I enjoy reading Weeds, Trees and Turf, and do appreciate the journal. However, I want to take issue with a statement made in Vol. 17 (8) on page 38. In explaining excessive water evaporation from exposed sandtrap surfaces, the author indicates "... the sun heats up the exposed sand surface and causes rapid surface evaporation, it wicks water away from the surrounding soils." This explanation of the drying phenomenon being observed on the edges of sandtraps is highly unlikely as it would defy the laws of soil physics. Sand has no soil physical property which would allow it to draw water away from soil. A more likely explanation of the observed phenomenon would result from a combination of processes involving capillary movement of water in the adjacent soil to the surface for continuous drying, coupled with increased slope exposure frequently associated with sandtrap construction.

Sincerely,
J. R. Hall
Extension Specialist, Turf
Virginia Polytechnic Institute

On page 64 of the May 1978 issue, a clay soil is represented as having less pore space than a sandy (green mix) soil. If fact, the 80% solids in the clay soil would give a bulk density of greater than 2.0. In the second paragraph of the answer, the statement is made that only marginal amounts of non-gravitational water are held by clay. Such information is misleading to the reader and sure knocks a hole in our teaching efforts.

On page 38 and 39 in the August 1978 issue, the readers are cautioned about sand traps "wicking" water away from surrounding soils. Assuming that a good trap sand is used, I would guess that the mulching effect of the dry surface sand would tend to conserve water beneath and beside the sand. In other words, more water would be lost if no sand was in the trap or if the trap was not there but similar contours existed. Certainly a plastic liner would reduce any moisture losses, but is there any more need for a liner with a trap than without a trap?

I believe Weeds, Trees, and Turf is a valuable publication for those of us in the turf industry. I hope my comments will contribute to it becoming a better and more factual publication.

Donald V. Waddinton
Professor of Soil Science
The Pennsylvania State University