bend a bolt 3 inches long into the wheel so it can be used later to turn the wheel. Measure the circumference (distance around) of the wheel in feet. Divide this figure into the lineal feet (F) the spreader must travel to cover 100 sq. ft. Lineal feet, in this case, are determined by dividing 100 by the diameter of the spreader’s output pattern (D), or 100/D = F. By dividing the circumference of the wheel by the linear feet, you determine the number of wheel revolutions required for the spreader to cover 100 sq. ft. Now fill the spreader half full with granules and estimate its rate setting. Place the spreader over a large sheet of paper or cloth; block up the drive wheel side of the spreader so that it is about ½ inch off the ground. Next, open the spreader, and by using the bolt as a crank, rotate the wheel the same number of turns required to cover 100 sq. ft. Crank the wheel at the approximate speed at which it would move under normal applications. Weigh the material on the paper. If the amount collected is more or less than the recommended rate, per 100 sq. ft., reset the spreader and repeat the test until the desired rate is applied.

Some spreaders are specifically designed and manufactured to apply granulated materials quite accurately. Other spreaders are designed primarily for fertilizer applications where accuracy is not as important. Generally speaking, these multi-purpose spreaders which are made to apply herbicides, pesticides, and also fertilizers are of necessity manufactured at closer tolerances and for greater accuracy than are typical fertilizer spreaders.