New findings and changing attitudes have improved turf disease control over the last few years.

Researchers are discovering more about the actual disease-causing organisms. In a few cases, researchers have discovered a combination of pathogens is involved in causing a particular disease. As a result, a combination of fungicides is needed to achieve control. Fungicides are being directed more effectively at the pathogens.

At the same time, new findings about the effects of certain cultural practices on certain turf varieties are providing clues to disease management. For example, safe mowing heights and fertilization rates are different for different varieties of grass.

Definite progress is being made in turf disease management. All turf managers should reevaluate their disease control programs to consider all new information and all new products available.

Dollar spot

Dollar spot is found primarily on golf course grasses, such as creeping bentgrass and annual bluegrass, when the temperature is between 60-85 degrees F.

Two fungi cause the symptoms of the disease on turf, Lanzia spp. and Moellerodiscus spp. Both fungi appear to be managed by the same large selection of fungicides, although one has to wonder if resistance to some fungicides might not be due to the differential sensitivity of the two fungi. (See Table 1)

What is needed is an easy, reliable method to distinguish between these
Pythium blight rapidly strikes ryegrasses and other turfs where drainage is poor in hot and humid weather. Recovery is slow since pythium usually kills the entire plant.

two fungi in the field.

Fortunately, dollar spot caused by both fungi appears to be reduced by adequate nitrogen and soil moisture levels.

Brown patch
Brown patch occurs under hot, humid conditions, primarily on golf courses. The disease is also infecting home lawns containing some of the new improved perennial ryegrasses. It can be culturally managed by reducing the nitrogen applied just prior to the advent of warm weather and increasing air circulation over turf areas. A fairly large choice of fungicides is available for control of Brown patch.

Pythium blight
Pythium blight is also found on golf courses and home lawns containing perennial ryegrasses. The seriousness of the disease is greater than some turf diseases since Pythium blight usually kills the entire plant, not just foliage.

Pythium causes rapid loss of turf in hot, humid weather. Recovery of infected areas is slow since regrowth must come from stolons and rhizomes of nearby healthy plants. Annual bluegrass or broadleaf weeds often move in before healthy turf spreads into the damaged area.

Cultural management of Pythium blight consists of reduced nitrogen levels just prior to the advent of warm weather and improving drainage.

A combination of systemic fungicide followed by a contact fungicide is recommended for control of Pythium blight.

The systemic fungicides include metalaxyl (Subdue, Ridomil, Apron) and propamocarb hydrochloride (Band). Check the label for the appropriate application rate for the specific kind of turf. Although the active ingredient may be the same, the concentration and the rate may vary.

Systemic fungicides will manage the disease for up to three weeks. Little spread of the disease occurs after the systemic fungicides are applied, although mycelium of the fungus may remain evident on the previously infected tissue for a couple of days.

No actual resistance to these two fungicides has been reported, but the possibility exists. It is wise therefore to follow each systemic fungicide application with an application of contact fungicide (chloroneb or ethazol) in case resistance develops. The contact fungicide will prevent the resistant strain of fungus from devastating the turf.

Anthracnose
Anthracnose is primarily a disease of annual bluegrass, although it will attack fine leaf fescues, perennial ryegrasses, and seaside creeping bentgrass. The fungus causing the disease is Colletotrichum graminicola.

Annual bluegrass dies from anthracnose during heat stress periods of the summer. This is not due to heat alone, as was once believed. If proper cultural management is followed, and effective fungicides are used, annual bluegrass will survive the summer heat stress period like any other perennial.

Good cultural practices consist of deep vertical mowing early in the spring, as soon as growth is initiated for the season. This will allow for production of new juvenile growth which should be more resistant to heat stress.

Vertical mowing should be followed by coring a week or two later for good root growth. A second coring should be made following heavy seedhead production in late spring to provide an optimum medium for maximum root growth in the remaining weeks prior to heat stress.

More than 70% of the roots of annual bluegrass disappear during heavy seedhead production. If only one coring a year can be made, this is the time to do it. A third coring should be made when the cool nights return in late summer and early fall.

Light nitrogen applications (1/2 lbs. actual N per 1,000 sq. ft.) should be made in June, July and August. This produces healthier annual bluegrass and reduces the amount of inoculum produced by C. graminicola for subsequent infection. Finally, one of the effective fungicides should be used to insure healthy turf.

Snow molds
There are two prevalent snow molds: pink snow mold (Gerlachia patch) and gray snow mold (Typhula blight).

Pink snow mold used to be known as Fusarium patch caused by Fusarium nivale. But the common name of the disease has been changed to Gerlachia patch and the scientific name of the causal organism has been changed to Gerlachia nivalis.

The disease becomes a problem in the fall when the temperature drops into the low 60's and continues through the spring until daytime temperature climbs back into the 70's. It is usually first noticed in the shaded areas of greens, tees, and fairways.

Gerlachia patch does not need snow cover to become active, only cool wet weather. Annual bluegrass is especially susceptible to Gerlachia patch.

In the spring, the disease is often misdiagnosed as copper spot, because of the small, copper-colored spot that it causes. However, copper spot is a disease that occurs in warmer weather.

Keeping nitrogen levels low when the disease is active may help manage this disease.

Gray snow mold only occurs under snow cover. It does not occur in the cool wet weather of fall and spring, except under leaf piles.

It is caused by two species of fungi depending on geographic location of the infection. Typhula incarnata is the primary species in the east, south, and parts of the west and midwest. Typhula ishikariensis is most prevalent in northern snow mold regions, especially where prolonged snow cover exists (two or more months) in the midwest and western U.S.

The two species are easily distinguished from each other when observed soon after the snow melts. T. incarnata produces grayish spots in the turf, with a fairly large mass of brown filaments evident. T. ishikariensis spots have a reddish cast and contain small, dark black filaments.

Knowing the species is important in treatment of the disease. Many fungicides manage Typhula incarnata, but they do not all manage Typhula ishikariensis. The treatment picture is more complicated state by state. Check with local turfgrass experts to find out the fungicides that are effective for both species in your area.

Gaeumannomyces patch
Gaeumannomyces (take all) patches are caused by Gaeumannomyces graminis var. agropyri. It was formerly known as Ophiobolus patch caused by Ophiobolus graminis.

This disease was originally thought to be confined to the Pacific northwest, but it has since been reported on creeping bentgrass in the coastal areas of New England, New York, and the mid-Atlantic states.

Lowering the pH of the soil with...
<table>
<thead>
<tr>
<th>Disease</th>
<th>Causal Agent</th>
<th>Hosts</th>
<th>Cultural Control</th>
<th>Chemical Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracnose</td>
<td>Colletotrichum graminicola</td>
<td>Annual bluegrass</td>
<td>Adequate nitrogen. Cool grass by syringing</td>
<td>Maneb plus zinc sulfate, chlorothalonil, benomyl, thiophanate-methyl, thiophanate, thiophanate-methyl + mancozeb, tridimefon</td>
</tr>
<tr>
<td>Brown patch</td>
<td>Rhizoctonia solani</td>
<td>All major turfgrass species</td>
<td>Reduce nitrogen. Remove "dew." Increase air movement</td>
<td>Mancozeb, maneb + zinc sulfate, chlorothalonil, anilazine, cycloheximide + thiram, benomyl, thiophanate-methyl, thiophanate, thiram, thiophanate-methyl + maneb, cadmium compounds, thiophanate + thiram, PCNB, iprodione, vinclozinol</td>
</tr>
<tr>
<td>Summer patch</td>
<td>Phialophora graminicola</td>
<td>Annual bluegrass Kentucky bluegrass Centipedegrass</td>
<td>Light, daily watering during the summer.</td>
<td>Fenarimol, thiophanate-methyl, thiophanate, tridimefon, iprodione, benomyl</td>
</tr>
<tr>
<td>Helminthosporium Diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf blotch</td>
<td>D. sicca D. cynodontis D. sorokmanum</td>
<td>Bermudagrass Fine-leaf fescue Kentucky bluegrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf spot</td>
<td>D. poae D. dicytoides D. erythroseplum D. speciferum D. giganteum</td>
<td>Kentucky bluegrass Fescue Creeping bentgrass Bermudagrass Bermudagrass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting-out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net-blotch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red leaf spot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem and Crown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonate eye spot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red thread</td>
<td>Laetisaria fusiformis</td>
<td>Creeping bentgrass Colonial bentgrass Bermudagrass Annual bluegrass Perennial ryegrass Fine leaf fescues</td>
<td>Increase nitrogen</td>
<td>Anilazine, iprodione, triadimefon, vinclozinol, chlorothalonil</td>
</tr>
<tr>
<td>The Snow Molds</td>
<td>Typhula ssp. Gerlachia nivalis</td>
<td>Annual bluegrass Colonial bentgrass Creeping bentgrass Fine-leaf fescues Kentucky bluegrass Perennial ryegrass Tall fescue Velvet bentgrass</td>
<td>Avoid early fall nitrogen fertility that leads to lush growth.</td>
<td>Mercury compounds, PCNB products, chlorothalonil, chloroneb. These products may have to be used in combination for effective snow mold management. Benomyl, Iprodione or Mancozeb will control Gerlachia patch where it occurs alone.</td>
</tr>
<tr>
<td>Yellow patch</td>
<td>Rhizoctonia cerealis</td>
<td>Kentucky bluegrass Creeping bentgrass</td>
<td>Nitrogen to promote recovery.</td>
<td>Iprodione, fenaromil</td>
</tr>
</tbody>
</table>

*The order in which fungicides are presented does not imply the order of their effectiveness.
sulfur appears to be the best way to manage this disease. However, granular sulfur products have been observed to cause injury to the turf the season following application. This injury initially resembles dollar spot. Sprayable sulfurs are just as effective as granulars and do not have the negative side effects.

Summer patch
Formerly known as Fusarium blight, summer patch is caused by the fungus *Phialophora graminicola* and not *Fusarium roseum* and *F. tricinctum* as previously thought. This “frog-eye” disease is now called summer patch to avoid further confusion.

Summer patch is a warm weather disease occurring from late June through early September depending upon your location. The disease usually occurs after a week or two of dry weather following a heavy rain.

The characteristic initial symptom is wilted turf in the infected spot. This separates it from other diseases that have similar frog-eye symptoms.

Coring is recommended to improve root development, reduce thatch, and eliminate layering caused by two different soil types. Residential turf is often grown on poor soil.

Nutrient and water uptake are active processes which require adequate oxygen. Coring holes provide an excellent area for root growth with good aeration for proper uptake of nutrients and water.

Thatch reduction is best accomplished during the coring operation by breaking up the cores with a vertical mower or power rake. The core soil can be reincorporated into the thatch layer.

Power raking does little for thatch reduction. It removes leaf tissue which is readily broken down. Power raking does not remove the rhizomes and roots which are primarily responsible for thatch formation.

Layering results from soil of one type being placed on top of another type, as when a muck sod is placed on top of a mineral subsoil. Layering may not be a problem in the cool weather of spring and fall.

When summer conditions stress the turf, layering can be a serious problem. The entire root system is restricted to the upper layer, often no more than one inch in depth. Obviously, drought stress diseases like summer patch are going to be more severe under such conditions. Integrating the soil layers over a period of years through a coring program should create a deeper-rooted, healthier turf.

Nitrogen fertility in the summer months of June, July, and August will reduce the severity of summer patch. Approximately 1/2 lb. of actual nitrogen per 1,000 sq. ft. per month should be adequate.

Supplemental irrigation can culturally reduce summer patch if applied on a daily basis. Applied at midday, irrigation will cool the plants. It also provides water for the short and limited root systems of the infected plants.

If the thatch is kept moist, antagonistic microorganisms may develop, which will prevent the pathogenic fungi from attacking the plants. A daily irrigation program during the summer on infected turf may also cause the build-up of antagonistic microorganisms that destroy *P. graminicola*. Summer patch is effectively controlled by Cleary’s 3336, Fungo 50, and Tersan 1991. They all have the

Pink snow mold, or Gerlachia patch, used to be called Fusarium patch. It does not need snow cover to develop, only cool wet weather.
same basic chemistry.

The area to be treated should be irrigated the night before. The fungicides are then drenched in before they dry on the foliage. They can be used either curatively or preventatively.

Bayleton does not have to be drenched in to be effective. However, it does have to be applied preventatively, before P. graminicola becomes active. Applied preventatively, Bayleton will effectively control disease in areas infected the previous year.

Yellow patch

Yellow patch is a newly recognized disease of Kentucky bluegrass caused by *Rhizoctonia cerealis*. This is a cool weather disease that occurs in September through November, depending upon your location.

The initial symptoms are red to purple leaves on the infected plants. The disease is characterized by "frog-eyes" which resemble summer patch. Consequently, the disease is often misidentified as summer patch.

The main differences between the two diseases are summer patch occurs in warm weather and is characterized by wilting turf in the active spots, whereas yellow patch occurs in cool weather of the fall and is characterized by red blades on infected grass plants.

Nitrogen fertility during the growing season is necessary for recovery of the older yellow patch "frog-eyes" that were formed in previous seasons. The effect nitrogen has on the development of new yellow patch "frog-eyes" has not been determined.

Some manufacturers claim their products change the chemical and biological activity of the soil and thatch to make it a better environment for beneficial microorganisms and healthier plant growth.

Several products were tested for their management of *Rhizoctonia* yellow patch. One such product called Lawn Keeper promoted excellent recovery of older yellow patch "frog-eyes" and prevented new ones from forming. It is important to point out these are only preliminary findings and further research is needed to check the reliability of these results and to determine rates, timing, and the exact effect the products are having on disease organisms.

Preliminary data suggest Chipco 26019 and Rubigan will manage *Rhizoctonia* yellow patch. Effective timing and minimal rates have to be determined. It appears nitrogen application will have to be made in conjunction with the fungicide. Otherwise, fungicides may prevent the older "frog-eyes" from becoming active again and new ones from forming. Also, the older "frog-eyes" will not fill in and the maximum benefit from the fungicides treatments will not be realized.

Necrotic ring spot

Another disease that occurs in the cool weather of spring and fall is necrotic ring spot caused by *Leptosphaeria korrae*. This disease also occurs as "frog-eyes" and, like yellow patch, plants in the active spots have red blades. It appears that yellow patch and necrotic ring spot may be part of a disease complex.

Management of this disease is similar to yellow patch management. Laboratory results indicate Rubigan, Banner and Tersan 1991 are effective against *Leptosphaeria korrae*. Field work is needed before reliable fungicide recommendations can be made.

Melting-out

This disease is often incorrectly referred to as leaf spot. To be correct, melting-out is caused by *Dreschlera paeoe* (formerly known as *Helminthosporium vagans*) and is a disease of Kentucky bluegrass. It occurs in the cool, wet weather of spring. The disease starts out as spots on the leaf blades and rapidly (within 2 to 3 weeks) moves down the leaf sheath and into the crowns and roots. The entire grass plant is often killed or severely damaged during the period, which is where the term melting-out arises. The entire stand of Kentucky bluegrass seems to melt away.

Leaf spot, on the other hand, is a warm weather disease of many grass species caused by the fungus *Dreschlera sorokinianum*. This fungus has also been known as *Bipolaris sorokinianum* and *Helminthosporium saltivum*.

There are many Kentucky bluegrass cultivars resistant to melting-out. Merion was the first recognized Kentucky bluegrass resistant to melting-out. Some of the newer Kentucky bluegrass cultivars have some resistance to melting-out, including Parade, Cherri, Baron, and Majestic. Still, stands of some of the newer Kentucky bluegrass cultivars may be thinned by melting-out in the spring, allowing for invasion of crabgrass, quackgrass, tall fescue and/or broadleaf weeds. This means cultural practices to reduce the severity of melting-out will have to be incorporated into turf management programs.

Helminthosporium melting-out is one of the oldest, most written about, turfgrass diseases. Unfortunately, much of what has been written is based on 'folk law' and not good scientific data.

Much of the older literature refers to melting-out as having a leaf-spot stage during the hot weather of summer. Anyone who is familiar with the disease knows all the damage is done during the cool, wet weather of spring. The turf begins to recover with the arrival of warmer weather.

Practically all the literature says to avoid spring nitrogen because it will increase the severity of *Helminthosporium* melting-out. It appears the research that lead to the erroneous conclusion was based on greenhouse data and not field.

At Michigan State University, data from the last four years suggests just the opposite. Nitrogen in the spring actually reduces the severity of *Helminthosporium* melting-out. We recommend two nitrogen applications during the spring period to help manage the disease, at a rate of 1/2 to 1 lb. of actual N per 1,000 sq. ft.

Daily irrigation is also recommended to keep the mat or thatch moist. This encourages the build up of antagonistic microorganisms that prevent the fungus *D. paeoe* from sporulating, or germinating, or infecting. There is also a possibility that antagonistic organisms may even destroy *D. paeoe*. While the details have not been worked out, the results have shown a dramatic reduction in the amount of *Helminthosporium* melting-out where light daily irrigation is applied.

The actual concept may be hard to grasp, since the disease occurs in cool weather. But, apparently just a few days without rain allows the top of the thatch to become dry and this allows the fungus *D. paeoe* to grow and infect grass plants. You aren't irrigating the turf, you are irrigating the thatch to keep it moist.

Following good cultural and biological practices will help improve the disease management obtained with fungicides. There are three excellent fungicides which will help manage *Helminthosporium* melting-out during the 3-4 weeks it is normally a problem in the spring: iprodione (Chipco 26019), vinclozolin (Vorlan), and chlороthalonil (Daconil).

There is a possibility that anilazine (Dyrene) may also manage the disease for the desired period of time, although more research is needed. Remember, applying these fungicides with a little nitrogen will make them more effective.

continued on page 74
Brown patch, at right, is the most common turf disease in the Southeast. It affects primarily St. Augustine and zoysiagrass in the South and bentgrass and perennial ryegrasses in the North. It is prevalent during warm, moist days with cool nights.

Dollar spot, shown at left, damages bentgrass, annual and perennial bluegrass, bermudagrass and zoysiagrass. In the South it is common in the spring and fall. In the north it is active anytime temperatures are between 60 and 85 degrees.

Diseases of Southern Turf

by Don Blasingame, extension plant pathologist, Mississippi State University

Managers of southern turf not only fight diseases of six different warm season turf species, but also diseases of overseeded cool season turf species.

Although most of the diseases of southern turf are caused by fungi, other agents such as bacteria, viruses, and nematodes, can cause serious problems to certain grasses.

Turf managers in the South can’t depend solely on fungicides for disease control. Good variety selection, proper fertilization, and appropriate cultural practices are very important in disease control. No amount of fungicide will compensate for poor fertility and cultural practices.

Brown patch

Brown patch is the most common turf disease occurring in the southeastern United States. Although St. Augustine and zoysiagrass are the most susceptible species, even the more tolerant centipede, bermudagrass and ryegrass are frequently damaged by this fungus.

Brown patch is favored by warm, moist weather combined with cool nighttime temperatures. Therefore, in certain areas of the South, brown patch can and does occur any month of the year.

In the upper regions of the South the most favorable conditions for brown patch development occur from...
late April through mid-October.

Symptoms of brown patch on warm season grasses are different than the symptoms of the disease on cool season turf. Even though the grass is usually killed in a circular pattern, many times the smoke ring is not seen on southern turf. Also, under certain environmental conditions the fungus may cause a gradual thinning of the turf over a rather large area instead of killing in a circular pattern.

There are several factors that tend to make the grass more susceptible to brown patch. One is the excessive application of nitrogen fertilizer. The resulting lush growth is readily attacked.

Another is watering late in the afternoon and allowing the grass to remain wet for long periods of time. Excessive accumulation of thatch also creates a favorable environment for development of brown patch and many other diseases.

Fungicides are best used on a preventative schedule. Once symptoms develop control can be difficult.

Dollar spot

Dollar spot is common on many species of grasses, including bermudagrass, zoysiagrass, and annual and perennial bluegrasses.

Symptoms of dollar spot are different on certain warm season grasses than those noted on cool season grasses.

On the finer textured grasses, such as bermudagrass and zoysiagrass, the disease kills grass in small patches two to three inches in diameter. Under severe conditions, these patches may coalesce so that the turf has a mottled appearance. Blades of grass at the outer edges of the infected area develop tan spots with reddish brown margins.

On the coarser warm season grasses, the turf is killed in larger patches ranging up to a foot in diameter.

Dollar spot is prevalent during periods of mild weather during the spring and fall.

Unlike brown patch, dollar spot is retarded by high levels of nitrogen. Still, turf managers should consider the impact of high nitrogen on brown patch and other diseases.

Watering should be performed only in the early morning so the foliage can dry quickly. Fungicides can be used to help bring the disease under control once it gets established.

Leaf spots

There are a number of fungi that cause leaf spots on many southern grasses. Regardless of the causal agent, leaf spots and their control on southern grasses are similar.

Helminthosporium leaf spots (*Bi-polaris spp.*)—Bermudagrass and ryegrass are most severely affected by helminthosporium infections, although the fungus can survive on centipedegrass and St. Augustine.

Infection can occur over a wide range of temperature, but usually is more severe at 70 to 95 degrees F. Milder temperatures in the spring and fall are more favorable for infection. Helminthosporium causes small, dark-colored spots or flecks on the leaves and sheaths. Leaf spots are usually more numerous near the collar of the leaf blades. Severely affected leaves wither and die and the turf frequently becomes brown and thin.

Symptoms on overseeded ryegrass are altogether different. Although leaf spots may occur, this same helminthosporium can cause severe crown rot. This causes a yellowing and discoloration of the grass and a general thinning of the turf.

Fertilize with adequate levels of nitrogen and potassium if helminthosporium diseases become a problem. With careful management, apply fungicides recommended for helminthosporium blight control.

Gray leaf spots—St. Augustine is the primary host for gray leaf spot. The disease occurs throughout the lower South during warm, humid weather.

Spots on the leaf blades are the most visible, but sheath and stem lesions also occur. Leaf spots begin as olive green to brown, water-soaked spots as small as a pin head. These enlarge rapidly and form a circular to elongate lesion that is brown to ash colored with purple margins.

The disease occurs during moderate to warm weather accompanied by high relative humidity. Severity of the disease is enhanced by applications of nitrogen fertilizer. It is more a problem in shaded areas where the grass remains wet from dew.

Treatment with a fungicide may become necessary if the disease outbreak is severe and accompanied by prolonged periods of wet favorable weather.

Rust

Rust or *Puccinia* species infect a number of grasses grown in the South, including ryegrass, zoysiagrass, bluegrass, fescue, bermudagrass, and St. Augustine. Zoysiagrass and bluegrass are the most often infected grasses.

Susceptibility depends on the variety. Fungus infection is favored by minimum and maximum temperatures of 50 to 70 degrees F. respectively. For this reason, the disease does not usually cause severe damage over an extended period. It is likely to be more severe in shaded areas during rainy, humid weather. Affected turf will appear unthrifty and begin to thin.

The disease is characterized by the presence of pustules on the leaf blades. These pustules range from bright orange to cinnamon-brown in color depending upon the species of fungus present.

Certain varieties of ryegrass are extremely susceptible to rust and sometimes severe damage can occur. Zoysiagrass, especially Meyer and Emerald, are most severely infected by rust.

Fertilize to stimulate grass growth, mow on a four to five day schedule, and catch clippings. If necessary, a fungicide may be applied to help reduce the amount of disease present.

Spring dead spot

Spring dead spot is a serious disease of bermudagrass in certain parts of the upper Sunbelt. It is found generally on bermudagrass or zoysiagrass under high maintenance.

Damage to the turf apparently occurs during the dormant season. When greenup occurs in the spring, there are areas a few inches to several feet in diameter where the sod is completely dead.

The causal agent for spring dead spot has not been identified. The only control procedures recommended are good cultural practices and limiting the use of nitrogen fertilizer, especially late in the growing season. Research has shown that
fungicides can limit the damage. However, at the present time only two fungicides are labelled and these may be limited to use in certain states.

St. Augustine decline

St. Augustine decline (SAD) is caused by a virus. The symptoms are a mosaic type chlorosis of the leaf blades that resemble nutrient deficiency or mite feeding. Evidently there are several strains of the virus since there is a great range in damage to St. Augustine.

To this point, the disease has only been recorded in Arkansas, Texas, Louisiana, and Mississippi. There are no chemicals available for the control of SAD. There are, however, several varieties of St. Augustine resistant to the virus. These can be planted in areas where the disease is a potential problem.

Floratam was the first variety release that has resistance to SAD. It is also resistant to chinch bugs. It has poor cold tolerance and should be used only in the lower South.

Seville is resistant to SAD and is more shade tolerant than common St. Augustine. Raleigh has both SAD resistance and good winter hardiness.

Downy mildew

Downy mildew of St. Augustine was first described on common St. Augustine in Texas in 1969. Since then the disease has spread and has been identified in Arkansas, Louisiana, and Mississippi.

Downy mildew appears as white, raised, linear streaks that develop parallel to the mid-veins of the leaf. Streaks appear in the spring and remain throughout the summer, giving the leaves a yellow appearance with some death toward the tips.

Severe disease occurs in grass grown in flood plains or poorly drained areas.

Downy mildew has been difficult to control with most common turf fungicides. Good drainage is recommended for cultural control.

Pythium blight

Pythium blight can be a devastating disease on overseeded ryegrasses. Bermudagrass and other warm season grasses can be affected to a lesser degree.

An abundance of moisture is required for pythium blight development. In addition, the disease is favored by warm temperatures. Affected grass is killed rapidly in spots two to four inches in diameter. These spots may develop into streaks so that large areas of turf are damaged.

The white-streak symptom is easily confused with the virus disease, St. Augustine decline. However, the virus symptoms are more yellow in color and more mottled than striped.

Downy mildew appears as white, raised, linear streaks that develop parallel to the mid-veins of the leaf. Streaks appear in the spring and remain throughout the summer, giving the leaves a yellow appearance with some death toward the tips.

Severe disease occurs in grass grown in flood plains or poorly drained areas.

The white-streak symptom is easily confused with the virus disease, St. Augustine decline. However, the virus symptoms are more yellow in color and more mottled than striped.

Pythium blight has been difficult to control with most common turf fungicides. Good drainage is recommended for cultural control.

St. Augustine decline

St. Augustine decline (SAD) is caused by a virus. The symptoms are a mosaic type chlorosis of the leaf blades that resemble nutrient deficiency or mite feeding. Evidently there are several strains of the virus since there is a great range in damage to St. Augustine.

To this point, the disease has only been recorded in Arkansas, Texas, Louisiana, and Mississippi. There are no chemicals available for the control of SAD.

There are, however, several varieties of St. Augustine resistant to the virus. These can be planted in areas where the disease is a potential problem.

Floratam was the first variety release that has resistance to SAD. It is also resistant to chinch bugs. It has poor cold tolerance and should be used only in the lower South.

Seville is resistant to SAD and is more shade tolerant than common St. Augustine. Raleigh has both SAD resistance and good winter hardiness.

Downy mildew

Downy mildew of St. Augustine was first described on common St. Augustine in Texas in 1969. Since then the disease has spread and has been identified in Arkansas, Louisiana, and Mississippi.

Downy mildew appears as white, raised, linear streaks that develop parallel to the mid-veins of the leaf. Streaks appear in the spring and remain throughout the summer, giving the leaves a yellow appearance with some death toward the tips.

Severe disease occurs in grass grown in flood plains or poorly drained areas.

The white-streak symptom is easily confused with the virus disease, St. Augustine decline. However, the virus symptoms are more yellow in color and more mottled than striped.

Downy mildew has been difficult to control with most common turf fungicides. Good drainage is recommended for cultural control.

Pythium blight

Pythium blight can be a devastating disease on overseeded ryegrasses. Bermudagrass and other warm season grasses can be affected to a lesser degree.

An abundance of moisture is required for pythium blight development. In addition, the disease is favored by warm temperatures. Affected grass is killed rapidly in spots two to four inches in diameter. These spots may develop into streaks so that large areas of turf are damaged.

The white-streak symptom is easily confused with the virus disease, St. Augustine decline. However, the virus symptoms are more yellow in color and more mottled than striped.

Pythium blight has been difficult to control with most common turf fungicides. Good drainage is recommended for cultural control.
Turf Fungicide Directory

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Brand Name</th>
<th>Company</th>
<th>Circle No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>anilazine</td>
<td>Dymec 50</td>
<td>Gordon</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Dyrene</td>
<td>Mobay</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Ortho Dyrene</td>
<td>Ortho/Chevron</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Proturf Fung. III</td>
<td>Scotts</td>
<td>204</td>
</tr>
<tr>
<td>benomyl</td>
<td>Proturf Fung. DSB</td>
<td>Scotts</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Tersan 991</td>
<td>Du Pont</td>
<td>206</td>
</tr>
<tr>
<td>cadmium</td>
<td>Caddy</td>
<td>Cleary</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Cadtrete</td>
<td>Cleary</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Cadminate</td>
<td>Mallinckrodt</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Kromad</td>
<td>Mallinckrodt</td>
<td>210</td>
</tr>
<tr>
<td>chloranobe</td>
<td>Proturf Fung. II</td>
<td>Scotts</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Teremec SP</td>
<td>Gordon</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Terrenub SP</td>
<td>Kincaid</td>
<td>241</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>Daconit 2787</td>
<td>SDS Biotech</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Proturf 10IV</td>
<td>Scotts</td>
<td>214</td>
</tr>
<tr>
<td>cycloheximide</td>
<td>Acti-dione TGF</td>
<td>Nor-Am</td>
<td>215</td>
</tr>
<tr>
<td>ethazol</td>
<td>Koban</td>
<td>Mallinckrodt</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Terrazole</td>
<td>Olin</td>
<td>217</td>
</tr>
<tr>
<td>fenarimol</td>
<td>Rubigan</td>
<td>Elanco</td>
<td>218</td>
</tr>
<tr>
<td>iprodione</td>
<td>Chipco 26019</td>
<td>Rhone Poulenc</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Proturf Fung. 6</td>
<td>Scotts</td>
<td>220</td>
</tr>
<tr>
<td>mancozeb</td>
<td>Fore</td>
<td>Rohm and Haas</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Formec 80</td>
<td>Gordon</td>
<td>222</td>
</tr>
<tr>
<td>maneb</td>
<td>Tersan LSR</td>
<td>Du Pont</td>
<td>223</td>
</tr>
<tr>
<td>mercuries</td>
<td>Calo-Clor</td>
<td>Mallinckrodt</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Calo-Gran</td>
<td>Mallinckrodt</td>
<td>225</td>
</tr>
<tr>
<td>metalaxyl</td>
<td>Subdue</td>
<td>Ciba Geigy</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Ridomil</td>
<td>Ciba Geigy</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Apron</td>
<td>Gustafson</td>
<td>242</td>
</tr>
<tr>
<td>PCNB</td>
<td>Terrafter 75</td>
<td>Olin</td>
<td>227</td>
</tr>
<tr>
<td>PMA (PMAS)</td>
<td>PMA, PMAS</td>
<td>Cleary</td>
<td>228</td>
</tr>
<tr>
<td>PMA plus Thiram</td>
<td>Proturf Broad Spectrum Fung.</td>
<td>Scotts</td>
<td>229</td>
</tr>
<tr>
<td>propamocarb</td>
<td>Banol</td>
<td>Nor-Am</td>
<td>230</td>
</tr>
<tr>
<td>thiabendazole</td>
<td>Mertect</td>
<td>Merck</td>
<td>243</td>
</tr>
<tr>
<td>thiophanate</td>
<td>Cleary's 3336</td>
<td>Mallinckrodt</td>
<td>231</td>
</tr>
<tr>
<td>thiophanate methy</td>
<td>Fungo 50</td>
<td>Mallinckrodt</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Proturf Systemic</td>
<td>Scotts</td>
<td>233</td>
</tr>
<tr>
<td>thiram</td>
<td>Chipco Thiram 75</td>
<td>Rhone Poulenc</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Spotrete</td>
<td>Cleary</td>
<td>235</td>
</tr>
<tr>
<td>thiophanate plus thiram</td>
<td>Bromosan</td>
<td>Cleary</td>
<td>236</td>
</tr>
<tr>
<td>thiophanate-methyl plus maneb</td>
<td>Duosan</td>
<td>Mallinckrodt</td>
<td>237</td>
</tr>
<tr>
<td>triadimenol</td>
<td>Bayleton</td>
<td>Mobay</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Proturf Fung. 7</td>
<td>Scotts</td>
<td>239</td>
</tr>
<tr>
<td>vinclozolin</td>
<td>Vorlan</td>
<td>Mallinckrodt</td>
<td>240</td>
</tr>
</tbody>
</table>

ryegrasses are not as susceptible as annual. Under severe disease pressure chemical control may be required.

Fairy rings

Fairy rings generally appear in lawns and other turf areas as circles or arcs of dark green, fast-growing grass during the spring and early summer. A ring of thin dead grass may develop on one or both sides of this circle.

The disease is caused by one of several soil-inhabiting fungi that commonly produce mushrooms. Mushrooms that sometimes appear in the ring are the fruiting bodies of these fungi. Stimulation of the grass is due to the release of nutrients from the organic breakdown of the thatch by the growing fungus.

It is difficult to control fairy ring. There are no chemicals labeled for the control of fairy ring. Two general approaches may be considered, removal and suppression. Although relatively impractical, removal of infected soil and grass to a depth of 12 inches or more in a band several feet on each side of the infected area and replacement with clean soil is one solution.

Another approach is to suppress the disease. For low maintenance grass areas, increase the water and fertilization program to stimulate the declining grass inside the ring. Symptoms of fairy ring can be masked by pumping large quantities of water into this area.

Slime molds

Slime molds are a group of organisms that cover above-ground plant parts with a dusty gray-black or dirty yellow mass. When you look closely at this growth, you see small round balls scattered over the plant. If you rub these between your fingers a sooty powder emerges. This consists of spores of the fungus.

Slime molds normally live in soil where they feed on decaying organic matter. When the mold is ready to reproduce, it grows up on to the grass blades so that the spores may be spread greater distances.

Slime molds do not feed on living plants. They only use them to assist in the distribution of spores during reproduction.

Slime molds occur during wet weather throughout the spring, summer and fall. They disappear rapidly as soon as it becomes dry. Chemical control is usually not necessary.