Don’t Miss – SFMANJ
Spring Field Day

Where: Drum Point Sports Complex, Brick NJ
When: April 20, 8am-8:30 registration
Till: 3pm
Box lunch included • Door prizes • No vendor booths

“When it’s Built it’s too Late.” This day promises more than education. Come see a beautiful newly built 60 acre facility in different phases of construction. This is a wonderful park with the same construction problems we face everyday. Learn from Ken Mathis, Parks Director, how to avoid some of these problems and how to build a successful facility. You have the opportunity to see the final changes needed before opening day.

The facility includes 4 softball, 12 soccer and 2 football fields including the beginnings of a skateboard park and bike trail. We will show you how the maintenance building was constructed, how Ken worked with the engineer to get what he wanted. While you are there check out the pesticide storage area. See how to install an internal soil drainage system to combat drainage problems on athletic fields. In between the tour stop at each field and learn how the irrigation system and well work. (Every field is irrigated). We will explain some construction problems and how to develop a playing surface with the existing turf, each field is in a different stage of development. Find out how Ken amended his soil and see the difference between the fields and common areas. Check out the weeds and find what they are and out how to get rid of them. Stop by the skinned infiellds, see the problems, learn how to correct them. Learn how to analyze the mix and compare it to the ASTM standards as we whip the field into playable quality. Stick around afterwards for door prizes and questions. Watch for the flier with registration coming in the mail soon. Be the first to fax the enclosed puzzle with the correct answers and win a free admission. •

SFMANJ Business
Next Board of Directors Meeting – March 11, Thurs. 4pm. At Storr Tractor Co., Rt. 22, Somerville.

If you work for a professional facility and are interested in serving on the Board of Directors of SFMANJ fax a resume to 907-730-7770. You must be a member in good standing. •
Athletic Field Construction & Drainage Specialists

Site Evaluations
Design/Build
Laser Grading
Renovations
Specializing in Sand/Slit Drainage Systems

235 County Line Road
Amityville, NY 11701
631-691-2381
Fax: 631-691-2392
Welcome New & Renewed SFMANJ Members

Currently we have 330 members. If you did not see your name in last month's or this newsletter please call (908)730-7770 to see if you renewed your membership. This year you can not renew with the National STMA chapter if you did please call us. Take advantage of the Spring Field Day discount by renewing today.

Charlie Mulch Pro Inc. Mulch Pro Inc.
Ralph Albanir Middlesex County, Dept. Parks Middlesex County, Dept. Parks
James Alberti Holmdel Township Board of Ed. Holmdel Township Board of Ed.
Wayne Atkinson Cranford Board of Education Cranford Board of Education
Victor Barone Weehawken Township Weehawken Township
Tom Barton Berkeley Heights Township Berkeley Heights Township
Eugene Belluci Ridgewood Village Ridgewood Village
Vincent Benemati Tenafly Board of Education Tenafly Board of Education
Robert Beutel Tenafly Borough Tenafly Borough
Nancy Bigos Ridgewood Village of Ridgewood Village of
Vincent Bono College of Staten Island College of Staten Island
James Bradbury Manafalpan-Englishtown BOE Manafalpan-Englishtown BOE
Paul Brandon Finch Turf Equipment Finch Turf Equipment
Bob Buono Tri State Athletic Field Tri State Athletic Field
Jack Campbell Edison Board of Education Edison Board of Education
Frank Cannella Jr. Eatontown Borough Eatontown Borough
John Carbone Jr. Morris & Bergen Cnty Irrigation Morris & Bergen Cnty Irrigation

SFMANJ Annual Membership Registration Form

* receive update information by email

Name ____________________________ ____________________________
Title ____________________________ ____________________________
Employer ____________________________ ____________________________
Address ____________________________ ____________________________
City ____________________________ ____________________________
State ______ Zip __________
County ____________________________ ____________________________
Phone ____________________________ ____________________________
Fax ____________________________ ____________________________
*E-mail ____________________________ ____________________________

Signature ____________________________ ____________________________

Individual .. $35
Associate .. $35
Organization/Institution $35
Additional member from facility $20
Commercial/Contractor/Vendor/Supplier $85
Additional member from company $25
Student .. $10

Send with Check or voucher to:
SFMANJ
P.O. Box 370
Annandale, NJ 08801

2004

SFMANJ Board of Directors

President Eleanora Murfitt-Hermann, CRS
Washington Twp Parks & Recreation
Vice President Jim Hermann CSFM
Total Control Inc
Secretary Fred Castenschiold
Storr Tractor Company
Treasurer Dean Marzocca
Dean's Lawn & Landscape Co.

Directors

Dr. James Murphy - Rutgers University
Jeff Cramer – Plainsboro Township DPW
Clare Liptak – Rutgers University
Brad Park – Rutgers University
George McCarthy – Spring Irrigation Co., Inc.
Robin VanDerlyn, Chatham School District

Advisor.......................Dr. Henry Indyk
TurfCon GSI Consultants, Inc.

Mission Statement

Committed to enhancing the professionalism of athletic field managers in New Jersey by improving the safety, playability and appearance of athletic fields at all levels through seminars, field days, publications and networking with those in the sports turf industry.

Contact us at:
P.O. Box 370
Annandale, NJ 08801
Web Site – www.sfmanj.org
E-mail –hq@sfmanj.org
Ph/Fax – 908-730-7770

National Organization
Sports Turf Managers Association
www.sportsturfmanager.com
e-mail: SportsTMgr@aol.com
Phone: 1-800-366-0391

Robert Carfagno
Fred Castenschiold
Dr. Richard Caton
James Chimento
Dr. Bruce Clarke
Dave Coleman
Matthew Conti
Jeff Cramer
Timothy Cronin
Kevin Crossley
Mario Cunha
Robert Czumbil
Dan Dandrea
Gregory DeBuck
Dennis DeSanctis Sr.
John DeVries Jr.

Cranford Board of Education
Storr Tractor Co., Inc.
NJ Turfgrass Association
JC Landscape Constr/Mangmt.
Cook College Pathology
Kean University
Raritan Township Public Works
Princeton University
Plainsboro Township
Ridgewood, Village of
Ho-Ho-Kus, Borough of
Cranford Board of Education
Ewing Township
Buena Regional School District
DeBuck's Sod Farm of NY, Inc.
Aer-Core, Inc.
Hillside Gardens Inc.

continued on page 4
Calendar of Events

Rutgers University Athletic Turf Classes
* February 24-26 Athletic Field Construction and Maintenance course
* March 9th The Importance of Understanding Athletic Field Soil
* March 16th The Importance of Understanding Athletic Field Turfgrass
* March 23rd Understanding Athletic Field Construction Procedures
 For information call 732-932-9271
 10% off for SFMANJ members

Annual SFMANJ Spring Field Day
April 20, 8am-3:00pm
Drum Point Sports Complex, Brick NJ
Box lunch included, Door prizes
No vendor booths
$35 members, $45 non-members
For more info call 908-730-7770
Fliers will be sent soon.

New Jersey Recreation & Parks Assoc.
Annual Convention & Trade Show
March 14-17 at Bally's in Atlantic City
For more information call NJRPA at 732-568-1270

continued from page 3

Anthony Diaforli
Joy Dobrosky
Robert Dzuiba
Thomas Elder
Ralph Ellis
Salvatore Fama
Will Fanner
Thomas Fisher
Dave Fitzgerald Sr.
Donald Frederick
George Frey
Peter Galosi
Scott Geier
Sean Goodwin
Joe Gourmank
Dr. John Grande
Todd Gritschke
Michael Haener
Erik Hammerdahl
Rob Haynes
John Helton
Ken Henshaw
Robert Hickey
Luis Hidalgo
Christopher Holenstein
Barry Imboden
Dr. Henry Indyk
Kenneth Jenks

Princeton Regional Schools
Better Materials Corp.
Woodbridge Township, Parks
Ewing Township
Berkeley Township
Sherwin Williams Co.
Old Bridge Township
Complete Lawn Service, Inc.
Till Paint Co, Inc.
Cranford Board of Education
Fair Lawn Parks & Recreation
Cinnaminson Board of Ed.
Hawthorne Borough DPW
Enviroscape, Inc.
Crop Production Services
Rutgers Univ., Snyder Research
Railway Public Works
Michael B. Haener, CID
Chatham School District
Union Township
Cinnaminson Board of Ed.
Atlantic County Vocational School
North Colonial Schools
Rampco Indian Hills B. of Ed.
Summit Board of Recreation
Hunterdon Central High School
Turfco

Van Kampen
William Koonz
Tom LoRizzo
TJ Lawson
Diane Leon
Frank LoSasso
Gary R. Lucks
Robert Manning
Thomas Martin
Paul Martino
Dean Marzocca
Ron Mataktis
William Mateyka
Ken Mathis
Larry Mayerowitz
George McCarthy
Brian McCormick
Craig McCoy
Brian McGuirt
Bill Menagh
Thomas Miller
Chris Monohan
Mike Moore
John Mujica
Dennis Murphy
Art Neff
Thomas Newbery
Nat Nuovo
Richard Oates
Bradley Park
J. Casey Parker, CPWM
Tony Pavelec Jr.
Wes Perrine
Harold Pierce
Ray Poeroio
Steve Polakowski
Judy Policastro
Rich Resavy
Melissa Ripa
Steve Riviello
Rich Romanik
Charles Romano
James Saxton
Michael Shannon
Kevin Shipman
Federic Sibley
Ed Sinclair
Brent Slifer, CPWM
Thomas Stokes
James Stryker
Mark Tindall
Robert Tirserio
Craig Tolley
Steven Toth
Robert Tranquilli
Suz Trusty
Walter Tucker
Dawn Tuttle
Scott Van Demark
Barry Vansant
David Ward Sr.
George Warden
Jay Weisenbach
Betty Weist
Wayne White
Bruce Wild
Greg Winfree
Thomas Witt
Thomas Wojcik
Robert Young
Ron Zaleski
John Zambrano

Van Kampen Advertising, Ltd.
Koonz Sprinkler Supply
Delaware Township
Rutgers University
Leons Sod Farm, Inc.
Hammondton Board of Ed.
Lucks Sales Associates
Piscataway Twp Board of Ed
Pritchard Industries, Inc.
Applied Landscape Technologies
Dean's Lawn & Landscape
Delbarton School
Old Bridge Township
Brick Township
Middlesex County Parks
Spring Irrigation Co. Inc.
College of Staten Island
Scotch Plains Township
Cliffside Park Recreation
Mendham Borough
Environmental Resolutions, Inc.
Scotch Plains Township
Springfield Public School
Cranford Board of Education
Allendale Borough
Croton, Village Of
Rahway Public Works
Field Pro Enterprises, LLC
Ocean City Utilities Authority
Rutgers Univ./Plant/Pathology
Lacey Township
Pavelec Bros. Golf Course Cstn.
Geo.Schofield Co. Inc.
Winslow Twp. Board of Ed.
Scotch Plains Township
Seton Hall University
Irrigation Association of NJ
Hillsborough Township
DVK Athletic Turf
Moyer & Son, Inc.
Millville, City of
Cliffside Park Recreation
Glen Rock Dept. Public Works
Better Materials Corp.
Pine Hill Public School
Medway, Town of
Mahwah Township
Mansfield Township
Cranford Board of Education
Delaware Valley Reg.High Sc
Cinnaminson Board of Ed.
Glen Rock Public Works
County College of Morris
Montville Township
Springfield Public School
STMA
Ocean City
Bow School District
Mahwah Board of Education
National Seed
Roxbury Township
Middlesex County, Dept.Parks
Glen Ridge Borough
NJ Landscape Contractors As.
Holmdel Township Board of Ed.
Stor's Tractor Co.
DVK Athletic Turf
Cranbury Township
Ocean Services Inc.
Fair Lawn Borough
Glen Ridge Borough
Monmouth University
Head Groundskeeper – Newark Bears

Specific responsibilities include but are not limited to, the following:

- Responsible for all field maintenance including, fertilization, pesticides, mowing, turf areas, skin area (mound, Plate and infield)
- Manage pre game set up & post game break down of field operations
- Must have knowledge of sand based fields.
- Working knowledge of irrigation systems, sprayer, spreaders, and tractors and mowing equipment.
- Develop and manage relationships with outside vendors
- Negotiate prices and contracts
- Maintain inventories
- Order supplies
- Schedule all maintenance & repairs necessary for field through outside vendors.
- Hire, train and supervisor full-time hourly employees and game day staff.
- Establish and maintain budgets.
- Be a team player. Actively participate in other operational functions as necessary including but not limited to pulling tarp, attending all scheduled events and meetings.

To apply: Send or e-mail cover letter, resume and list of three professional references to:
Dean Rivera, General Manager
Newark Bears
450 Broad Street
Newark, NJ 07102
drivera@newarkbears.com

You’re Always Ahead of the Game with a COVERMASTER® Raincover...

"Great Service..., The Best..."
Chips’ comments confirm what we hear from the many groundskeepers who use a COVERMASTER® raincover to keep their fields dry and ready for play.
Call us and we'll gladly tell you more.

The COVERMASTER® Advantage...
- Superior in strength and UV resistance
- Outstanding heat reflective properties
- Light weight - easy to handle
- Widest materials for least number of seams
- Largest choice of weights and colors
- Backed by truly dependable warranties

TARP MACHINE VIDEO!
Call, fax or e-mail for a free video, material samples and a brochure.

CALL TOLL FREE 1-800-387-5808 covermaster.com
E-MAIL: info@covermaster.com

COVERMASTER INC., 100 WESTMORE DR. 11-D, REXDALE, ON, M9V 6C3 TEL 416-745-1811 FAX 416-742-6837

March/April 2004
In view of the fact that you can’t keep the infield mix from moving to the turf perimeter, it is sometimes beneficial to move the turf perimeter away from areas of concentrated disturbance caused by game play. By cutting out existing turf and increasing the distance from first and third base to the outer perimeter of the infield, the amount of mix that is deposited into the turf can be greatly reduced. There are different designs conducive to this concept. The number of options is limited only by your imagination.

Grooming technique is most limiting and therefore first on the list of preventative maintenance considerations. Always rake parallel to the foul lines and turf perimeters. When dragging the infield, always stay 6" from the turf. Vary your dragging pattern. Alternate your starting and stopping point. Never contaminate the turf with infield mix for any reason.

The amount of moisture contained by an infield mix, while being maintained within maximum and minimum limits could be considered the glue that holds an infield together and as such is a factor in lip management. The key is to determine these limits. The limits will vary based on site-specific factors. The most important factor to be considered when addressing moisture management is particle size and distribution of your infield mix. What is the physical analysis of your infield mix? What is the sand, silt and clay particle size analysis? Would your mix be considered a sandy mix or would your mix be considered a clayey mix?

The ASTM Standard Guide for Construction and Maintenance of Skinned Areas on Sports Fields has provided guidelines to help in identifying and classifying your particular mix. In general a mix containing 70%-85% sand size particles and containing 15%-30% clayey mix is considered an acceptable product. The sandier a mix is, typically the less stable it is given the effects of game play. The higher the percentage of sand a infield mix contains, the more difficult it is to maintain moisture at levels sufficient to promote stability.

The more clayey an infield mix is, the more that mix tends to retain moisture and the more effective moisture becomes as a means of stabilization. Let me repeat; this moisture is only beneficial when maintained between site-specific limits. Most all of us are aware that a clayey mix usually takes more time to condition after a heavy rain than a sandy mix. The benefit derived from the ability of a clayey mix to retain moisture is lost in this circumstance because the level of moisture has exceeded the limits of potential benefit.

It should be understood that a mix on the clayey side of the ASTM standard that is allowed to become very dry is somewhat difficult to rewet. Tilling or some other means of cultivation is sometimes necessary as a part of the wetting procedure.

When a level of maintenance is reached which allows for the “scheduled” periodic application of water, a soil amendment such as calcined clay may be beneficial in extending the duration of time between water applications. It must be understood that these products constitute the potential for a double-edged sword.

As was addressed earlier, a sandier mix or a mix with more sand “sized” particles is less stable and is more likely to migrate given the effects of game play. If moisture levels are permitted to vary beyond the limits of potential benefit (either too wet or too dry), these products will display characteristics similar to sand. When allowed to dry out, a mix that has been modified with an amendment such as calcined clay may be beneficial in extending the duration of time between water applications. It must be understood that these products constitute the potential for a double-edged sword.

For the purposes of this article the characteristics of a dry infield mix are determined almost solely by particle size and nothing more. When discussing the stability of an infield mix, a dry calcined clay particle will differ little from a dry sand particle given the same particle size. If anything, the clay
particle will be more mobile due to being lighter and maintaining a lower bulk density. The benefits of products such as calcined clay are only realized in their ability to absorb moisture and aid in maintaining moisture levels between site-specific maximum and minimum limits.

I have in the past used the following comparison to explain the affects of moisture on a sandy infield mix. When walking along the beach an observation can be made. Up on the beach where the sand is dry the conditions are very unstable. You sink into the sand. As you approach the waterline, the sand has more moisture content and as such gains stability and firmness. As you enter into the water and the sand becomes saturated it again loses stability. The moisture in the sand provides stability only between maximum and minimum saturation levels.

Wind erosion is a subtle culprit that can slowly but surely eat away at the integrity of your infield. It is obviously site specific based on the severity and consistency of the wind. As with any erosion problem (wind or rain) wind erosion impacts on the smaller and or lighter particles. For this reason wind erosion has the potential to erode the silt, clay, fine sand and or added amendments from your infield and deposit this material at the turf perimeter adding to the problem of lip buildup. Along with adding to lip buildup, if allowed to persist, wind or rain erosion will destroy the integrity of a clayey mix and leave you with a sand box.

Controls would include providing a windbreak to minimize wind velocity. This can be incorporated into the permanent perimeter fencing. It can also be provided as snow or silt fence utilized during the off-season. If snow or silt fence is utilized as a windbreak during the off-season, remember to keep it away from the turf on the down wind side of the field. If a windbreak is installed to close to the turf it will cause airborne particles to drop right into the turf. As can be observed by the effective use of snow fence in winter storm management, drifting occurs on the downwind side. Maintaining moisture levels within the mix will increase stability of the mix and also minimize erosion.

When discussing erosion of a specific infield mix caused by water (rain), two major factors contribute to the severity of the problem. These two factors are water volume and velocity. The more water there is and the faster it travels, the more severely it impacts on the stability of the infield mix.

First, consider water volume. The volume of water is the amount of water you are dealing with. Although you cannot control the amount of rain you receive, there are a number of ways to control the volume of water that travels within the confines of an Infield.

1. Cover the infield when it rains. For most of us this is an impossibility

2. As water travels along a linear path it increases in volume. Limit the distance the water travels before exiting the infield and you limit the accumulated volume. By properly grading the infield, you can direct water the shortest distance to the perimeter thereby limiting the volume of water. An example of one such grading plan would be to maintain the pitchers area as the high point of the infield and slope the infield to the perimeter with all bases being approximately level to one another.

3. Limit the concentration of water in specific areas when exiting the field. An example of the very worst grading design which encompasses the very worst of examples #2, #3 and #4 would be a skinned infield with home plate as the low point of the entire infield. As

Only Rain Bird rotors feature Rain Curtain™ Nozzle Technology that delivers uniform water distribution across the entire radius range for green grass results. Gentle, effective close-in watering around the rotor eliminates dry spots without seed washout, and larger water droplets assure consistent coverage, even in the windiest conditions.

Install Confidence. Install Rain Bird.
water is funneled to a central location potential volume is increased and therefore the potential severity of erosion is increased. This problem is also magnified due to the distance the water has traveled in order to exit the infield.

4. Eliminate the potential for water to enter the infield from other areas during episodes of rain. If the outfield or foul territory is higher than the infield, water should be channeled away from the infield by some means.

The second player in this game of erosion is velocity or the speed of the water. Water increases in speed or “velocity” with an increase in slope. By minimizing slope you minimize velocity and therefore minimize erosion. Professional fields I have read about maintain around 1/4% slope. This equates to approximately 5 1/2 inches of fall from the area at the base of the pitchers mound to the turf radius assuming a 90° radius. I prefer to maintain a slope of between 3/4% and 1 1/2% on the infield I take care of. I believe, at less than 3/4% there is too much potential for ponding and above 1 1/2% there is too much potential for erosion. These tolerances become more critical as the distance to exit increases. Remember, volume and velocity increase with distance as long as the supply (rain) remains constant.

The last factor that contributes to the development of a lip that I stumbled on (literally) by accident is the combined affects of freezing and thawing along with the increased development of a thatch layer at the turf perimeter.

In November of last year I returned to an infield I had recently renovated to admire my work. I had completely resodded the perimeters of the infield and for that reason I was certain there was no lip. To my dismay a defined lip had developed within a period of days. The freezing and heaving of the very edge of the sod caused the lip. I believe this honeycombed soil structure provides an avenue for the inwashing of material from the infield. In addition to increasing the volume of soil within the lip, this modified root zone coupled with increased moisture supply at the perimeter of the infield promotes a localized environment conducive to the development of a concentrated root system. With this proliferation of root development comes an increase in thatch layer and therefore an increase in elevation contributing to a lip.

Depending upon the severity of the lip, there are a number of ways to deal with it after it has established. The most aggressive procedure would be to use a sod cutter and remove the entire area of turf that rises above the desired elevation. The excess material that has accumulated below the sod is removed and the area is either resodded using the existing sod or new sod is brought in for the procedure.

A less aggressive approach to the problem is to dig a shallow trench adjacent to the turf lip and roll the lip into the trench. This procedure is most effective if the lip is very narrow and defined in relation to the desired elevation.

* A procedure that fills the gap between the least invasive (trench and roll) and most invasive (sod cut) procedures is to aggressively core aerate the area of lip, remove the cores and then roll the lip to the desired elevation. There must be enough volume of material removed through the aeration process to allow for the movement of remaining material without increasing compaction. The aeration procedure must penetrate deep enough to provide compaction relief 2” to 3” below the desired finish grade. There must be sufficient soil moisture available so as to allow for movement in the soil but not so much moisture so as to allow for smearing of the soil, which is in fact damaging to the soil structure.

* This idea was contributed by Brian Meola of Washington Township Parks & Recreation (Morris County).

Did You Know?

Phosphorous is the least soluble of the major turf nutrients and as such moves very slowly through most native soil root zones. For this reason much of the phosphorous applied, is not available to the turf roots in the year of application. In new construction, if soil test results report phosphorous as “low” availability, it is advisable to incorporate half of the recommended phosphorous into the root zone prior to seeding and topdress the balance. •
“Crabgrass can grow on bowling balls in airless rooms, and there is no known way to kill it that does not involve nuclear weapons” – Dave Barry, Miami Herald

With spring soon to arrive, it is an important time to begin thinking about options for controlling crabgrass. If a significant soil seed bank exists and there are voids in the turfgrass stand which minimize competitive benefits of the turf, as a summer annual, crabgrass will germinate profusely in the spring, mature throughout the summer months, and die in early fall at the first killing frost leaving dead “skeletons” throughout the landscape. Crabgrass seed will typically begin germinating after April 10 in South Jersey and by April 20 in Central and North Jersey. Crabgrass will continue to germinate through mid-July.

Integrated Pest Management (IPM)

Recall that IPM attempts to reduce the risk that pest control strategies may have on the environment and people by incorporating all suitable techniques to maintain pests within acceptable limits. Although it is a common misconception, IPM does not entail the elimination of pesticide use.

Simply mowing at a cutting height suitable for the specific turfgrass species or mowing at a frequency such that scalping is avoided can constitute IPM. Improper mowing techniques leading to scalped turf will thin-out turfgrass areas, lead to voids in the stand, and subsequently provide opportunities for crabgrass to encroach. IPM also entails proper fertilization. Under-fertilizing turfgrass will often result in a weak stand, poor turf density, and an environment in which crabgrass can readily invade. Yearly nitrogen requirements per 1000 ft² for cool season turfgrasses used on New Jersey sports fields are: Kentucky bluegrass, 2-5 lbs; perennial ryegrass, 3-5 lbs; tall fescue, 2-4 lbs. High-use sports fields often necessitate the high-end of these nitrogen fertilization guidelines in order to encourage turfgrass recovery from traffic.

Preemergence herbicides: Are they an option?

For sports field managers whose cultural program includes spring overseeding of his or her fields, applying most preemergence herbicide products at the time of seeding will not only deter crabgrass emergence, it will also inhibit establishment of cool season turf. Products such as pendimethalin (Pendulum or Pre-M), benefin + trifluralin (Team), prodiamine (Barricade), oxadiazon (Ronstar), and dithiopyr (Dimension) are not viable options for preemergence crabgrass control if overseeding is a part of the manager’s spring program. Depending on the product and the application rate, the residual of these products is such that the seeding of desired cool season turfgrasses may not begin for 2 to 6 months following the application of the herbicide. Additionally, these products may not be used in newly seeded turf as young turfgrass seedlings are highly susceptible to the phytotoxic effects of these herbicides.

Siduron

Siduron (Tupersan) is a herbicide that is labeled for preemergence crabgrass control in newly seeded Kentucky bluegrass, tall fescue, and perennial ryegrass. Tupersan is formulated as a wettable powder and should be applied in the spring to coincide with maximum crabgrass germination. The label calls for either a

NATIONAL SEED

PROFESSIONAL TURF PRODUCTS

Specializing in Quality Grass Seed To Meet All Your Turf Performance Standards

Call For a Catalog 800-828-5856

Carrying a full line of quality mixtures especially formulated for:

SPORTS & ATHLETIC FIELDS

LOW MAINTENANCE AREAS

GENERAL GROUNDS

GOLF, LAWN, RECLAMATION

Technical Agronomic Support and Custom Blending Available

March/April 2004
single application of product at 4.0-12.0 lbs/Acre or sequential applications at 6.0-12.0 lbs/Acre followed by a 4.0-6.0 lbs/Acre application 4 weeks later.

Postemergence herbicides

In order to use the chemical tools available to selectively treat crabgrass postemergence, the sports field manager must be able to accurately identify crabgrass at various seedling stages. Large crabgrass seedlings are characterized by upright growth and leaves that are rolled in the bud, lack auricles, and have a jagged membranous ligule. Large crabgrass leaf blades and sheaths are covered with stiff hairs. Smooth crabgrass is similar to large crabgrass, however it has fewer hairs on its leaf blades and sheaths.

Quinclorac and fenoxaprop

Quinclorac (Drive) and fenoxaprop (Acclaim Extra) are labeled for the selective postemergence control of crabgrass in perennial ryegrass, Kentucky bluegrass, and tall fescue. Quinclorac is effective in controlling young, un-tillered crabgrass seedlings and may be applied up to 0.75 lbs/Acre (1.0 lb Drive/Acre). To increase the efficacy of weed control, the label recommends applying quinclorac with an oil-based adjuvant such crop oil concentrate or methylated seed oil.

Quinclorac may be applied up to 7 days prior to the seeding of tall fescue, Kentucky bluegrass, and perennial ryegrass, at the time of seeding for perennial ryegrass and tall fescue, 7 and 14 days after the emergence of tall fescue, and 1 month after the emergence of Kentucky bluegrass, perennial ryegrass and tall fescue. The label notes that adjuvants should not be added to quinclorac applications to newly seeded turf prior to 28 days after seedling emergence.

Fenoxaprop may be applied at rates ranging from 0.016-0.17 lbs/A (3.5-39.0 fl. oz Acclaim/A) depending on the stage of crabgrass growth and established turfgrass species. For example, 4-5 tiller crabgrass may be treated with fenoxaprop at 0.17 lbs/A (39.0 fl oz Acclaim Extra/Acre) in perennial ryegrass and tall fescue whereas no more than 0.12 lbs of fenoxaprop (28.0 fl oz Acclaim Extra/Acre) may be applied to 3-4 tiller crabgrass in Kentucky bluegrass turf.

Following applications of fenoxaprop, tall fescue and perennial ryegrass may be seeded immediately. Following germination of tall fescue and perennial ryegrass, fenoxaprop should not be applied until seedlings have matured for 1 month. Of the cool season turfgrasses used on sports fields in New Jersey, Kentucky bluegrass is the most susceptible to phytotoxic effects associated with fenoxaprop. For example, when utilizing fenoxaprop rates greater than 0.04 lbs/A (9.0 fl oz Acclaim Extra/A), Kentucky bluegrass seedlings must be at least 3 growing months old before fenoxaprop can be applied. Additionally, 21 waiting days should be allowed following the application of fenoxaprop prior to seeding Kentucky bluegrass.

Due to the complexity of Drive and Acclaim Extra labeling with respect to crabgrass growth stage susceptibility, individual turfgrass species herbicide tolerances, and turfgrass seeding timings, pesticide labels must be thoroughly read and understood prior to the application of these materials.

Literature Cited

Terre Has a full line of Sports Turf Products

- Infield Clay Mixes
- Turface soil conditioners
- Grass Seed
- Fertilizers
- Pesticides
- Top Dressing
- Goose Control
- Turf Blankets
- Marking Paints

Keep Your Ball field’s safe and looking great!! TERRE has the products from grass seed and fertilizer to infield clays and Sports Field Conditioners like Turface products

Call For a Catalog or Inquiries

Tel: 973-473-3393
Fax: 973-473-4402
206 Delawanna Ave Clifton NJ 07014

Sports Field Managers Association of New Jersey
Puzzle Contest: Win one free admission to Spring Field Day on April 20th. Fill in the puzzle, be the first to fax the correct answers to 908-730-7770. Attached your name, address and phone.

Across
1. A measure of engine strength
2. Resistance of a fluid to shear force, ie oil weight
4. A form of engine aspiration
7. A structure which protects an equipment operator
8. Unit of electrical current used to quantify the capacity of an alternator
9. Measure of hydraulic pump capacity
11. The organization which develops standards
12. Measurement of pressure
13. Measurement of a battery’s starting power

Down
1. A transmission with infinite speed control
3. Method of pest control that attempts to minimize yet not eliminates the use of pesticides
4. Abbreviation for the program responsible for evaluating and reporting new turf seed varieties
5. The strength of an engine measured in foot pounds
6. State department concerned with pesticide regulations
10. Measure of speed travel

TUCKAHOE TURF FARMS, INC.

"Instant Lawns"

www.ttfarms.com

- HIGH QUALITY New Jersey Certified Bluegrass & Fescue Sod
- GROWN ON HAMMONTON sandy, loam-type soil (89-92% sand)
- 700-acre farm allows deliveries to the Northeastern states or wherever sand sod is needed for specialized modern athletic fields
- LABOR-SAVING BIG ROLLS, please call for custom installation prices
- THICK CUT SOD with as much as 1 3/4" soil for repair job

609-561-7184 800-222-0591 Fax 609-561-0296

ENVIRONMENTAL

Our firm is seeking a Landscape Architect to enhance the firms, planning, and design and construction management capabilities. We are a progressive group of professionals dedicated to client service. Our company is growing and we have recently expanded into a new Burlington County office in Mount Laurel, New Jersey.

We are interested in an individual with a degree in Landscape Architecture and a CAD/design program background. This person will aid in the development of park and recreation projects from concept through ribbon cutting. In addition, a primary function will be the review of development plans for municipal clients.

Our firm is seeking a motivated individual interested in emerging into a new area of the business and enabling this section to develop.

Send resume to Environmental Resolutions, Inc., 525 Fellowship Road, Suite 300, Mount Laurel, New Jersey 08054-3415, attn: Wanda Ford, EOE.
Movement of Nitrogen: Fertilizer in a Turfgrass System

From the January 1999 issue of Sportsturf — by University of California-Riverside Research Team

Nitrogen (N) aids many plant processes and components. It’s necessary for growth and development, appearance, and recuperative ability of all turfgrasses. However, its mobility makes N a potential environmental hazard. In nitrate form, N won’t bind with soil or organic colloids. It can move from the application site to ground/surface water or the atmosphere by leaching and runoff, or by volatilization. Our study monitored N movement below the root system of cool-season turfgrasses. We looked at situations where N was applied at high rates and frequent intervals.

Methods
Turfgrass Research Project at the Agricultural Experiment Station of the University of California (U.C.) - Riverside provided study plots of mixed Kentucky bluegrass and perennial ryegrass. We applied N at 2.5 lbs. per 1000 sq.ft. to Hanford fine sandy loam soil, and reapplied every eight weeks. We sampled the experimental plots through two consecutive application periods, and performed nitrate analyses with a Technicon Autoanalyzer II.

We used a randomized, complete block of 4-ft. by 6-ft. plots, and performed three replications. Weekly mowing maintained a 2-in. height of cut, and clippings were collected to limit thatch. Sprinkler irrigation replaced soil moisture according to estimates of natural evapotranspiration.

Our nitrogen sources included granular urea (46-0-0), sulfur-coated urea (SCU: 37-0-0), and blood meal (13-0-0). These sources are classified as soluble, slow-release, and natural organic, respectively. They represent a range of nitrate-leaching potential. An untreated control balanced the study.

We collected two samples from each plot every week using Frometer lysimeters. Samples of tap water from the irrigation source and deionized water accompanied each batch of leachate samples.

Results
Granular urea provided the highest concentration of nitrate sampled. The concentration peaked 10 to 14 days after application. At no time did nitrate leachate exceed federal safety limits.

Sulfur-coated urea treatments demonstrated significantly less leaching of nitrate than urea during peak leaching times. SCU regularly showed more evidence of leaching than blood meal and the untreated control, but there was no significant difference among the three treatments at any rating date during the study.

Even at very high N fertilization rates, there was little probability of significant nitrate leaching from any of the tested sources. Only urea gave levels that were above tap water content, but these readings still fell below federal guidelines.

Discussion
Other studies found similarly low levels of N leaching. A Michigan State University researcher recovered less than 0.2% of applied N below the turfgrass root system. The N he detected was well below the drinking water standard.

A Nevada study reported a total leachate loss of 1.0% or less for tall fescue and bermudagrass turf, and another study at Cornell University found minimal N leaching.

In contrast, a Washington State University study found that nitrites could leach from newly constructed sand putting greens in golf course applications. In this creeping bentgrass study, leaching was strongly tied to N application rate, and was strongly modified by rooting medium and application frequency. N leached more from pure sand than from a sand-peat medium.

Leaching was much greater in the first year of the study than in the second, possibly due to more extensive rooting in the second season. Modified-sand rooting medium, moderate levels of total annual N, and frequent applications produced the lowest leaching loss (3-5% annually).

Studies show further that gaseous loss of N can be minimized by applying water immediately after application. This ionizes ammonia that can be produced.
by rapid mineralization, and prevents it from escaping into the air.

Gaseous N loss can also result when microorganisms chemically reduce nitrate. This produces elemental nitrogen and nitrous oxide gases. Further research is necessary to explore this phenomenon.

Fertilizer nitrogen applied to a dense, mature, well-maintained turf is normally used rapidly by the turfgrass plant and soil microorganisms. There appears to be little chance of downward movement of nitrogen other than on pure sand with immature turf present. The following cultural practices help minimize potential leaching:

- Water-in fertilizer immediately following application.
- Do not over-apply N.
- Use low application rates or slow-release sources on sands.
- Avoid over-irrigation directly after application.

Researchers Victor Gibeault, Marylynn Yates, Jewell Meyer, and Mathew Leonard contributed to the study. Their complete report is published by the University's Cooperative Extension in California Turfgrass Culture Vol. 48, Nos. 1 and 2.
Ask the CSFM

Jim Hermann, CSFM is a Certified Sports Field Manager.
Ask Jim questions concerning your baseball/softball fields. E-mail him at hq@sfmanj.org

Question: We just acquired a deep tine aerator last fall. We purchased both 3/4” hollow and 1/2” solid tines. The problem is that the field is so hard and compacted we were not able to aerate below about 3”. What should I do?

Answer: In the short term I would suggest deep solid tine aerating as early in the spring and as deeply as possible. In doing so you will be taking advantage of the natural compaction relief provided by the heaving action of the deep frost we have maintained this winter. This will allow for the most effective deep tine aeration possible given your situation. You may have to acquire larger diameter solid tines to achieve maximum depth without bending. Be sure to wait until proper soil conditions persist before attempting your aeration program. Use your soil test probe to pull core samples to confirm proper soil conditions. The soil should be moist but not so moist so as to ribbon when rolled between the thumb and forefinger. It should have the ability to crumble or separate into individual aggregates when pressure is applied.

In the long term, I would begin to develop a proactive aeration strategy, which anticipates the affects of traffic and seasonal weather patterns.

In the short term I would suggest deep solid tine aerating as early in the spring and as deeply as possible. In doing so you will be taking advantage of the natural compaction relief provided by the heaving action of the deep frost we have maintained this winter. This will allow for the most effective deep tine aeration possible given your situation. You may have to acquire larger diameter solid tines to achieve maximum depth without bending. Be sure to wait until proper soil conditions persist before attempting your aeration program. Use your soil test probe to pull core samples to confirm proper soil conditions. The soil should be moist but not so moist so as to ribbon when rolled between the thumb and forefinger. It should have the ability to crumble or separate into individual aggregates when pressure is applied.

If timing and usage permit, I would recommend follow-up core aeration in late May. By then, game play will have recompacted much of the playing area. Depending on the depth of your topsoil, I wouldn’t recommend core aeration much below 3” or 4”. Pulling cores from below this depth will typically bring inferior soil to the surface. Compaction from foot traffic normally does not impact on soil below this depth.

Field Tip

Have any necessary infield mix delivered and placed on the infield while the ground is frozen. This will minimize unnecessary handling of material and also minimize the potential for unnecessary damage to surrounding turf areas caused by heavy trucks.

2004 Proud Sponsor Directory

TOTAL CONTROL, INC.
Athletic Field Management & Consulting
Jim Hermann, CSFM
P.O. Box 422, Lebanon, NJ 08833
Ph/Fax: 908-236-9118 jimtc@att.net

US ATHLETIC FIELDS, INC.
Sports Field Maintenance, Renovation & Construction
John McKnight and Jim Gilligan
P.O Box 38 – Skillman, NJ 08558
609-466-2846 Fax: 609-466-1808
jim@usathleticfields.com

GSJ CONSULTANTS – TURFCON DIV.
Dr. Henry Indyk, Sports Field Consultant
732-247-8026

STORR TRACTOR COMPANY
Turf, Irrigation and Ballfield Equipment
3191 Highway 22
Somerville, NJ 08876
908-722-9830 Fax: 908-722-9847

WILFRED MAC DONALD, INC
Turf Equipment Specialists
Bernie White – Sales Representative
19 Central Blvd., S. Hackensack, NJ 07606
888-631-0691 ex 114 Fax: 201-931-1730
sales@wilfredmacdonald.com

SPORTS TURF SYSTEMS by SAUL BROS.
Drill & Fill, Deep Tine Aeration
Jerry Saul & Danny Saul
P.O Box 299
Livingston, NJ 07039
973-983-1141 Fax: 973-983-8845

MENDHAM GARDEN CENTER
Turf Products
Mendham – 908-543-4178
Chester – 908-679-5020
Annandale – 908-730-9008

Put your ad here! To become a Proud Sponsor
Call 908-730-7770 $150 for one year

Sports Field Managers Association of New Jersey
Storr Tractor Company
Distributors of Commercial Turf Equipment & Irrigation
New Jersey State Contract Vendor

The Groundsmaster 4100-D is the most powerful mower in its class with high quality cutting performance.

TORO. Count on it.

3191 Route 22
Somerville, NJ 08876
908-722-9830

Serving the Industry
Since 1945

March/April 2004
Or Current Occupant

Bradley Park
Rutgers University, Dept. of Plant Bio/Pathology
59 Dudley Road
New Brunswick, NJ 08901

Sports Turf
MANAGERS ASSOCIATION
Experts on the Field. Partners in the Game.

THE GREATEST TEAM ON TURF!

Wilfred MacDonald is your team when it comes to athletic field equipment. We offer a wide variety of equipment from striping reel and rotary mowers to athletic field conditioners, line stripers, groomers, top dressers, aerifiers and more! Our comprehensive line of Jacobsen, Smithco, Turfco, National and Vertidrain gives you the largest variety of turf equipment to choose from! Contact your sales representative today for a demonstration!

Wilfred MacDonald, Inc
19 Central Boulevard
South Hackensack, NJ 07606
888-831-0891
www.wilfredmacdonald.com

Sales Representatives:
Bernie White
Mike Clifford
Tim Kerwin
Mike Pelrine