COOL-SEASON TURF DISEASES

by J.M. Vargas, turfgrass pathologist, Michigan State University

Concepts about turfgrass diseases and their management have gone through many changes in the past few years, including the scientific names of the organisms that cause them.

These diseases, the organisms that cause them, and their cultural, biological, and chemical management tools are given in Table 1 (page 46).

The following will be a discussion of the latest developments on cool-season turfgrass diseases.

The patch diseases

There are a group of diseases that produce patches on desirable turfgrass species primarily by attacking the root system of the plants. This group of diseases was often mistakenly referred to as Fusarium blight in the past.

There are many other patch diseases of turf but they primarily attack the foliage, crowns, rhizomes, and stolons.

Summer patch

It has become increasingly evident over the past few years that summer patch, caused by Phialophora graminicola, is a primary disease of annual bluegrass during warm weather.

It can also be found on Kentucky bluegrass and fine-leaf fescues, but far less frequently.

On annual bluegrass, the initial symptoms are a yellowing of the turf in patches, usually 6 inches to one foot in diameter, followed by a thinning of the turf with the remaining turf turning bronze in color.

If warm weather persists all the turf in the patches may die. Most of the creeping bentgrass cultivars are resistant, and creeping bentgrass frequently can be seen recolonizing the centers of these patches.

Preliminary data indicate that soil temperature and soil moisture may be important in the development of this disease.

Excessive irrigation during hot periods or absence of irrigation following the hot period may make the diseases more severe.

Fungicides for the management of summer patch can be found in Table 2 (page 46). High rates of application are required to manage this disease and fungicides such as Tersan 1991, Fungo 50, and Cleary's 3336 will have to be drenched in to be effective.

Necrotic ring spot

It now appears that necrotic ring spot, caused by Leptosphaeria korrae, is the primary patch disease found on Kentucky bluegrass.

The symptoms can be observed throughout the growing season even though L. korrae appears to be most active during the cooler weather of the spring and fall. The plants that were infected by L. korrae in the cooler weather are in a weakened condition and are very susceptible to summer heat stress or drought stress.

Subjecting the necrotic ring spot plants to either of these stresses will lead to the death of the weakened plants and the recurrence of symptoms, even though the pathogen may not be active at this time.

The initial symptoms are patches 6 inches to two feet in diameter with straw- and red-colored blades intermingled in the patch.

Older patches may have green grass in their centers with the straw- and red-colored blades in the outer area of the ring, giving a frog-eye appearance. When symptoms appear in the warm weather, the red blades are often scarce.

Nitrogen is important for recovery of the patches caused by necrotic ring spot. Three to five pounds of actual nitrogen/1,000 sq. ft./season is necessary to promote recovery of necrotic ring spot patches.

Proper cultural practices are also important in patch recovery and in the prevention of new ones.

These include coring to relieve compaction and layers that result when sod of one soil type is laid on top of soil of another, which is common practice during the establishment of home lawns and commercial

continued on page 48
TABLE 1 ———————
The patch disease, casual organism and primary host.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Organism</th>
<th>Primary Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer patch</td>
<td>Phialophora graminicola</td>
<td>Annual bluegrass</td>
</tr>
<tr>
<td>Necrotic ring spot</td>
<td>Leptosphaeria korrae</td>
<td>Kentucky bluegrass</td>
</tr>
<tr>
<td>Take-all patch</td>
<td>Gaeumannomyces graminis</td>
<td>Creeping bentgrass</td>
</tr>
</tbody>
</table>

Red thread on perennial ryegrass.

lawn properties.

This results in short rooting during the warm weather (when the roots of the turfgrass plant are confined to the upper layer).

Coring and re-incorporating the soil back into the thatch will, over a period of years, alleviate the layering problem. It may also help manage any potential thatch problem, which is important in managing necrotic ring spot. Thatch has a poor moisture holding capacity, and turfs growing in a thick thatch are more susceptible to drought stress.

Light, frequent irrigation is also important in managing this disease. The theory that deep, infrequent irrigation is more beneficial to turf development is just that, a theory. Preliminary research data indicates that light, frequent waterings may be more beneficial to the turf. Such waterings on a daily basis, around midday, have certainly been shown to help manage necrotic ring spot. The turf appears to be benefitting culturally from the cooling of the turf and biologically from the build-up of beneficial micro-organisms in the moist thatch that may be antagonistic to L. korrae.

Lawn Restore, Green Magic, and Strengthen and Restore are products which appear to be supplying some biological management of necrotic ring spot. These products contain antagonistic micro-organisms (Lawn Restore) or their by-products (Green Magic, Strengthen and Restore). They have been effective in promoting the recovery of necrotic ring spot patches and preventing the development of new ones.

The key word is "management." These products are not a one-shot cure, but used systematically on a regular basis, they will manage this disease and provide a healthy turf.

In addition to the antagonistic micro-organisms and their by-products, these products contain the major and micronutrients necessary for a healthy turf.

Take-all patch

Take-all patch, caused by Gaeumannomyces graminis var. avenae was formerly known as Ophiobolus patch caused by O. graminis.

This disease was originally thought to be confined to the Pacific Northwest. It has now been reported throughout the United States and Canada wherever creeping bentgrass is grown.

Lowering the pH through the use of sulfur still appears to be the best way to manage this disease.

A word of caution: the granular sulfur products have been observed to cause injury to the turf the season following application. This injury initially resembles dollar spot. The sprayable sulfurs are just as effective and do not have the bad side effects.

OTHER DISEASES

Dollar spot

Dollar spot was considered a disease which occurred primarily on golf courses. However, with the introduction of the new perennial ryegrasses, it is becoming an important problem on home lawn turfs.

The disease was originally believed to be caused by Sclerotinia homoeocarpa, but is now believed to be caused by two other organisms, a Lanzia spp. and a Moellerodiscus spp.

Identification of the two fungi as dollar spot’s cause helps explain some of the confusion that has existed about the occurrence of this disease.

It has been, and still is, considered both a cool-weather and warm-weather disease. Two different fungi appear to have caused a disease with similar symptoms. This means that you can have dollar spot at any temperature between 60 to 85 degrees F.

An easy, reliable method to distinguish the difference between these two fungi in the field is thus needed.

Fortunately, dollar spot caused by both fungi appears to be reduced by adequate nitrogen levels. For the most part, they are also managed by the same fungicides, although the question is raised whether some fungicides might not be due to the differential sensitivity of the two fungal species causing this disease.
TABLE 2
Turf Disease and Controls.*

<table>
<thead>
<tr>
<th>Disease</th>
<th>Causal Agent</th>
<th>Hosts</th>
<th>Biological and Cultural Control</th>
<th>Chemical Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracnose</td>
<td>Colletotrichum graminicola</td>
<td>Annual bluegrass</td>
<td>Adequate nitrogen.</td>
<td>Maneb plus zinc sulfate, chlorothalonil, benomyl, thiophanate-methyl, thiophanate, thiophanate-methyl + mancozeb, triadimefon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine-leaf fescue</td>
<td>Cool grass by syringing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kentucky bluegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perennial ryegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown patch</td>
<td>Rhizoctonia solani</td>
<td>All major turf-grass species</td>
<td>Reduce nitrogen. Remove “dew.” Increase air movement.</td>
<td>Mancozeb, mane + zinc sulfate, chlorothalonil, anilazine, cycloheximide + thiram, benomyl, thiophanate-methyl, thiophanate, thiram, thiophanate-methyl + maneb, cadmium compounds, thiophanate + thiram, PCNB, iprodione, vinclozolin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bahiagrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bermudagrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Centipedegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonial bentgrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creeping bentgrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine-leaf fescues</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kentucky bluegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perennial ryegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. Augustinegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zoysiagrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer patch</td>
<td>Phialophora graminicola</td>
<td>Annual bluegrass</td>
<td>Light, daily watering during the summer.</td>
<td>Fenarimol, thiophanate-methyl, thiophanate, triadimefon, iprodione, benomyl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kentucky bluegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helminthosporium Diseases</td>
<td>(Dreschlera)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown blight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf blotch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting-out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net-blotch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red leaf spot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem and crown necrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye spot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf spot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brown patch

Brown patch was a disease believed to occur primarily on golf courses. However, again, with the introduction of the new improved perennial ryegrasses into home lawn turfs, it is also becoming a problem on home lawns.

The disease occurs under hot, humid conditions. It can be culturally managed by reducing the amount of nitrogen applied just prior to the advent of warm weather, and by increasing air circulation by removing and/or pruning trees or shrubs.

Pythium blight

Pythium blight was also a disease primarily occurring on golf courses, but, like dollar spot and brown patch, it is becoming more of a home lawn problem with the incorporation of the improved perennial ryegrasses into home lawn turfs.

There still seems to be some controversy over how many species of Pythium are involved in this disease. But regardless of how many or how few there are, they do tend to cause rapid loss of turf in hot, humid weather. Unlike many diseases where only the foliage is damaged and recovery occurs quickly, Pythium blight usually kills the plant. This means recovery in the infected areas will be slow because it will have to come from rhizomes or stolons that fill in from outside the spots or by germination of annual bluegrass or broadleaf continued on page 54
TABLE 2 continued

<table>
<thead>
<tr>
<th>Disease</th>
<th>Causal Agent</th>
<th>Hosts</th>
<th>Biological and Cultural Control</th>
<th>Chemical Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-all patch</td>
<td>Gaeumannomycyes graminis</td>
<td>Creeping bentgrass Kentucky bluegrass Velvet bentgrass</td>
<td>Reduce soil pH. Avoid liming. Use acidic fertilizers. Sulfur.</td>
<td>fenarimol</td>
</tr>
<tr>
<td>Pythium blight (cottony blight)</td>
<td>Pythium spp.</td>
<td>Perennial ryegrass Creeping bentgrass Annual bluegrass</td>
<td>Improve soil drainage. Increase air circulation.</td>
<td>chloroneb, ethazol, metaaxyl, propamocarb</td>
</tr>
<tr>
<td>Red thread</td>
<td>Laetisaria fuciformis</td>
<td>Creeping bentgrass Colonial bentgrass Bermudagrass Annual bluegrass Perennial ryegrass Fine leaf fescues</td>
<td>Increase nitrogen.</td>
<td>anilazine, iprodione, triadimefon, vinclozolin, chlorothalonil</td>
</tr>
<tr>
<td>Pink patch</td>
<td>Limonomyces roseipellis</td>
<td>Perennial ryegrass Creeping bentgrass Fine leaf fescue</td>
<td>Increase nitrogen.</td>
<td>Try red thread fungicides</td>
</tr>
<tr>
<td>Snow molds Fusarium patch</td>
<td>Typhula spp./Fusarium nivale</td>
<td>Annual bluegrass Colonial bentgrass Creeping bentgrass Fine leaf fescues Kentucky bluegrass Perennial ryegrass Tall fescue Velvet bentgrass</td>
<td>Avoid early fall nitrogen fertility that leads to lush growth.</td>
<td>Mercury compounds, PCNB products, chlorothalonil, chloroneb. These products may have to be used in combination for effective snow mold management. Benomyl, iprodione or mancozeb will control Fusarium patch where it occurs alone.</td>
</tr>
<tr>
<td>Necrotic ring spot</td>
<td>Leptosphaeria korrae</td>
<td>Kentucky bluegrass</td>
<td>Nitrogen to promote recovery. Light daily irrigation. Lawn Restore, Green Magic, Strengthen & Restore.</td>
<td>iprodione, fenarimol, benomyl, thiophanate, thiophanate-methyl</td>
</tr>
</tbody>
</table>

*The order in which fungicides are presented does not imply the order of their effectiveness.

Weeds when the cool weather of the fall returns.

Cultural management of Pythium blight consists of reduced nitrogen levels just prior to the advent of warm weather and improved drainage. Concerning the latter, in marginal areas of the cool season grass regions, Pythium blight is only a problem in areas of poor soil drainage, where water stands for prolonged periods.

In regions where severe Pythium blight damage occurs, it is always most severe in poorly drained soil areas. So good Pythium blight management begins with improving soil drainage.

As far as chemical management is concerned, two systemic fungicides, metalaxyl and propamocarb hydrochloride, are available to manage the disease for up to three weeks. They appear to be slower acting than chloroneb or ethazol.

Little spread of the disease occurs after these systemic fungicides are applied, although the mycelium of the fungus may remain evident on the previously infected tissue for a couple of days. No actual resistance to these two fungicides has been reported, but the possibility exists.

It would be wise, therefore, to follow each systemic fungicide application with a contact fungicide (chloroneb or ethazol) application so if resistance does occur following a systemic fungicide application, the contact fungicide will prevent the resistant strain from devastating the turf.

Anthracnose

Anthracnose, caused by *Colletotrichum graminicola*, is primarily a disease of annual bluegrass, although it will attack the fine-leaf fescues, perennial ryegrasses, and seaside creeping bentgrass.

Annual bluegrass dies from anthracnose during heat-stress periods of the summer, and not due to heat alone, as was once believed. If proper cultural management is followed and effective fungicides are used, annual bluegrass will survive the summer heat stress period like any other perennial.

One good cultural practice consists of deep, vertical mowing early in the spring, as soon as growth is initiated for the season. This will allow for the
production of new, juvenile growth which should be more resistant to heat stress. Coring should follow a week or two later for good root growth.

A second coring cultivation should be done following heavy seedhead production in the late spring to provide an optimum medium for maximum root growth (the coring holes) in the few remaining weeks prior to the heat stress period.

If only one coring operation a year can be done, this is the time to do it, because over 70 percent of the annual bluegrass roots disappear during heavy seedhead production.

A third coring operation should be done when the cool nights of late summer and early fall return. Light nitrogen applications should be made, i.e. 1/2 pound actual nitrogen per 1000 sq. ft. in June, July, and August for a healthier annual bluegrass plant and to reduce the amount of inoculum produced by C. graminicola for subsequent infection during the remainder of anthracnose season.

Finally, one of the effective fungicides mentioned in Table 2 should be used to assure healthy turf. A computer model has been developed which predicts the occurrence of anthracnose based on average daily temperatures and continuous hours of leaf wetness. Fungicides for the management of anthracnose can now be applied when the disease occurs, instead of on a calendar basis.

Nitrogen is important for recovery of the patches caused by necrotic ring spot.

Typhula blight only occurs under snow cover. It does not occur in the cool, wet weather of fall and spring, except under leaf piles.

Knowing which species you have is important in chemically managing the disease. Many fungicides, including the mercuries, chloroneb, PCNB, triadimefon and chlorothalonil, will manage Typhula blight caused by T. incarnata. They do not all manage Typhula blight caused by T. ishikariensis. The picture also is more confusing state by state.

For example, in Michigan the mercuries, PCNB, and chlorothalonil will manage both species, but triadimefon and chloroneb will not manage Typhula blight caused by T. ishikariensis. In northern Wisconsin and Minnesota, combinations of the mercuries and PCNB are required to manage both species. You should check with your local turfgrass experts to find out which fungicides are effective in your area.

Melting out

This disease is often incorrectly referred to as leaf spot. To be correct, melting out caused by Dreschlera poae (formerly Helminthosporium vagans), is a cool-season disease of Kentucky bluegrass that occurs in the cool, wet weather of the spring.

The disease starts out as spots on the leaf blades and, in a two- to three-week period, rapidly moves down the leaf sheath and into crowns and roots.

The entire grass plant is often killed continued on page 60
Ignore the idea... that the lawn doesn’t need watering because we just had a heavy rain.

Warm weather disease of many grass species, caused by the fungus Bipolaris sorokiniana (formerly, Helminthosporium sativum).

There are many Kentucky bluegrass cultivars that are resistant to melting out, the first of which was Merion.

Some of the newer Kentucky bluegrass cultivars—Parade, Baron, Cheri, Majestic, etc.—have some resistance to melting out, although it is not the same excellent resistance Merion had.

Consequently, stands of some of the newer Kentucky bluegrass cultivars may be thinned by melting out in the spring, allowing for invasion by crabgrass, quackgrass, tall fescue, and/or broadleaf weeds. This means cultural, biological and chemical management practices to reduce the severity of melting out will have to be incorporated into your turf management programs.

Helminthosporium melting out is one of the oldest, most-written-about turfgrass diseases. Unfortunately, much of what has been written about the disease is based on “folk lore” and not on good scientific data.

First, much of the older literature refers to melting out and having a “leaf spot stage” in the spring during the cool, wet weather and a “melting-out stage” in the spring during the hot weather of the summer.

But, anyone who is familiar with the disease knows all the damage is done during the cool, wet weather of spring. With the arrival of warm weather, the turf begins to recover.

Secondly, practically all the literature advises against the application of spring nitrogen, because it will increase the severity of Helminthosporium melting out.

It appears the research that lead to this erroneous conclusion was based on greenhouse data and not field data. At Michigan State University, data from the last four years suggests that just the opposite is true. Nitrogen in the spring actually reduces the severity of Helminthosporium melting out.

We recommend two nitrogen applications during the spring period to help manage Helminthosporium melting out, each between ½-1 pound of actual nitrogen/1000 sq.ft.

The third management practice is biological in nature. It consists of daily irrigation to keep the mat or thatch moist and to encourage the build-up of antagonistic microorganisms that prevent the fungus D. poae from sporulating, germinating, or infecting.

These antagonistic microorganisms may even possibly destroy D. poae. While the causes have not been discovered, the results have shown a dramatic reduction in the amount of Helminthosporium melting-out, where light, daily irrigation has been applied.

The actual concept may be hard to grasp since the disease occurs under cool, wet weather conditions, but apparently just a few days without rain allows the top of the thatch to become dry and allows the D. poae fungus to grow and infect these grass plants.

Remember, the key to having the daily irrigation program work is daily irrigation. You have to ignore the idea that the lawn doesn’t need watering because we just had a heavy rain. You aren’t irrigating the turf, you’re irrigating the thatch to keep it moist.

This is not to say we have eliminated the need for fungicides in managing this disease. That may some day be a reality, but much more research needs to be done on the mechanisms involved in biological and cultural management of Helminthosporium melting out.

In the meantime, there are many excellent fungicides for the management of Helminthosporium melting out listed in Table 1. Also, remember, following good cultural and biological practices will help improve the disease management obtained with the fungicides.

For people in the lawn care industry, there are now three excellent fungicides which will manage Helminthosporium melting out during the three to four weeks it is normally a problem in the spring; iprodione, vinclozolin, and chlorothalonil.

There is a possibility that anilazine may also manage the disease for the desired period of time, although more research is needed.

Remember, maintaining adequate levels of nitrogen will make these fungicides more effective.

Red thread

Red thread was believed to be caused by Coricium fuciforme, but new evidence has shown the correct name to be Laetisaria fuciformis. Also, the disease complex formerly referred to as
red thread has been split into two diseases: red thread and pink patch.

Red thread is an especially serious problem on slow-growing turf, whether growing slowly from lack of adequate nutrition, irrigation, or the cold weather.

New perennial ryegrasses are highly susceptible to red thread and with more of these varieties being used in home lawn turfs, this disease is becoming more and more important.

Red thread can be recognized by the red to coral pink stroma present on the foliage. The stroma appear fleshy and gelatinous when the turf is moist, later drying to become thin and thread-like. The lawn may appear as though it is infected with Helminthosporium or dollar spot, when viewed from a distance.

Adequate nitrogen and irrigation will manage the disease on Kentucky bluegrass and fine-leaf fescues and help reduce the severity of this disease on perennial ryegrass.

However, perennial ryegrasses are so susceptible to red thread that fungicides will be necessary to manage the disease when severe outbreaks occur.

Pink patch
This disease was formerly grouped under red thread, which was believed to be caused by Corticium fuciforme. Pink patch is now considered a separate disease caused by Limonomycetes roseipellis.

Like red thread, it is primarily a cool weather disease which is more severe under conditions of low fertility. It primarily attacks the above ground portions of the grass plant.

The disease is first evident along the margins of the leaf blades, as small, irregularly-shaped blotches of pink. Eventually, the entire width of the blade may take on a pinkish cast. The pink mycelium never becomes as pronounced as the stroma of the red thread fungus.

Pink patch has been known to be a problem on perennial ryegrass and fine-leaf fescue for some time. It has recently been found to be a problem on creeping bentgrass, in particular, Penneagle. This is probably due to the fact that Penneagle is more susceptible than the other creeping bentgrasses and to the trend toward lower rates of nitrogen on golf course greens.

When pink patch occurs on closely mowed turf, the patches are anywhere from a few inches to two feet in diameter.

If you don’t have a dissecting scope or microscope handy to distinguish the two diseases, place a sample of the diseased turf in a plastic bag with a moist paper towel and seal it. In a few days, if the patches are caused by pink patch, pink tufts resembling cotton candy will appear on the infected grass blades.

Increasing the amount of nitrogen will help reduce the severity of pink patch. No fungicide data exists for the management of this disease. If it becomes a problem, you may wish to try one of the fungicides recommended for red thread.

WT&T