The great dwarf Bluegrass that stands below the rest.

NUGGET BLUEGRASS

Nugget Kentucky Bluegrass was discovered in Alaska near the old mining town of Hope on Cook Inlet. In tests by leading turf research workers, characteristics of Nugget have proven to be outstanding, with exceptionally uniform performance over a broad area.

DWARF CHARACTERISTICS

Nugget is a decumbent, dwarf type cultivar of Kentucky Bluegrass. Its leaves grow close to the ground and at cuts as low as 3/4 inch Nugget still displays excellent turf quality in both appearance and strength. Nugget has exceptionally uniform regrowth, remaining neat and even if left uncut for longer than usual lengths of time.

SHADE ADAPTABILITY

Nugget's tolerance to powdery mildew contributes to its superior performance in shade as compared to other bluegrass varieties.

DISEASE RESISTANCE

In broad tests, Nugget has consistently ranked outstanding in resistance to Helminthosporium Leafspot. Nugget also shows good tolerance to Stripe Smut. It has also shown resistance to leaf rust, powdery mildew, and snow mold.

APPEARANCE AND COLOR

Along with its uniform growth, Nugget's appearance is enhanced by its fine leaf texture and unusually deep, dark green color.

SEED QUALITY

Only Certified Blue Tag Nugget Kentucky Bluegrass, free of poa annua and bentgrass, is marketed. Only Certified Nugget is a direct progeny of the Alaska-grown seed.

Nugget... The Kentucky Bluegrass that survived Alaska. Try it where you live.

Fertilizer Pollution Nil Says MSU Scientist

A Michigan State University soil scientist has concluded that the potential contribution of turfgrass fertilization to water pollution is insignificant “if common sense is used.”

Dr. Paul Rieke made the observation in a talk at the annual Midwest Regional Turf Conference at Purdue University in early March. About 600 golf course superintendents, sod growers, architects and developers and industry and university personnel were in attendance.

The researcher reported that work done at Michigan State University showed that no more than 1.5 pounds of actual nitrogen should normally be applied per 1000 square feet at any one time. This is especially true when water-soluble (fast acting) nitrogen is being applied.

Excessive annual nitrogen rates showed that no more than 1.5 pounds irrigation should be applied judiciously, especially on sandy soils.

Low nitrogen requiring grasses, such as creeping red fescue, should be planted on sandy soils in areas where water sources (around lakes and along rivers) could be contaminated by leaching of nitrogen, he continued.

Rieke pointed out that most soils have a high capacity to hold phosphorus, so leaching of phosphorus under turfgrass conditions may not be a significant pollution problem.