Minnesota, it snows in early to mid-October. Hague and crew were faced with a race against Mother Nature.

They won, sort of.

The Hendricks and Dail Co., North Carolina-based fumigators, handled the methyl bromide (hot gas) treatment. Methyl bromide sterilizes the soil and must be applied at soil temperatures of over 50 degrees Fahrenheit. The gas is forced into the soil, covered by tightly-secured plastic to prevent leakage and ensure penetration.

Half the greens were fumigated the week of Oct. 1 and three others later in October. The remaining six holes (numbers 11, 13, 14, 15, 16, 17) will get the gas in the spring.

Hague says he hopes to resod the front nine the first two weeks of April and the back nine as soon as possible.

Ideally, golfers will be playing the front nine by early June and the back by mid-June.

“If we get a break at all, we’ll get the course back to snuff by June 15,” says Hague.

—Ken Kuhajda

RECOGNIZING BACTERIAL WILT

by David Roberts and Dr. Joseph Vargas Jr.

Significance

Prior to bacterial wilt on Toronto, no bacterial wilts of turfgrasses were previously known in North America. Using various analytical techniques, the bacterial wilt pathogen has now been characterized as *Xanthomonas campestris* pv. *graminis*.

This bacterium measures approximately \(\frac{1}{23,0000} \) of an inch long and \(\frac{1}{50,0000} \) of an inch wide. It reproduces every four to six hours.

Until it was isolated from Toronto creeping bentgrass in the United States, this bacterium was only found in Europe. Originally discovered in Switzerland in 1975, the bacterium has now spread to the British Isles, Netherlands, Germany, France, Norway, Denmark and New Zealand.

We presume that the bacterium was introduced from Europe to the United States, where it has virtually
destroyed Toronto creeping bentgrass as a propagated turfgrass.

Affected areas

During the summer season of 1983 and 1984, bacterial wilt was found on Seaside and Nimisilia creeping bentgrass and annual bluegrass. Whereas Toronto, Seaside and Nimisilia are not propagated to any appreciable extent on home lawns, annual bluegrass is a naturally-occurring turfgrass found in most regions of the temperate zone.

Bacterial wilt has been found on turfgrasses in eight states: Indiana, Illinois, Kansas, Michigan, Minnesota, Ohio, Pennsylvania and Wisconsin. This indicates that the bacterium is not only spreading to new host plants, but also to new geographical locations. The occurrence of bacterial wilt on annual bluegrass and the bentgrasses strongly suggests that Kentucky bluegrass and other grasses may also succumb to the disease.

Bacterial wilt of turfgrasses is analogous to several other diseases. The accidental introduction of pathogens that cause Dutch Elm disease and chestnut blight has practically eliminated American species of these trees in the United States. Another pathogen, Xanthomonas campestris pv. citri, the cause of Citrus canker in the southern United States, is closely related to Xanthomonas campestris pv. graminis, the cause of bacterial wilt of turfgrasses.

Millions of dollars, along with very strict quarantines, eliminate the citrus canker bacterium whenever and wherever it is detected. Unfortunately, the turfgrass industry is not sufficiently organized to mount this kind of action. So bacterial wilt continues to spread to additional states and new varieties of turfgrass.

Cures?

Even though bacterial wilt can be suppressed with the antibiotic oxytetracycline, the chemical is both expensive and may not be effective for a long duration as resistance by the bacterium is highly probable. Except for fumigation, followed by seeding and sodding with alternative turfgrasses, no other control measures are feasible.

Diagnosis

Bacterial wilt undoubtedly occurs on other turfgrasses in many regions of the country. However, absence of knowledge of the disease usually prevents accurate diagnosis. Unlike many turfgrass diseases, bacterial wilt does not occur in rings or patches; it is strictly random, affecting individual plants in large areas (Fig. 2).

One of the most important diagnostic features of the disease is a very rapid wilting. Leaf blades become shriveled, twisted and blue-green in color.

Unfortunately, accurate diagnosis can currently only be accomplished by trained personnel at university diagnostic laboratories, and then it can only be determined with fresh samples. Therefore, turf samples should be mailed through an overnight service. Accurate diagnosis is essential if management strategies are to be effective in combating this devastating disease.

If further information is desired, contact the authors at Plant Diagnostic Clinic, 141 Plant Biology, Michigan State University, East Lansing, MI, 48824-1312. Phone numbers are (517) 355-4536 and 353-9082.

FREE

$151.15 retail value; 4 gallon capacity; pressure regulator; two nozzle spray boom.

Solo Backpack Sprayer

with 50 gallon purchase of Surflan® AS herbicide.

FREE

$34.95 retail value; 2.5 gallon capacity; rugged hand pump.

Solo Hanjet Sprayer

with 15 gallon purchase of Surflan AS herbicide.

Now you've got more money-saving reasons than ever to keep weeds out of ornamentals, shrubs and trees with Surflan. Free sprayers available with either Surflan gallons or quarts purchased, by August 31, 1986. Contact your Elanco distributor now for details, order form.