Turf Insect Control

by Harry D. Niemczyk, Ph. D., professor of entomology, Ohio State University, Wooster, OH and Patricia Cobb, Ph. D., extension entomologist, Auburn University, AL.

Entomologists and turf specialists, by placing attention on turf varieties as well as turf pests, are discovering new control methods.

Dr. Reed Funk of Rutgers University discovered a species of fungus (called an endophyte), growing within certain ryegrasses and tall fescues. The endophyte imparts resistance to feeding by certain insects.

Further research has also identified turfgrass varieties that are highly susceptible to insect injury. Avoiding use of susceptible turf varieties and encouraging use of varieties with some resistance will reduce the need for insecticides applied to turf.

Meanwhile, insecticides remain the primary means of control as research proceeds on alternatives and supplemental methods of controlling insect damage to turf.

Keys to control
Knowing the seasonal occurrence and damage of all life stages of each pest common to your area is a major step toward effective control. This information, combined with the characteristics of the particular turfgrass cultivar and the known length of the residual of the proposed insecticide, makes insect control scientific rather than speculative.

Still, there will be twists to confuse any control program, such as soil type, heavy thatch, weather, and poor application uniformity.

Differences between the cool- and warm-season zones and among mountains, plains, and coastal areas, also result in variations in pest species and their seasonal occurrence. Knowledge of each pest's life cycle in your area is often as important as the choice of insecticide.

The purpose of this guide is to point out some major pests to watch out for in cool- and warm-season turfs in 1985, when their vulnerable stages occur, and some insecticides that may be used. No endorsement of named products is intended nor is criticism implied for those not mentioned.

LATE WINTER (March)
Chinchbugs and Billbugs—In northern zones chinchbugs and billbugs both overwinter as adults in thatch or sheltered sites near buildings. They can become active during warm days in March. Infestations of the hairy chinchbug and bluegrass billbug occur in zoysia, Kentucky bluegrass and fine fescues.

In southern Florida, the southern chinchbug is active throughout the
year. Most varieties of St. Augustinegrass and some bermudagrasses are damaged by southern chinchbugs. Zoysia and bermuda grass are more likely to be infested by the hunting billbug.

When summer damage from chinchbugs and/or billbugs is expected in cool-season areas, a preventative application of liquid or granular Dursban® (chlorpyrifos-1 lb. Al/acre), diazinon (2.5 to 4 lb. Al/acre), or Oftanol® (isofenphos-2 lb. Al/acre) may be made as soon as these insects begin to move about. Treatment at this time controls adults before eggs are laid. If spring is early, these applications may need to be delayed until the last week of March.

Retreatment for chinchbugs in mid to late summer may be necessary if reinfestation from adjacent untreated areas occurs.

Preventative treatments may not be successful in southern Florida where the southern chinchbug has multiple generations and is resistant to most organophosphate insecticides in some areas. In southern Florida, where resistance is a problem, the insecticides Pydrin®, Pounce®, or Baygon® have been substituted for organophosphates. Replacing susceptible turf varieties with Floratam St. Augustinegrass, a variety highly resistant to the southern chinchbug, will provide excellent natural control.

Grubs—The larvae of this group of pests normally overwinter six inches or deeper in the soil. If spring comes early, grub activity can be expected along with skunks and raccoons who will tear up the turf searching for the grubs. Moles, who feed on grubs and earthworms, also become active at this time.

Application of Oftanol® (2 lb. Al/acre) during March when frost is gone from the ground, provides control of overwintered grubs as they return to the surface. In cool-season areas, such treatment is sufficiently residual to provide adequate control of fall grub infestation. In addition, treatment at this time also kills overwintering chinchbugs and billbugs and reduces infestations of these insects during the summer.

Mole crickets—Mole crickets have extended their range from Florida and eastern Georgia into southern Louisiana and eastern Texas. Timing of treatments is critical and varies from one area to another.

The tawny and southern mole crickets are the primary pest species. Except for southern Florida, both have one generation per year. Mole crickets become active in March from north central Florida throughout their range in the Gulf States after overwintering deep in the ground as adults or nymphs. Tunnelling and some feeding damage takes place at night in moist soil and increases as mole crickets become more active. Both mole cricket species begin spring mating flights in late March. In most areas March treatment is seldom required.

Entomologists Dr. Harry Niemczyk and Dr. Pat Cobb.

In years when feeding of overwintered mole crickets resumes earlier than normal, Oftanol® (2 lb. Al/acre) has been used with some success. Generally, such applications are better made later in the year.

Black Turfgrass Attenius—This golf course pest overwinters as an adult in the soil under debris in roughs or other protected areas. A few may be seen flying about on warm afternoons in early March. Usually this activity begins when crocus starts blooming and intensifies as the bloom of red bud appears.

While an applications of Oftanol® in March may be successful in preventing summer infestations of larvae, the probability of success is increased by waiting until April.

Greenbug—The only stage of the greenbug known to overwinter in northern states is the egg. Shiny black eggs deposited the previous fall may be found adhering to grass blades, fallen tree leaves, or other debris.

Treatment for the greenbug is not appropriate during the late winter.

Sod Webworms—The most common sod webworm species overwinter as larvae in the thatch or upper inch of soil. Feeding does not resume until hibernation (dipause) is broken by early spring warmth.

Treatment for sod webworm is usually not appropriate during late winter.

SPRING (April-May)

Chinchbugs and Billbugs—As warm days of spring approach, movement of chinchbug and billbug adults increases rapidly. Generally, egg laying begins the first week of April on warm-season turf and the first week of May on cool-season turf. Occasionally adult billbugs can be seen wandering about on sidewalks on warm afternoons.

Generally, application of insecticides to prevent infestations of chinchbugs and billbugs should be completed by the first week in May in cool-season and mid-April in the South. Such applications are made before significant numbers of eggs are laid. This time may vary as much as a week or more depending upon the spring weather.

When the preventative approach is not used and southern chinchbugs are detected in May, diazinon (4 lb. Al/acre) provides control. In areas with three to five generations, two retreatments at six week intervals may be needed.

Grubs—Overwintered grubs return to the surface and begin feeding on turfgrass roots in April. Increased activity and damage from moles, skunks, and raccoons foraging on grubs can also be expected. Feeding by mammals and grubs continues through May.

In cool-season areas, a single application of Oftanol® (2 lb. Al/acre) made during April has been successful in controlling overwintered grubs with one year life cycles and preventing subsequent infestations during late summer. Application made during May may not provide immediate control, however, prevention of the late summer infestations may be expected.

Infestations of such grubs can also be controlled during April (South) or May (North) by spot or general treatment with Turcam® (bendiocarb, 2 lb.)

continued on page 60
Al/acre), Proxol (trichlorfon, 8 lb. Al/acre) or diazinon (5-6 lb. Al/acre). Golf course superintendents may also use ethoprop (Mocap®, Scotts Nematicide/Insecticide, 10 lb. Al/acre). Sevin® (carbaryl, 2-4 lb. Al/acre) has been effective against larvae of the green June beetle.

Treatment should be delayed until grubs are in the top one inch of soil. Irrigation or rainfall should follow such applications to move the insecticides to the target grub as soon as possible.

Although milky spore disease products for control of Japanese beetle grubs may be applied anytime there is no frost in the soil, spring is a good time for such applications. The soil is open and frequent rains move the disease spores into the soil. It should be noted that only the Japanese beetle grub will be affected by milky spore.

Infestations of large grubs (larvae of June bugs) have been occurring on a three-year cycle in some areas of Michigan and Minnesota. Locations of such infestations should be identified because reinfestation is likely every three years.

Controls such as Oftanol®, diazinon, Proxol®, or Turcam® should be applied in August or September during years of when large numbers of adults are seen.

Eggs are laid in May and June, therefore treatment should be made in late summer, early fall of that year or early the next spring while the larvae are small. Later applications against full-grown larvae have given inadequate control.

Mole crickets—Damage increases in April from north central Florida throughout the southern areas of the Gulf States. Mating and dispersal flights continue as egg laying and hatching begin.

Spring treatment is often necessary in areas that were severely damaged last fall. Small damaged areas can be rolled or otherwise packed down so the turf roots are reconnected with the soil. To determine cricket presence, pour soapy water (2 oz. liquid dishwashing detergent in one gallon of water) on turf areas where infestation is suspected. Crickets will usually surface in 3 to 15 minutes (longer in cool weather).

Turcam® (2 lb. Al/acre), diazinon (spray or granules, 5-6 lb. Al/acre), Mocap® 10G (ethoprop, 10 lb. Al/acre, commercial turf only), or Oftanol® (granular or liquid, 2 lb. Al/acre) can be used to control spring infestations.

In less critical areas, short residual treatment with Turcam® (2 lb. Al/acre) or diazinon (5-6 lb. Al/acre) applied in late April or May may be adequate.

Critical turf areas may require greater residual control provided by early April insecticide applications. Mocap® 10G (10 lb. Al/acre) provides up to four weeks control and Oftanol® (2 lb. Al/acre) up to eight weeks control. Treatments should be made late in the day if possible and watered in immediately.

Black turfgrass ataenius—Adults of the black turfgrass ataenius can be seen flying about in April and are often found in clipping catchers after early mowing of golf course greens. These adults begin laying eggs in early May, or about the time Vanhoutte spirea first comes into bloom. Check with local extension for a more precise time if needed.

Applications of Oftanol® during April or May has successfully prevented larval infestations during the summer. Diazinon (5-6 lb. Al/acre) applied to fairways during egg laying kills adults and also prevents the development of summer larval infestations.

Sod webworms—Overwintered larvae of the sod webworm begin feeding as soon as the grass begins to grow. Usually damage is insignificant, but areas that do not green up may be infested. These areas frequently have probe holes from starlings feeding on the larvae.

In warm-season areas webworm larvae pupate during late March and
early April. Moth flights begin in April in southernmost areas and during May in more northern areas.

Young larvae are usually present about two weeks after the spring moth flight peaks, so treatment of young larvae can be done in May in some areas.

When necessary, a wide range of insecticides including diazinon, Proxol®, Aspon®, Sevin®, and others applied at labelled rates may be used to achieve control.

Cutworms—Moths of cutworms begin laying eggs on golf course greens and other turf areas in the spring. These eggs hatch producing larvae that feed on grass blades during the night. The black cutworm is the most common species on cool-season turf.

While visible damage is uncommon on home lawns, damage can be significant on golf course greens in late May.

Black, granulate, and variegated cutworm moths become active in March and April in the South. Larvae are present on turf, especially on golf greens and tees. Damage can become evident as early as mid-April. By May, the larvae are large enough to cause severe damage.

Generally the insecticides effective against sod webworm are also effective against cutworms. The principle of controlling these pests is to apply the insecticide late in the afternoon and allow night-feeding cutworms to contact the treated foliage. Irrigation following liquid application is therefore not advisable.

Greenbug—Greenbug eggs begin hatching as early as April, but significant infestations do not develop until later in the year. Aphid numbers are too low to detect.

Winter grain mite—Damage from this mite is often first noted in April when home lawns are receiving spring fertilizer applications. By late May, the mites will have laid their eggs and died. Mites do not appear again until the eggs hatch in October.

If treatment is necessary, liquid diazinon or Dursban® will provide control.

Clover mite—Incidents of visible damage to home lawns has been seen in April in several Ohio cities and Denver, CO. Usually a nuisance pest in and around homes, the clover mite appeared in large numbers (5,000 per sq. ft.) across entire lawns and on turf next to building foundations. Symptoms of injury were the same as the winter grain mite. Turf next to foundations was often killed.

The clover mite has a slightly pink body and eight pale-colored legs. The first pair of legs are extremely long and protrude well out in front of the mite. The absence of bright red legs distinguishes the clover mite from the winter grain mite.

Treatment with liquid diazinon (2.5 lb. Al/acre) or Dursban® (1 lb. Al/acre) readily provides control.

Fire ants—Fire ants are spreading across much of the South causing serious and painful injury to man and animals. They begin establishing new mounds during warm, wet days of spring. During this time, ants are active near the surface of mounds and workers are foraging for food.

Mound treatments include diazinon granules or drenches, various Dursban® formulations, Oftanol®, or MC-96® (trichloroethane). Read the label for specific directions for mound treatment. Do not disturb the mound before or during treatment.

SUMMER (June-August)

Chinchbugs—In northern cool-season turf chinchbug eggs continue to hatch into June. Bright red nymphs appear. The number of chinchbugs increases rapidly in June and peaks in July when northern lawns can receive severe damage. This damage is often masked by summer dormancy of turf caused by drought.

During August the nymphs molt into adults that mate, lay eggs, and produce a second generation. Some northern areas have only one generation per year.

Southern chinchbugs are not usually a problem in well-irrigated turf during summers when rainfall is plentiful. Southern chinchbug damage first appears during the dry periods of June and July. Damage may continue throughout the summer and into the fall because of overlapping generations.

A wide range of insecticides may be used at label rates to control existing infestations. They include Dursban®, diazinon, Aspon®, and Sevin®. Treatments should be made before injury is severe, otherwise, damaged areas may not recover.

Areas of southern Florida have pockets of southern chinchbugs resistant to these insecticides. Pydrin®, Pounce®, or Baygon® may be substituted. Floratam St. Augustine, a chinchbug resistant variety, should be used within three days of opening. Retreatment during the fall is usually necessary.

Where mound treatment is impractical, the turf can be treated with Amdro® fire ant bait (no more than 1.5 lb. Al/acre). All the bait should be used within three days of opening. Retreatment during the fall is usually necessary.

Emergence of Japanese beetle, Popillia Japonica, adults from fescue sod in northern Georgia.

Life cycle of the bluegrass billbug in Ohio.
Few turfgrass cultivars have been bred specifically for insect resistance. Experimental lines or cultivars, developed for other traits, have been reported to demonstrate varying levels of resistance or tolerance to insect or mite pests.

In many instances, resistance has been observed under field conditions in limited trials. The data obtained may not provide an adequate measure of the level of resistance or tolerance, since the expression of resistance will vary with the severity of natural infestations.

The response of cultivars bred specifically for insect resistance has been studied more thoroughly, and field performance can be predicted more accurately.

Recently, increased emphasis has been placed on developing turfgrass cultivars with insect resistance, in much the same way as selection for disease resistance has been conducted. This research has involved both laboratory and field evaluation of plants for sources of resistance to pests such as the fall armyworm, the southern chinchbug, hairy chinchbug, bluegrass billbug, greenbug, mole cricket, sod webworm, and several mite species. A summary of the results from this research is provided in Table 1, on page 68.

Two approaches are being taken to develop insect resistant turfgrass cultivars. The first is selection for genetic sources of resistance within adapted cultivars or experimental materials (i.e., southern chinch bug resistance in 'Floretam' St. Augustinegrass). A second approach is developing cultivars with induced resistance by infecting them with endophytic fungi. Resistance to sod webworm in 'Repell' perennial ryegrass is an example.

Repell has a high level of infection by the endophytic fungus Acromonium coenophialum Morgan-Jones and Gam. The fungus lives within the host plant, but does not injure it. Substances produced either by the fungus, or the plant in response to invasion by the fungus, cause resistance to some insects.

Endophyte-infected perennial ryegrass or tall fescue has demonstrated resistance to sod webworm, several aphid species (including the greenbug), billbug, and a Hyperolides species called the Argentine stem weevil. There are also indications from field studies of chinch bug resistance.

With the development of new or improved methods of selecting for insect resistance, greater emphasis will be directed to breeding insect resistant cultivars in the future.

Currently, however, insecticides remain the major method for controlling major insect pest species.

In late May and June, new generation grubs of most southern species can be found by mid-August.

Oftanol® applied in June provides control of developing grubs during August as well as chinch bug and billbug larvae present in the turf at the time of application. Existing infestations of grubs found in August may be treated with Proxol®, Turcam®, Oftanol®, diazinon, or Mocap® (commercial turf only) at standard label rates. Sevin® (2-4 lb. AI/acre) is effective against the green June beetle larvae.

Extreme heat and drought during the summer may cause grubs to move deeper in the soil. Under such conditions, irrigation several hours before treatment and a thorough soaking afterward is advisable.

Mole crickets—Egg laying diminishes in late June, and newly hatched nymphs of both species feed voraciously. Tunneling damage suddenly becomes obvious in July as the nymphs grow larger. Because of the potential for sudden damage at this time, turf areas should be inspected several times a week during this period.

Poison baits have been effective in controlling mole cricket nymphs from June through August in the area from central Florida north and west through the Gulf States. Baits work best in eastern Georgia during spring and fall. Bait applications often must be repeated one or more times.

Bait formulations available include 2% Baygon® (5.3 lb./1,000 sq. ft.), 20% Sevin® (5-10 lb./bush/acre), 5% Dursban® (150 lb./bush/acre three weeks apart), and 2% malathion (100 lb./bush/acre or two applications of 50 lb./bush/acre three weeks apart).

Mole crickets are more active at night in moist soil. Turf should be irrigated several hours before baits are applied. Delay application until later in the day and do not irrigate for 2-3 days thereafter.

Residual control of mole crickets with Oftanol® (2 lb. Al/acre) may vary with location and amount of rainfall. Applications of Oftanol® have given up to 12 weeks control from the Florida panhandle along the Gulf Coast. Residual control was only six weeks in areas where August rainfall exceeded eight inches weekly. Oftanol® works faster on mole cricket nymphs when watered in immediately.

Black turfgrass ataenius—Eggs laid by beetles during May hatch in June and the larvae begin feeding on...
TABLE 1
Summary of Insect and Mite Resistance in Turfgrasses

<table>
<thead>
<tr>
<th>Insect/Mite</th>
<th>Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Armyworm</td>
<td>Bermudagrass- Cultivars ‘Tifton 44’ and ‘Tifton 292’ show moderate and high resistance, respectively. Research is underway to incorporate resistance into good turf types.</td>
</tr>
<tr>
<td>Hairy Chinch Bug</td>
<td>Kentucky Bluegrass- No resistant cultivars released. In laboratory tests ‘Baron’ and ‘Newport’ demonstrated higher levels of tolerance to adult feeding. Fine-leaf fescues- No resistant cultivars released. In field trials 76G1-322, FL-1, MomFrr 25, MomFrr 33, FRT 3, and ‘Silvana’ were least damaged. Perennial ryegrass- In field trials ‘Manhattan’, ‘Pennfine’ and ‘Score’ were least damaged.</td>
</tr>
<tr>
<td>Southern Chinch Bug</td>
<td>St. Augustinegrass- ‘Floratam’ and ‘Floralawn’ are resistant cultivars. ‘Floralawn’ is a new cultivar soon to be released by the Florida Agricultural Experiment Station. A third cultivar, ‘Floratine’ demonstrates a moderate level of tolerance.</td>
</tr>
<tr>
<td>Greenbug</td>
<td>Kentucky Bluegrass- No resistant cultivars released. Good progress has been made in selecting for resistance in adapted cultivars. Resistant germplasm is under development.</td>
</tr>
<tr>
<td>Sod Webworm</td>
<td>Kentucky Bluegrass- No resistant cultivars released. Kentucky-grown ‘Kentucky Common’ reported to be less damaged by Crambus species. Bermudagrass- No resistant cultivars released. Differences in response of tropical sod webworm (Herpetogramma phaseopteralis Guenee) and grass webworm (H. licarsalis Walker) reported on strains and some cultivars. ‘Common’ and ‘Tifway’ showed the least feeding damage by grass webworm. Common’ and FB-119 showed more tolerance to tropical sod webworm than ‘Tifway’ and ‘Tifgreen’. St. Augustinegrass- ‘Roselawm’ reported as less preferred by tropical sod webworm than ‘Bitter Blue’, ‘Scotts 1081’, ‘Florida Common’ and three Florida accessions. Perennial ryegrass- Endophyte-induced resistance to complex of Crambus species in ‘Pennant’ and ‘Repell’.</td>
</tr>
<tr>
<td>Mole Crickets</td>
<td>Bermudagrass and Bahiagrass- No resistant cultivars released. Some genotypes have shown little reduction in root and shoot growth after several months of exposure to mole crickets which severely damaged ‘Tifway’ and ‘Tifgreen’.</td>
</tr>
<tr>
<td>Banks Grass Mite</td>
<td>Zoisia grass- No resistant cultivars. A genotype of Zoisia tenuifolia was reported as highly resistant.</td>
</tr>
<tr>
<td>Bermudagrass Stunt Mite</td>
<td>Bermudagrass- FB-119 (Franklin), a medium-to-coarse textured bermudagrass cultivar, is highly resistant.</td>
</tr>
</tbody>
</table>

the turf roots immediately.

From late June to mid-July, symptoms of injury include wilting in spite of irrigation. In July, larvae move deep into the soil, pupate and emerge as adults. These adults lay eggs during August producing a second generation in states such as Ohio. The second generation larvae are capable of damaging turf.

If preventative applications of insecticide were not made, existing infestations may be spot or generally treated with Proxol, Turcam, diazinon, or Mocap at label rates.

Sod webworms—Damage from sod webworm larvae occurs occasionally in most of the cool-season turf region. Injury is more common in midwestern states and is usually seen in July and August. Older sod fields and heavily thatched turfs are good candidates for infestation. There are generally one or two generations per year, depending upon the species.

In warm season areas most sod webworms complete at least three generations a year, with overlapping generations toward the end of the season.

Damage is most severe from late June through August. In southern Florida where the tropical sod webworm is active throughout the year, damage is most severe in late summer and fall.

Hybrid bermudagrasses are favored by sod webworms, but damage occurs on other warm season grasses. Webworm damage to bermudagrass often superficially resembles symptoms of some diseases. Flushes of soapy water can be used to determine the presence of sod webworm larvae.

Insecticide applications should be made when larvae are present and/or one to two weeks after peak moth flight.

Formulations of Dursban, diazinon, Sevin, Proxol, or Aspon applied at labelled rates provide control. Retreatment may be necessary depending upon the location and number of generations.

Cutworms—Cutworm larvae continue to cause visible damage to golf course greens through June. These larvae pupate in the soil or thatch and emerge as moths that lay eggs for additional generations.

Cutworm larvae can be controlled with a wide range of insecticides at label rates; including Dursban, Proxol, Aspon, Sevin, and others. Irrigation following liquid applications is generally not advisable.

Fall armyworm—The fall armyworm is seldom a problem of cool-season turf.

But in the South, summer always means the arrival of the moths of this migratory pest. Although in mild winters fall armyworms may overwinter along the Gulf Coast, it is generally believed that the moths are blown in on winds from Central and South America. Several generations occur each season, one about every five weeks. Generations overlap in the fall.

Lush, green bermudagrasses are preferred. By late June, fall armyworm damage to turf has usually been reported along the Gulf Coast. Damage is seldom permanent, unless drought and/or heat stress follow.

Fall armyworms may feed anytime...
INSECT CONTROL GUIDE

during the day but are most active in the early morning and late evening.

Treatment is most effective at these times. During hot, mid-day hours, larvae may retreat into the thatch.

Insecticides such as diazinon, Sevin, Dursban, and Proxol can be used at labelled rates to control fall armyworm.

Greenbug—Damaging populations of greenbug can occur from June through August. Populations and incidents of damage frequently vary from area to area, even within a city.

Symptoms of injury include turf under the dripline of trees and in open areas having a burnt orange color. When symptoms are seen, numerous aphids (40 or more) may be seen on a single grass blade. Close examination of damaged turf is necessary because the aphids are small. If left untreated, a heavy infestation can kill the turf. Little damage from this pest was seen in 1983.

Greenbug infestation may be controlled with liquid treatments of Dursban (1 lb. Al/acre) or diazinon (2.5 lb. Al/acre). If reinfestation occurs following treatment with these insecticides, Orthene (acephate) at labelled rates has been effective.

Fire ants—Fire ants are more difficult to control during hot, summer days because they are deeper in the soil. However, during rainy periods, they may become active and establish new mounds. Treatments during these months should be applied early in the morning before the heat of day.

Scale insects—Although Rhododendron scale is present in Gulf Coast areas throughout the year, damage becomes most pronounced during the hot, dry days of summer. Bermudagrass and St. Augustinegrass are preferred hosts, but other grasses are also infested. Several treatments with diazinon and a wetting agent are required for control to be effective.

Ground pearls are scale insects that live in the soil throughout the year, sometimes 8-10 inches deep. In the spring eggs hatch producing nymphs. The nymphs feed throughout the summer by piercing turf roots and extracting plant fluids.

Chemical control has not been effective for ground pearls at any time of year. Damage is most severe during summer months when the turf is stressed from heat and drought.

Centipedegrass is especially susceptible to damage, particularly when weakened by overfertilization or drought. Proper fertilization, disease control, and adequate irrigation to maintain healthy turf is the best defense.

FALL (Sept.-Oct.)

Chinchbugs—In the northern U.S. the second generation of chinchbug is at peak numbers in September. Nymphs complete their development to adults in late October. Most chinchbugs overwinter in the turf, but some move to protected areas before winter.

Generally, infestation levels at this time are not high enough to warrant the use of insecticides. Early fall rains

Second generation chinchbugs reach peak numbers in late September in the North, but infestation levels are generally not high enough to use insecticides.