DOLLAR SPOT CONTROL
Integrating Systemics and Contacts

By P. O. LARSEN

The author is an associate professor in the Department of Plant Pathology at The Ohio State University, Columbus, Ohio, specializing in teaching and research in the area of turfgrass diseases.

SCLEROTINIA DOLLAR spot is a serious disease of bentgrass and may also be severe on other turfgrass species. The disease is caused by a fungus, Sclerotinia homoeocarpa, that overwinters in the crowns and roots of infected plants. The fungus does not begin to grow optimally until air temperatures have reached 70 to 80 degrees F. and the atmosphere is moisture saturated. The tan- to straw-colored spots of blighted grass, two to three inches in diameter — characteristic symptoms of the disease on bentgrass putting greens — generally appear shortly after the fungus begins active growth.

Although certain management practices, such as increasing nitrogen fertility and holding soil moisture at field capacity, have been shown to reduce dollar spot severity, it is generally necessary to apply fungicides to maintain satisfactory control of the disease on high maintenance turfgrass areas. A number of contact and systemic fungicides have been registered for control of dollar spot. Anilazine (Dyrene), chlorothalonil (Daconil 2787), thiram (Spotrete, Tersan 75), cycloheximide (Acti-dione) and cadmium chloride (Caddy) are examples of contact fungicides that are known to effectively control the dollar spot fungus.

Recently, the systemic fungicides benomyl (Tersan 1991), thiabendazole (Mertect 140), thiophanate methyl (Spotkleen, Fungo), and thiophanate ethyl (CL 3336) have been used extensively in dollar spot control programs. This article deals with recent reports where systemic fungicides have failed to control Sclerotinia dollar spot because of the development of fungicide-tolerant fungal strains.

Figure 1 graphically illustrates the results of a fungicide trial in which three protectant fungicides (Caddy, Daconil and Dyrene) and two systemic fungicides (Tersan 1991 and CL 3336) were applied to control dollar spot on Penncross creeping bentgrass. The fungicides were applied in five gallons of water per 1,000 square feet on 10 by 10 foot plots. Applications were made at two week intervals beginning July 12, 1974. Disease was measured by counting the number of dollar spots per plot area. All of the fungicides tested eventually provided excellent control of the fungus.

Another fungicide trial was initiated on June 10, 1974, in the Columbus, Ohio, area on a Washington creeping bentgrass putting green where control of dollar spot with application of benomyl has been unsuccessful in the past. The systemic fungicides benomyl (Tersan 1991) and thiophanate ethyl (CL 3336), and the contact fungicides thiram (Spotrete), cycloheximide (Acti-dione TGF), anilazine (Dyrene), and chlorothalonil (Daconil 2787) were applied as foliar sprays every two weeks at the manufacturers’ recommended rates (see Figure 2).

The fungicides were applied in five gallons of water per 1,000 square feet on four by four foot plots. Dyrene and Daconil 2787 provided excellent disease control, while Acti-dione and Spotrete suppressed the disease symptoms but did not offer acceptable control of the fungus. Application of Tersan 1991 and CL 3336 provided little or no control under these conditions.

Recently, researchers at Pennsylvania State University have re-
ported similar instances in which systemic fungicides failed to control dollar spot.\(^1\) This observation has now been made in several states, indicating that tolerance of S. homoeocarpa to systemic fungicides is quite widespread.

In an effort to explain the occasional failure of systemic fungicides to control dollar spot, S. homoeocarpa was isolated from plots where systemic fungicides did not control the disease and from areas where systemic fungicides were effective. These isolates were cultured in the laboratory on artificial growth media containing various systemic and contact fungicides. Sclerotinia isolates from plots where systemic fungicides controlled disease would not grow on media containing systemic fungicides that are registered for dollar spot control (see Figure 3A). Isolates originating from areas where systemic fungicides did not control disease grew readily on media containing systemic fungicides (see Figure 3B). These observations indicate that failure to control the fungus on the turfgrass plots with systemic fungicides was probably caused by the presence of a fungicide-tolerant strain of S. homoeocarpa.

Another example of tolerance of fungal turf pathogens to systemic fungicides has been demonstrated with the powdery mildew fungus, Erysiphe graminis, on Kentucky bluegrass.\(^2\) A strain of the fungus was removed from a field plot of Merion Kentucky bluegrass where benomyl applications failed to control powdery mildew. This strain proved to be resistant to benomyl, thiabendazole and thiophanate methyl at concentrations that were not phytotoxic. The development of benomyl-tolerant strains of fungal pathogens has also been recorded for crops other than turfgrasses.\(^4\)\(^5\)\(^6\)

Fungal strains that have been reported to be tolerant to benomyl were also tolerant to the thiophanate fungicides. This result is understandable, since it has been shown that both benomyl and thio-

(continued)

Four more from the same people who build the world’s toughest rotary cutter...

Side-Winder flail mowers, blades, rotary ditchers and box scrapers come from the same people who produce the famous pneumatic-drive cutter. The same engineers and production craftsmen design and build equipment for grass and land maintenance. We measure the quality of our products by job performance and working durability. We invite you to do the same. Contact: FMC Corporation Agricultural Machinery Division Box 818 Minden, Louisiana 71055

\(^1\) FMC Agricultural Machinery

Fig. 3A: Dollar spot fungus was grown on artificial media containing 100 ppm active ingredient of systemic (CL 3336, Tersan 1991) and contact (Spotrete, Dyrene, Daconil, Anti-dione TGF) fungicides. Fungus was isolated from turfgrass where systemics effectively controlled dollar spot. No fungal growth observed with systemics.

Fig. 3B: The fungus was isolated from areas where systemic fungicides did not control disease. Fungal growth was not inhibited on media containing systemic fungicides.
HE'S GOT IT MADE IN THE SHADE.

Glade
KENTUCKY BLUEGRASS
U. S. Plant Patent 3151

There's a strong new entry in the Kentucky bluegrass lawn field, selected for its attractive appearance, low growth profile and good overall turf performance, including an ability to grow in moderate shade. A selection from Rutgers University, Glade has excellent turf quality, and has demonstrated good resistance to important lawngrass diseases including stripe smut, leaf rust, and powdery mildew. Glade mixes especially well with other elite bluegrasses and fine fescues. Glade persists in areas of moderate shade where many other bluegrasses weaken because of too little sun. Nationally tested as P-29, it is one of the fastest germinating and establishing bluegrasses; quickly produces a heavy close-knit rhizome and root system, and a very attractive, leafy, persistent turf. Ask for new Glade for use in full sun or in mixtures with fine fescue for shade at your local wholesale seed distributor.

Another fine product of Jacklin Seed Company
For More Details Circle (118) on Reply Card

FINALLY! AT LAST! IT'S HAPPENED!
Lumenite, with 35 years experience in the timing control and liquid sensing fields, offers a truly economical, deluxe, line of lawn irrigation controls.

Model LAS-10P 10 Station Lawn Irrigation Control
Model RDC-1000 Rain Detector
RDP-1000 Probe Assembly

No longer does reliability have to be expensive. Lumenite economical controls feature: (A) 1 to 35 station capacity in a single compact enclosure. (B) Individual toggle selector switches for manual, off, or automatic operation of each station. (C) Heavy duty 24 volt transformer can handle five 7 watt valves, at once. (D) Optional spring reserve motor keeps perfect time during power failures. (E) Rain detector controls operate with any sprinkler unit to prevent unnecessary watering.

Write today for further information and the name of the nearest Lumenite distributor.*

LUMENITE
ELECTRONIC COMPANY
DEPT. LC
2525 NORTH 17TH AVE., FRANKLIN PARK, ILL. 60131
PHONE (312) 459-1450

For More Details Circle (130) on Reply Card
curs much more rapidly than with higher plants and animals and, therefore, the opportunity for random mutations occurring is increased. This encourages the natural selection of fungal mutants possessing tolerance to systemic fungicides. Furthermore, the occurrence of random mutation at several fungal chromosome sites, resulting in tolerance to contact fungicides, would be less likely than mutation at one or a few sites, resulting in tolerance to systemics.

If it is determined that fungicide-tolerant strains of Sclerotinia are present in a turfgrass area, it is recommended that further use of systemic fungicides to control dollar spot be discontinued. An alternate contact fungicide should be chosen that can effectively eliminate the tolerant form of the fungus over a period of time.

When fungicide-resistant fungi have not been observed with dollar spot, it is suggested that alternate applications of systemic and contact fungicides registered for dollar spot control be used in an integrated control program to prevent the build-up of fungicide-tolerant fungus strains. The systemic fungicide will continue to eliminate the majority of the dollar spot fungus population that is sensitive to systemics, while the contact fungicide will be used primarily to prevent the build-up of systemic fungicide-tolerant strains of S. homoeocarpa.

The systemic fungicides have proven to be extremely effective and valuable tools for plant disease control and have a number of advantages over the contact fungicides: the interval between applications is generally longer with systemics; systemics are translocated inside the plant and have a curative effect, whereas the contacts are on the plant surface and are preventive; and, since systemics are internal, they are less vulnerable to wash-off or inactivation by sunlight than are the contact fungicides.

When systemic fungicides are used wisely in an integrated control program alternated with broad spectrum contact fungicides, the opportunity for build-up of fungicide-tolerant fungal populations will be minimized and the advantages of using systemic fungicides may be realized.

Literature Cited

Start an underground movement to get the grass greener on your side of the fence.

A Certain-teed pipe irrigation system goes underground so quickly, your turf is back in good order in just a few days. That's because Certain-teed PVC or asbestos-cement pipes are so lightweight and easy to install. Since neither will corrode like metal, there's no interior obstruction to build up and hinder flow. You get more water for less pressure. Joints are bottletight because of FLUID-TITE heavy rubber gasket construction. Because you spend less to install it and practically nothing to maintain it, a Certain-teed system will pay for itself quickly. For full information, write Certain-teed Products Corporation, Pipe & Plastics Group, Box 860, Valley Forge, Pa. 19482.