START UP MAINTENANCE

A WEEK TO several days prior to actual start up, an operator should remove the spark plugs and add a 50-50 mixture of diesel fuel and 10 weight oil to each engine cylinder and replace the spark plugs. At this time he should also open the seal on the suction of the pump and inject this same mixture between the eye of the impeller and the wear ring and then reseal the suction. When ready for the actual start up, the batteries should be charged and connected, taking care to clean all connecting terminals.

The tape on all engine openings should be removed, and the air cleaner refilled and replaced on the engine.

All electrical connections should be checked for tightness and corrosion and cleaned if necessary.

The spark plugs should be removed and the engine turned over slowly, without starting, to expel the oil in the cylinders. At this time the operator should insure that the pump is turning freely and is free of foreign objects. The spark plugs can then be replaced.

The suction and discharge piping and connections should be checked to be sure they are clear of foreign objects and, using new gaskets and pipe dope, can be reconnected.

The packing gland should be removed and new packing should be installed in the stuffing box as far forward as can be reached. The gland can then be installed, just tight enough to prevent the entrance of air while priming. If the stuffing box is equipped with a grease fitting, a new charge of grease should be applied.

The primer and priming valve should then be reinstalled and the pump primed.

After checking engine oil and coolant levels, the engine should now be started and slowly brought up to warm-up temperature. At this time the operator should check all of his safety switches to insure they are working. The over-temperature switch can be checked by removing a fan belt, water pump belt, or covering the radiator. During these tests the operator should watch the engine gauges very closely so that should any of the safety switches fail to work he can shut the engine down and replace or repair the switch. Since the engine oil must be drained anyway, the operator can check the low oil pressure safety switch by removing the drain plug from the engine while it is running slowly.

The engine should then be re-filled with the proper oil and re-started.

To check a loss-of-prime safety switch the connection between the pump and switch can be removed allowing the pressure to drop to the switch.

The operator should then check the engine and pump for any leaks (continued on page 26)

Trouble Shooting

WHEN I THINK of troubleshooti- ing, I think of a story that was told once about a lady who had a domestic pump that had stopped working. The lady called a repairman. The man studied the pump for a couple of seconds and then hit it once with a hammer. The pump immediately started working. Several days later upon receiving a bill for $28.17, the lady called the repair shop and demanded an itemized statement.

She received the statement and it read: Repair of pump: Hitting with hammer—17, Knowing where to hit —$28.00.

Troubleshooting a centrifugal irrigation pump is much the same as that repair job. Fixing the trouble is usually easy, knowing where to look for the trouble is the big thing. To know where to look for the trouble, a person must understand the function of a centrifugal pump.

The function of a centrifugal pump is to take the water that is delivered to the eye of the impeller and pump this water to another destination. It is not the function of a centrifugal pump to pull water from any source. It only pumps water that is delivered to it. Ninety-five percent of all troubles when a centrifugal pump will not perform can be found on the suction side of the pump unit; the failure to deliver water to the pump, or the failure to deliver enough water to the pump.

Let's take a case where a centrifugal is operating under a suction lift condition. The operator has a vacuum type primer on this unit and after operating the priming device for some time is unable to raise the water into the eye of the pump. This trouble is usually caused by air leaking into the pump or suction

Irrigation Pump

THE STUFFING BOX area is of primary concern in the operational maintenance on the fluid end of the pumping unit. Most centrifugal pumps used in the irrigation field are of stuffing box construction. By its design, a stuffing box must leak a little of the fluid being pumped in order to cool and to lubricate the area where the packing contacts the shaft or shaft sleeve. If we do not allow proper leakage through the stuffing box the packing will become overheated and dry, resulting in the burning of the packing and the scoring of the shaft sleeve.

Once the packing is burned and hardened and the shaft sleeve scored, no amount of adjustment will maintain proper leakage for any length of time. The shaft or shaft sleeve must then be replaced and a full new set of packing must be installed. Proper leakage varies some among the manufacturers, but generally a leakage of 8 to 10 drops per minute is acceptable.

Although most sprinkler systems today operate at high pressures at the pump, usually in a 60 to 100 FSI range, pump manufacturers have designed most pumps used in this field so that the stuffing box of these pumps are subject to considerably lower pressures than what is felt at the pump discharge, usually only 20 to 30 FSI. This means that when tightening the packing gland of a pump that is producing
And Engine Care

MAINTENANCE

75 PSI at the discharge you are only working against a pressure of approximately 20 PSI at the packing. Therefore, a pump of this type with the sleeve and packing in good condition and properly adjusted should not require constant readjustment, but should be checked daily.

Operators of the pumping equipment should take caution that should additional rings of packing be needed, add only the type and size of packing as recommended by the manufacturer. Different sizes or types of packing, other than recommended, might not give the proper service and might damage the shaft sleeve.

Most operators of pumping units are more familiar with the proper operational maintenance for engines than for pumps; most will check the coolant and oil levels. However, in many cases the operator, when adding to the coolant or oil, fails to add the proper materials. Most manufacturers recommend that their engines be run with a year-round antifreeze type coolant. When running an engine with just water for a coolant, you lose the advantage of the anti-rust type additive that is found in most types of antifreeze. In addition, if only water is used the manufacturers recommend that prior to winter the coolant be drained and refilled with antifreeze for winter storage.

Most engines cannot be complete-

SHUT DOWN MAINTENANCE

THE MAINTENANCE performed on a pump and engine unit at the end of the irrigation season greatly affects the overall life expectancy of the unit. It may well make the difference between being able to get the unit in operation at the beginning of the next season.

Ideally, the pumping unit should be stored inside a protective building during long periods of shutdown. Regardless of whether the unit is stored in a building or left outside, these steps should still be followed prior to storage:

On the pump end, the suction and discharge piping should be removed, all water should be drained from the pump unit and a 50 weight oil should be injected between the eye of the impeller and the wear ring of the pump.

All openings, including the suction and discharge openings should be covered to prevent the entrance of rodents and foreign material into the pump unit.

If the unit has a diaphragm type hand primer on it, the primer should be removed, the opening into the pump plugged and the primer stored in a building.

If the unit has an intake manifold type primer made of glass or plastic, this should also be removed and stored in a building.

If the unit is equipped with a discharge priming valve that has a rubber seat or crack face, the valve should be removed and stored inside or the rubber parts should be coated with a good rubber preservative.

The stuffing box gland should be loosened and if the stuffing box is equipped with a grease cup or a grease zerk a couple of shots of grease should be applied to the stuffing box to force out remaining water and give some measure of protection to the packing.

If the unit is not equipped with grease fittings, the packing gland should be backed off and the last two rings of packing removed and grease packed into the stuffing box. The packing gland can then be tightened slightly to force the grease into the remaining rings of packing; then the gland should be again loosened.

If during the season you had encountered any difficulties with the pumping unit, such as excessive stuffing box leakage, or a serious pressure drop, indicating that your pump was wearing out, now is the time to order the necessary repair parts or remove the pump and get it to your dealer or manufacturer for necessary repairs.

This is the time of year when these people are usually at the low ebb of their season and can get your repairs accomplished. Your unit will be ready to go when you want to start your new season.

If your pump unit is connected to the driver by a flexible coupling to insure proper leakage.

One other area to look for trouble is in the primer itself. Insure that it is functioning properly. On hand-type primers a check valve insures that air can be pulled out of the pump but not put in the pump. If grass or other foreign objects get into this check valve the operator may be putting air back into the pump at every stroke.

I have seen some trouble getting prime on pumps used as boosters, where a turbine pump is pumping into a centrifugal pump. On this type of installation, where a check valve is used on the discharge side

(continued on next page)

(continued on page 50)
of the centrifugal pump, I have sometimes seen where the check valve had a head of water on the upstream side of it. The turbine pump did not have sufficient pressure to push water through the centrifugal and open the check valve. Since the turbine column contained air, the air fills the centrifugal pump and will not allow the centrifugal to be primed properly to open the check valve. This type of condition is particularly prevalent where more than one turbine and booster combination are pumping into the same line. The first unit will start up because the turbine builds sufficient pressure to open the check valve against a dry line or static pressure, but the second unit cannot open the check valve against the pressure developed by the first unit.

On this type of installation, an air release valve should be installed between the discharge of the centrifugal and the check valve. This will allow the air ahead of the water in the turbine pump to escape and the centrifugal will then get prime and be able to open the check valve.

A pump that primes but will not pump sufficient water or pressure is usually the victim of failure to deliver sufficient water to the pump. All centrifugal pumps are designed to operate at a definite design condition of capacity and head at a certain Total Dynamic Suction Head. If the total dynamic suction head for the pump is exceeded, atmospheric pressure may not be able to get as much water to the pump as the pump is attempting to move.

We see this quite often on sprinkler pumps. A sprinkler pump may be designed to produce 900 GPM at 70 PSI for a sprinkler system. This pump, we will say, can be operated at this condition under a total dynamic suction head of 15 ft. We will also say that the suction piping and maximum lift from the water are such that at this condition the total dynamic suction head is 13 ft. The pump will operate satisfactorily under this condition. Many times, however, when this pumping unit is first started on an irrigation cycle the line to the sprinkler system is dry or at least not full and the pump is only pumping against 20 to 30 PSI.

Against this pressure the pump will try to pump 1400 or 1500 GPM; and at a condition of 1400 to 1500 GPM at 30 PSI this pump must be operated at a total dynamic suction head of not over 8 ft. At the same time the increased flow of water in the suction line has increased the friction loss to bring the total dynamic suction head up to 16 ft. Now we have a pump that is trying to pump 1500 GPM, but is only getting 1000 or 1100 GFM delivered to it. The pump will now go into a condition of cavitation and will become very noisy. We have a pump that is a victim of failure to deliver sufficient water.

Fortunately, on most sprinkler systems, this condition may exist for a very few minutes, since, as the line begins to fill, the pressure on the pump increases and the capacity decreases until the system is up to 70 PSI at 900 GFM and the pump is now getting sufficient water. If, however, the level of the water source dropped three feet, since the last time the pump had been operated, our total dynamic suction head would be exceeded and the pump would still not be getting a sufficient supply of water. This could happen when the water source is a pond.

The problem of over-production upon start up of a pump against a dry line can be cured by putting a gate valve or butterfly valve on the pump discharge. The operator keeps the valve closed down during start up to a point where the pump is always operating against the design pressure until the system is filled. If the water level drops the pump must be moved closer to the water or the suction piping size increased until the unit is operating under the maximum suction lift for which it was designed.

A problem sometimes seen is where a pump is located on the bank of a river or ditch and the discharge line goes immediately down hill from the pump. Under this condition, in trying to start the pump, the discharge head is less than the suction head and the pump will not produce any water at all. After the pump is primed and turned on it merely splashes a little water out. This is a case where the pump is actually losing prime. The discharge head must at all times at least equal the suction head for the pump to work at all. Here again, a valve on the discharge side can be used to increase the discharge head on the pump until the line is full. (Editor's Note: This can happen to spraymen who pull water from ditches or ponds to fill spray tanks.)

At times when a centrifugal pump is being operated as a booster pump this same condition can exist. The
START UP MAINTENANCE
(from page 22)
caus珍贵 by drying gaskets and should at this time be able to check and adjust the packing gland on the pump. If the driver is an electric motor, the grease should again be changed, the unit turned by hand to insure that it is free, the motor openings checked for foreign objects or rodents and the area around the air intakes cleaned of weeds or trash.
The switch box should be checked to insure it is clean and free of rodents. The fuses should be replaced after checking to insure that they are not blown.
All electrical connections should be checked to make sure they are tight. A loose electrical connection can cause low voltage and excessive heat causing overload protector tripping and blown fuses. The extremes of temperature during the winter can sometimes cause electrical connections to expand and contract at different rates resulting in a connection that was tight in the fall to be loose in the spring. This is particularly true when aluminum wire is used.
On an electric motor driven unit, the pump end start-up maintenance would be the same as with an engine driven unit; again all safety shutdown switches used on the unit should be checked to insure that they are working properly.
Presented in this manner, pump and engine maintenance seems like a great deal of work, and I have had operators tell me that they do not perform this type of maintenance and yet they get satisfactory life out of their unit. I submit that these people do not know what satisfactory life really is.
Several years ago a farmer in eastern Colorado who used a lot of pumping units, all engine driven, was using one of the major brands of engines, and was happy enough with the sevice they gave him that he kept trading his engines in to the dealer for the same brand when they did wear out. This man was getting 8,000 to 10,000 hours of operation out of each engine and he considered this satisfactory.
The dealer, upon rebuilding several of the engines he had taken in trade from the farmer, found that the engines were not worn out in general, but had excessive wear at several points in the engine, indicating lack of proper maintenance.
He requested the farmer to perform proper maintenance on one new engine as recommended to test his theory that most of the failures were due to improper maintenance. The farmer agreed to rigidly perform proper maintenance on this one new engine. As a result the last I heard the engine in question has passed 20,000 hours and was going strong. Now the farmer no longer considers 8,000 to 10,000 hours as satisfactory life and is an advocate of proper maintenance.

Nu-Ag West Becomes New Div. Of Foamspray Chemicals

Nu-Ag West, a new division of Foamspray Chemicals, Inc., has been established in Lubbock, Tex.
W. G. "Skip" Purdy III, Foamspray's vice president and general manager, said the new division would specialize in marketing of growth aids — OD-4 and Microtol — for the west Texas area. Previously, he said, the distribution center for these growth aids had been from Dallas but that increased usage had dictated establishment of a nearby center.

LEARN PROFESSIONAL LANDSCAPING

We prepare you to cash in on countless money making opportunities in modern landscaping and show you how, by easy steps, to start your own business part or full time. You will learn latest developments in Modern Landscaping, including creative design—plant propagation—revolutionary new methods of growing in manufactured soils—practical soil testing—growth regulators—the low down on fertilizers—easy ways of plant identification—estimating and contracting. My unique home study course features easy to understand assignments with careful detailed illustrations. Certificate Awarded. May I send FREE, and without obligation, my informative BOOKLET?

LIFETIME CAREER SCHOOLS Dept. A-528
2251 Barry Avenue Los Angeles, Ca 90064

For More Details Circle (114) on Reply Card
containing rubber parts, these parts should also receive a coating of preservative. If a flexible shaft is used, grease should be applied at all fittings.

The engine should be run until it is warmed up to operating temperature and then the oil drained and the oil filter changed. New oil with antifreeze should be poured into each cylinder and the plugs replaced.

The distributor cap should then be replaced and sealed with weatherproof mixing tape where the cap joins the distributor housing.

The air cleaner and breather cap should be removed and stored inside after cleaning, and all openings in the engine, carburetor, exhaust and breather should be sealed with a weatherproof tape.

The fuel filter should be removed, cleaned and replaced. Any engine safety switches and the lines to them that are operated by water should be drained completely. Electrically operated safety switches and the ignition system should be given a good coat of one of the spray-on electrical protection compounds to prevent corrosion.

Any grease fittings on the engine should be given a good shot of new grease.

Batteries should be removed, charged and stored in a cool, dry place.

If the driver is an electric motor, the old grease should be flushed out and new grease put in and then the motor run for a few seconds to distribute the new grease and allow the excess grease to get out prior to replacing the grease plugs.

The motor should be protected from oil, water and rodents during the shut down period, but should not be covered with a plastic or canvas cover that will not allow proper circulation of air in and around the motor during shutdown.

The starting switch box should be checked for missing knock-out plugs or other holes and these should be sealed against rodents and dirt.

Insure that all switches are in the off position and either lock the panel in the off position or remove the fuses to prevent an accidental or vandal type start-up during the shut down season.

A pumping unit properly prepared for storage this way will be ready for start-up in the spring with a minimum amount of problems.

EDITORIAL

(from page 6)

...not what to do for the political process. Green Industry organizations must exercise their lobbying power in government as the organized voice of the membership. Sitting back on the sidelines in silence signifies consent with the situation.

Above all, we must expend a little motivational energy to turn the tide. Energy in teamwork will bring order to the current chaos. The rewards of our effort more than justify the means.

Mr. Sod Grower:

Earn more profits and place yourself ahead of competition with the finest sod available.

Kentucky Bluegrass

Warren’s A-20 & A-34

Performance proven across the nation and rated highest by universities doing turfgrass research. Sells for more yet is less expensive to produce than other bluegrass strains. Two crops of sod in one growing season possible with A-20 & A-34. A few northern territories open for exclusive grower’s franchise. Write or call for information:

WARREN’S TURF NURSERY

8400 West 111th Street, Palos Park, Ill. 60464

Phone: 312/974-3000

For More Details Circle (114) on Reply Card

For More Details Circle (143) on Reply Card

SHUT DOWN MAINTENANCE

(from page 23)

The better idea from Holland

Vicon Farm Machinery, Inc.

5808 Poplar Hall Drive • Norfolk, Virginia 23502

Vicon is quality constructed to last for years. Major parts are non-corroding polyester and stainless steel.

Vicon

is the most accurate fertilizer spreader you can use.

Right behind the spreader... or 20 feet to each side... your turf gets the same amount of fertilizer if you use a Vicon. Field tests have proven it.

Vicon uses an exclusive system... a spout oscillating at 540 times per minute. This gives a rectangular coverage pattern that eliminates the overlapping and missed spots you get with fan spreaders.

Vicon is quality constructed to last for years. Major parts are non-corroding polyester and stainless steel. Application rate is easily adjusted from 10 to 2500 pounds per acre.

Even lime is no problem for the Vicon. It handles lime, fertilizer, seed and chemicals. Six hopper capacities from 600 to 7000 pounds suit your course and budget.

Vicon has the accuracy that professional turf men are looking for. Write today.

For More Details Circle (114) on Reply Card

For More Details Circle (143) on Reply Card

WEEDS TREES and TURF
OPERATIONAL MAINTENANCE (from page 23)

ly drained of all coolant and if the engine contained only water, enough water might be trapped in the engine after draining so that a cold snap could still cause cracking or other damage in the engine. Therefore, if antifreeze is going to be needed for winter storage anyway, it might just as well be used for the year-round coolant. When adding to a cooling system containing antifreeze, the operator should insure that even during the summer the additive consists of the proper ratio of water and antifreeze.

The use of the proper oil in an irrigation engine is the one area where more operators fail to follow the manufacturers recommendations and consequently shorten the life of their unit. Different fuels in the same basic engine require different oils. The type of oil that is just right for a diesel engine is not the right oil for a dry fuel engine. This is an area where the manufacturers recommendations should be checked before using any oil, and if an operator has to add oil during operational maintenance checks, he should insure that he adds only the recommended oil to the engine.

Each irrigation engine should be tagged by the operator with a label identifying the proper oil for that engine. Adding the wrong oil to an engine in many cases will do more harm than good to the engine. This is, of course, the time to check and clean all of the engine filters, and here again the manufacturers recommendations should be followed.

I would like to point out, while on the subject of manufacturers recommendations, that although all pump or engine manufacturers send out a packet of operation and maintenance instructions with their product, many times we find that these instructions are lost or misplaced during assembly or installation of the units and never reach the operator. It is important that distributors and installers of this type of equipment insure that the instructions reach the operator of the equipment or he has nothing to refer to in order to follow proper maintenance procedures.

If the pumping unit is powered by an electric motor instead of an internal combustion engine, the pump and maintenance remains the same, but the motor maintenance would consist of following a regular schedule of motor lubrication as recommended by the manufacturer.

Electric motors should not be greased every day, and, when greasing, the proper steps for flushing the old grease when installing new should be followed. Motor bearings can be ruined just as quickly by over greasing as by under greasing.

One other step to follow during operational maintenance of an electric motor driven unit is to insure that the area of air intake for the motor is free of weeds and trash that would prevent a full flow of air to the motor for cooling. The base or supports of the electric motor should be such that it will not trap and hold water directly under the air intake of the motor. Should water be held in this area it can be pulled into the motor along with the air by the cooling fan. Although most motor windings today are protected against this type of moisture, minerals contained in this water can sometimes attack the windings causing early winding failure.
TURFGRASS contractors can no longer afford to repeatedly return to jobs to apply fertilizers. They need a nonburning, complete fertilizer that can be mixed into the soil to feed grass for several months. Agriform 16-7-12 (+ Iron), a new landscaping fertilizer with resin coated granules, meets this need by harnessing the principle of osmosis. It gradually meters nutrients into the soil and can sustain uniform growth for 5 to 6 months from a single application. A moderate amount of uncoated fertilizer is included in the formula. The product cost per square foot is reasonable considering that savings in labor costs can be substantial.

Virtually none of the nutrients from the coated granules is lost to leaching, even on sandy soils under high rainfall or irrigation. Furthermore, because Agriform 16-7-12 (+ Iron) is not dependent on the activity of soil bacteria for release, it can supply a steady diet of nitrogen, phosphate, potash and iron on soils that are low in organic matter.