Michael D’Ascanio - SFMANJ Student Scholarship Award Winner

On December 11th, Michael D’Ascanio was awarded a $1,000 student scholarship at the SFMANJ business meeting in Atlantic City at the NITA Expo.

Four very qualified students applied for this scholarship. Michael stood out because he was well rounded in his education, work experience and research experience in athletic turf. He completed an internship at Fenway Park maintaining their baseball field, worked on turf research at Cook College while maintaining a high GPA. Michael also has been a member of the SFMANJ chapter the longest of those who have applied.

The Sports Field Managers Association of New Jersey again wants to acknowledge Michael’s past achievements and work experience in the athletic field industry by awarding him the first annual SFMANJ Student Scholarship.

Contributors of this scholarship are the SFMANJ chapter, Dr. Henry Indyk, Dean Marzocca and Floyd Perry. To contribute to future scholarships you may send a check to SFMANJ, PO Box 370, Annandale, NJ 08801. See the form in your advertiser’s packet. If you did not receive a packet, please call 908-730-7770.

NJ Turfgrass Expo Update

by Eleanora Murfitt-Hermann

The athletic field education session was another great success this year. “Synthetic Surfaces for Athletic Fields” was the hot topic as Dr. Andrew McNitt, Penn State University; Fred Stengel, Bergen Catholic High School; Dr. Henry Indyk, TurfCon GSI Consultants; and George Toma, NFL Field Consultant; filled the room with the pros and cons, humorous stories, innovative ideas and just the facts. What did I learn? If I could afford it, one of my fields would be synthetic. In my opinion, with multi-use, over-played fields, dual seasons and high expectations of the users, synthetic turf is the answer to playing all day, everyday.

At the full-day session we elected new Board of Directors, gave a $1000 student scholarship to Michael D’Ascanio, a Rutgers University Turfgrass student and long time member of SFMANJ, and drew names for our Company Spotlight for this issue. Alas, Wilfred McDonald won the second year in a row. They graciously declined and we drew again. Check inside for the winner. We broke the record for SFMANJ members attending the Expo athletic field Thursday session at 35+. Over 107 people overall filled the room.

The trade show was as always the highlight of my day. Besides receiving cool handouts to bring back to the staff I found a plethora of information about the latest products and equipment.

Thanks to everyone who stopped at the SFMANJ booth to say hi and renew their memberships. And most of all thank you all for supporting this chapter throughout the last 4 years. With your help, we have been able to bring you great educational programming and information concerning your athletic fields. We’ve just begun!!
THE CHOICE OF THE PROFESSIONALS

ATHLETIC FIELD CONSTRUCTION
& DRAINAGE SPECIALISTS

➤ Site evaluations

➤ Design/Build

➤ Laser Grading

➤ Renovations

➤ Specializing in Sand/Slit Drainage Systems

235 County Line Road
Amityville, N.Y. 11701
(631)691-2381
(631)691-2392 -Fax
Welcome New & Renewed SFMANJ Members

In the beginning of December, Sports Field Managers Association of New Jersey mailed invoices for 2004 membership dues to all current members. If you did not receive an invoice, please contact us at (908) 730-7770. Remember to mail your renewal/payment direct to SFMANJ, PO Box 370, Annandale, NJ 08801.

Don Babb - Washington Twp, Parks & Recreation
James Bailey - Holmdel Township DPW
Edward Bell Sr. - Athletic Field Maintenance, Inc.
Barnard F. Bigley, III - Manasquan Board of Ed.
Walter Bijaczyk Jr. - Somerset County Park Comm.
Bob Buono - Tri State Athletic Field
Paul Burke - Manalapan Township
Pete Caruso - Levitt’s LLC
Mike Clifford - Wilfred MacDonald
Harry C. Coutrell - North Plainfield Board of Ed.
Gregory DeBuck - DeBuck’s Sod Farm of NY, Inc.
Leonard M. DeBuck - DeBuck’s Sod Farm of NY, Inc.
Amy DeBuck - DeBuck’s Sod Farm of NY, Inc.
Wayne Devico - Mountainside Board of Ed.

SFMANJ Annual Membership Registration Form

* receive update information by email

Name ____________________________
Title ____________________________
Employer _________________________
Address __________________________
City _____________________________
State _____________________________ Zip ____________
County ____________________________
Phone ____________________________ Fax ____________
*E-mail ____________________________
Signature __________________________

Individual ... $35
Associate ... $35
Organization/Institution $35
Additional member from facility $20
Commercial/Contractor/Vendor/Supplier $85
Additional member from company $25
Student ... $10

Send with Check or voucher to:
SFMANJ
P.O. Box 370
Annandale, NJ 08801

January/February 2004
Calendar of Events

Rutgers University Athletic Turf Classes
* February 24-26 Athletic Field Construction and Maintenance course
* March 9th The Importance of Understanding Athletic Field Soil
* March 16th The Importance of Understanding Athletic Field Turfgrass
* March 23rd Understanding Athletic Field Construction Procedures
For information call 732-932-9271
10% off for SFMANJ members

NJ Landscape 2004
27th Annual Trade Show & Conference
February 25th, Wed. 8:30am to 4:30pm.
Meadowlands Exposition Center, Secaucus, NJ
Booth spaces available.
For information call 201-664-6310 or www.njlca.org

New Jersey Recreation & Parks Association
Annual Convention & Trade Show
March 14-17 at Ballys in Atlantic City
For more information call NJRPA at 732-568-1270

continued from page 3

Ken Griepentrog National Seed
John Gumm The Toro Company
Kevin Haines Middletown Board of Education
Mark Hardek Lofts/Pennington Seed
Chris Hustus Lenape Board of Education
John M. Kapp West Windsor-Plainsboro Reg. SD
Kenneth Krohe Keyport Board of Education
David LaLena Philadelphia Turf Co.
Dave Lindsay Somerset County Park Comm.
Joseph Lowell Denville Township
Bob Maguire Springfield Township Recreation
Gerard Marzocca Dean’s Lawn and Landscape
Darren McCormack Saint Peter’s College
John McKnight U.S. Athletic Fields, Inc.
Robert Meissner West Windsor-Plainsboro Reg. SD
Brian Meola Washington Twp. Parks & Recreation
Jack Miller Wall Township Recreation
Thomas Minue Holmdel Township DPW
Walter J. Mugavin Aqua Mist Irrigation
Steven Mulholland New Jersey City University
Eleanora Murfitt, CRS Washington Twp Parks & Recreation
Michael O’Connor Bergen County Technical Schools
John O’Dell Denville Township
Eugene Peer Montville Township
Paula Redmond Pemberton Township
John Renzulli Newark Academy
Bob Revello Morristown-Beard School
Walter Ricciardi Riceardi Bros., Inc.
Steve Rogers American Lawn Sprinkler
Don Savard Millville Babe Ruth Sports Complex
Stephen Schlosser Salesianum School
Brian Shanley North Plainfield Board of Ed.
Steve Shine Barnegat Board of Education
Robert Shortell TruGreen/ChemLawn
Bill Siegel Rutgers University
David Smith Shearer/Penn
Jeffrey P Smith Jr. Fertil-Soil Turf Supply
Gary Snyder Holmdel Township DPW
John Snyder Burlington Township DPW
Daniel Sponzilli Recreation Montgommery Township
Richard Standowski The Hydroseeding Pro
Eric Stephens Sayreville Borough
Mike Tenarho Washington Twp. Parks & Recreation
Steven R Tomec Springfield Township Recreation
James Van Blarcom Holmdel Township DPW
John Van Brun Westfield, Town of
Leon R. Wagner Randolph Recreation
James Waller Middle Twp. Public Schools
Joseph Warner Kearny DPW, Shade Tree Division
Bernie White DVH Athletic Turf
Ken Whitenour Wilfred MacDonald
Frank White K.J.S. Lawn Service, LLC
Ken Whitenour Mercer County Park Commission
Frank White Westfield Board of Education

WHAT A PRO!
The John Deere Pro-Gator is the most indispensable utility vehicle you can ever own. The cargo box is removable for a growing number of attachments. Cab available.

FINCH SERVICES, INC. Est. 1945

Westminster, MD N. Wales, PA N. Huntington, PA
410-876-2211 215-661-0390 724-861-5657
1127 Littlestown Pike 419 Industrial Dr.
11099 Rt. 993

Ask about our Off-Lease/Pre-Owned Equipment

Sports Field Managers Association of New Jersey
Rutgers Corner
A look at perennial ryegrass for New Jersey sports fields
by Brad Park, Rutgers University park@aesop.rutgers.edu

The question of whether or not to establish and/or overseed perennial ryegrass on sports fields is an issue sports field managers in New Jersey face every year. Perennial ryegrass is an attractive choice for fields used for soccer, lacrosse, field hockey, and football because it has the ability to germinate and establish quickly when overseeded and can show good traffic tolerance if a proper variety is chosen. However, the susceptibility of perennial ryegrass to winter ice damage and numerous diseases has led many sports field managers across the Garden State to establish Kentucky bluegrass and/or tall fescue as an alternative(s) on their sports fields.

The case for perennial ryegrass
Along with a darker green color, increased shoot density, and finer leaf texture, many new perennial ryegrass varieties contain fungi called ‘endophytes’ that improve tolerance to the damage caused by surface feeding insects including billbugs, sod web worms, and chinch bugs. The mutually beneficial (symbiotic) relationship between the fungus and perennial ryegrass is an effective method of biological control of insects and the establishment of ‘endophyte-enhanced’ perennial ryegrass varieties is an integral part of an Integrated Pest Management (IPM) program.

Perennial ryegrass tends to be more tolerant of postemergent herbicides compared to Kentucky bluegrass, therefore allowing for higher application rates. For example, Acclaim Extra is a herbicide labeled for the selective postemergent control of crabgrass in perennial ryegrass and Kentucky bluegrass. The Acclaim Extra label clearly states that no more than 0.64 oz per 1000 ft² of product may be applied to Kentucky bluegrass per application where as up to 0.90 oz per 1000 ft² may be applied to perennial ryegrass. Similarly, Prograss, a herbicide labeled for the selective postemergent control of annual bluegrass in Kentucky bluegrass and perennial ryegrass, may be applied at 1.5 oz per 1000 ft² to Kentucky bluegrass with a minimum 6-week Kentucky bluegrass overseeding safety interval whereas 2.0-4.0 oz of product per 1000 ft² may be applied to perennial ryegrass with only a 1-2 week perennial ryegrass overseeding safety interval.

The strongest argument in support of perennial ryegrass use on New Jersey sports fields was detailed by Brede and Duich (1982) where they note that perennial ryegrass will germinate in as little as 4 days, grows and develops

continued on page 6
Perennial ryegrass on New Jersey sports fields are susceptible to a number of fungal diseases that can be both destructive and expensive to control if fungicides are applied. Among these diseases includes: stem rust, brown patch, dollar spot, pythium, leaf spot, and gray leaf spot. Gray leaf spot can be particularly devastating as Vermeulen (1999) stated that up to 90% of a golf course fairway comprised of perennial ryegrass may be killed if left unprotected though the use of fungicides. Gray leaf spot develops in perennial ryegrass during periods of warm days with high humidity and prolonged leaf wetness in late summer (mid-August to early October).

Conclusions

Because perennial ryegrass is such a practical and efficient overseeding choice and many varieties display good traffic tolerance, it is not appropriate to dismiss its use on New Jersey sports fields. If considering perennial ryegrass in a seed mixture or as an overseeding species, realize that perennial ryegrass is limited to recolonizing divots slowly by basal tillers. Kentucky bluegrass establishment on high-use sports fields is advantageous due to its rhizomatous growth habit. Turfgrasses with a rhizomatous growth habit (Kentucky bluegrass) are characterized by relatively small divots and a more rapid recuperative potential since regrowth and recovery can occur from rhizomes under the center of the divot as well as from the sides. While divot recovery of Kentucky bluegrass sport fields may be facilitated via fertilization, damage of perennial ryegrass stands must often be accomplished by overseeding. Perennial ryegrass on New Jersey sports fields is susceptible to prolonged cold temperatures and ice cover. McCarty (2000) found that 50% of a perennial ryegrass stand may be killed when soil temperatures at a depth of approximately 4.0 inches fall to between 23 and 5°F. In contrast, Kentucky bluegrass demonstrates far greater cold tolerance, as similar levels of kill are not achieved until soil temperatures at the same depth fall to between -6 and -22°F. Additionally, following an ice storm in 1994, many golf course fairways comprised of perennial ryegrass in the mid-Atlantic region were heavily damaged as a result of prolonged ice cover with some golf courses reporting as high as 90% turf loss (Zontek, 2002).

Perennial ryegrass sports fields are susceptible to a number of fungal diseases that can be both destructive and expensive to control if fungicides are applied. Among these diseases includes: stem rust, brown patch, dollar spot, pythium, leaf spot, and gray leaf spot. Gray leaf spot can be particularly devastating as Vermeulen (1999) stated that up to 90% of a golf course fairway comprised of perennial ryegrass may be killed if left unprotected though the use of fungicides. Gray leaf spot develops in perennial ryegrass during periods of warm days with high humidity and prolonged leaf wetness in late summer (mid-August to early October).

Conclusions

Because perennial ryegrass is such a practical and efficient overseeding choice and many varieties display good traffic tolerance, it is not appropriate to dismiss its use on New Jersey sports fields. If considering perennial ryegrass in a seed mixture or as an overseeding species, realize that perennial ryegrass is limited to recolonizing divots slowly by basal tillers. Kentucky bluegrass establishment on high-use sports fields is advantageous due to its rhizomatous growth habit. Turfgrasses with a rhizomatous growth habit (Kentucky bluegrass) are characterized by relatively small divots and a more rapid recuperative potential since regrowth and recovery can occur from rhizomes under the center of the divot as well as from the sides. While divot recovery of Kentucky bluegrass sports fields may be facilitated via fertilization, damage of perennial ryegrass stands must often be accomplished by overseeding.

Perennial ryegrass on New Jersey sports fields are susceptible to prolonged cold temperatures and ice cover. McCarty (2000) found that 50% of a perennial ryegrass stand may be killed when soil temperatures at a depth of approximately 4.0 inches fall to between 23 and 5°F. In contrast, Kentucky bluegrass demonstrates far greater cold tolerance, as similar levels of kill are not achieved until soil temperatures at the same depth fall to between -6 and -22°F. Additionally, following an ice storm in 1994, many golf course fairways comprised of perennial ryegrass in the mid-Atlantic region were heavily damaged as a result of prolonged ice cover with some golf courses reporting as high as 90% turf loss (Zontek, 2002).

Perennial ryegrass sports fields are susceptible to a number of fungal diseases that can be both destructive and expensive to control if fungicides are applied. Among these diseases includes: stem rust, brown patch, dollar spot, pythium, leaf spot, and gray leaf spot. Gray leaf spot can be particularly devastating as Vermeulen (1999) stated that up to 90% of a golf course fairway comprised of perennial ryegrass may be killed if left unprotected though the use of fungicides. Gray leaf spot develops in perennial ryegrass during periods of warm days with high humidity and prolonged leaf wetness in late summer (mid-August to early October).

Conclusions

Because perennial ryegrass is such a practical and efficient overseeding choice and many varieties display good traffic tolerance, it is not appropriate to dismiss its use on New Jersey sports fields. If considering perennial ryegrass in a seed mixture or as an overseeding species, realize that perennial ryegrass is limited to recolonizing divots slowly by basal tillers. Kentucky bluegrass establishment on high-use sports fields is advantageous due to its rhizomatous growth habit. Turfgrasses with a rhizomatous growth habit (Kentucky bluegrass) are characterized by relatively small divots and a more rapid recuperative potential since regrowth and recovery can occur from rhizomes under the center of the divot as well as from the sides. While divot recovery of Kentucky bluegrass sports fields may be facilitated via fertilization, damage of perennial ryegrass stands must often be accomplished by overseeding.

Perennial ryegrass on New Jersey sports fields are susceptible to prolonged cold temperatures and ice cover. McCarty (2000) found that 50% of a perennial ryegrass stand may be killed when soil temperatures at a depth of approximately 4.0 inches fall to between 23 and 5°F. In contrast, Kentucky bluegrass demonstrates far greater cold tolerance, as similar levels of kill are not achieved until soil temperatures at the same depth fall to between -6 and -22°F. Additionally, following an ice storm in 1994, many golf course fairways comprised of perennial ryegrass in the mid-Atlantic region were heavily damaged as a result of prolonged ice cover with some golf courses reporting as high as 90% turf loss (Zontek, 2002).

Perennial ryegrass sports fields are susceptible to a number of fungal diseases that can be both destructive and expensive to control if fungicides are applied. Among these diseases includes: stem rust, brown patch, dollar spot, pythium, leaf spot, and gray leaf spot. Gray leaf spot can be particularly devastating as Vermeulen (1999) stated that up to 90% of a golf course fairway comprised of perennial ryegrass may be killed if left unprotected though the use of fungicides. Gray leaf spot develops in perennial ryegrass during periods of warm days with high humidity and prolonged leaf wetness in late summer (mid-August to early October).

Conclusions

Because perennial ryegrass is such a practical and efficient overseeding choice and many varieties display good traffic tolerance, it is not appropriate to dismiss its use on New Jersey sports fields. If considering perennial ryegrass in a seed mixture or as an overseeding species, realize that perennial ryegrass is limited to recolonizing divots slowly by basal tillers. Kentucky bluegrass establishment on high-use sports fields is advantageous due to its rhizomatous growth habit. Turfgrasses with a rhizomatous growth habit (Kentucky bluegrass) are characterized by relatively small divots and a more rapid recuperative potential since regrowth and recovery can occur from rhizomes under the center of the divot as well as from the sides. While divot recovery of Kentucky bluegrass sports fields may be facilitated via fertilization, damage of perennial ryegrass stands must often be accomplished by overseeding.

Perennial ryegrass on New Jersey sports fields are susceptible to prolonged cold temperatures and ice cover. McCarty (2000) found that 50% of a perennial ryegrass stand may be killed when soil temperatures at a depth of approximately 4.0 inches fall to between 23 and 5°F. In contrast, Kentucky bluegrass demonstrates far greater cold tolerance, as similar levels of kill are not achieved until soil temperatures at the same depth fall to between -6 and -22°F. Additionally, following an ice storm in 1994, many golf course fairways comprised of perennial ryegrass in the mid-Atlantic region were heavily damaged as a result of prolonged ice cover with some golf courses reporting as high as 90% turf loss (Zontek, 2002).

Perennial ryegrass sports fields are susceptible to a number of fungal diseases that can be both destructive and expensive to control if fungicides are applied. Among these diseases includes: stem rust, brown patch, dollar spot, pythium, leaf spot, and gray leaf spot. Gray leaf spot can be particularly devastating as Vermeulen (1999) stated that up to 90% of a golf course fairway comprised of perennial ryegrass may be killed if left unprotected though the use of fungicides. Gray leaf spot develops in perennial ryegrass during periods of warm days with high humidity and prolonged leaf wetness in late summer (mid-August to early October).

Conclusions

Because perennial ryegrass is such a practical and efficient overseeding choice and many varieties display good traffic tolerance, it is not appropriate to dismiss its use on New Jersey sports fields. If considering perennial ryegrass in a seed mixture or as an overseeding species, realize that perennial ryegrass is limited to recolonizing divots slowly by basal tillers. Kentucky bluegrass establishment on high-use sports fields is advantageous due to its rhizomatous growth habit. Turfgrasses with a rhizomatous growth habit (Kentucky bluegrass) are characterized by relatively small divots and a more rapid recuperative potential since regrowth and recovery can occur from rhizomes under the center of the divot as well as from the sides. While divot recovery of Kentucky bluegrass sports fields may be facilitated via fertilization, damage of perennial ryegrass stands must often be accomplished by overseeding.
Turf Blankets

by Jim Hermann, CSFM

Give your turf a jump-start in the early spring by installing turf blankets. Understanding the principles involved in soil temperature manipulation is a key component in getting the most benefit out of your turf blankets.

The basic concept behind utilization of turf blankets is to increase average soil temperatures beneath the blanket at an accelerated rate as compared to uncovered turf areas. This increase in soil temperature stimulates an earlier growth response in the turf.

Soil surface temperatures respond closely to what could be called the temperature budget. If more heat is gained in the soil than is lost there is a net rise in temperature. If more heat is lost from the soil than is gained there is a net loss in temperature. There are two major recurring heat cycles, which have the greatest affect on soil surface temperature, diurnal and annual. We are all very familiar with both of these cycles although many of us have not been formally introduced.

The diurnal cycle or period consists of the daytime warming and nighttime cooling of the soil throughout the year. This warming and cooling of the soil is stimulated by variations in radiation from the sun. The sun comes up during the day and it warms up. The sun goes down at night and it cools down.

The annual cycle or period is the result of seasonal changes in temperature due to seasonal variations in the sun’s radiation. Basically, in our area there is an increase in radiation from the sun, which starts after December 22nd, “winter solstice”. This is the shortest day of the year. This is the day with the least amount of daylight for the entire year. After winter solstice, the sun’s radiation increases and soon begins to provide enough energy to start to warm the soil surface. Although these increases start in December, the affects are not really noticeable until mid to late February. This is the time of year when daytime temperatures typically rise above freezing and nighttime temperatures fall below freezing. Turf blankets should be installed by this period in time to achieve the greatest benefit both in the root development and lateral growth of the turf. This warming trend continues for the next six months or so until the sun’s radiation begins to decrease. The reverse then holds for the half-year summer to winter solstice. What does all this have to do with the use of turf blankets?

The function of a turf blanket is to allow for the increase in soil temperature due to the increase in the sun’s radiation. This is accomplished while minimizing temperature losses caused by lower nighttime temperatures. In effect you are maximizing the positive temperature gains provided by the annual or yearly cycle and minimizing the temperature losses caused by the diurnal or daily cycle. The soil temperature increases and maintains relative warmth. This principle allows for earlier warming of the soil and therefore earlier turf growth response. Based on results I have witnessed, you can gain two to three weeks of early turf development by using turf blankets in this manner.

I have a few warnings or considerations when utilizing turf blankets for early spring turf stimulation:

1. When covering the turf in this manner you increase the risk of snow mold similar to the increased risk involved with prolonged snow cover. Turf maintained at a higher level of fertility such as that receiving late season fertilization is more susceptible to snow mold. A preventive fungicide application may be warranted. Previous problems with snow mold should be considered when making this decision. If you have never had snow mold, a preventive fungicide application may not be justified. Blankets should be removed periodically to inspect for snow mold.

2. Caution should be exercised when removing turf blankets in the spring. Blankets should be removed during the day to accomplish mowing and replaced at night until the threat of frost is passed, in an attempt to acclimate the turf to normal seasonal temperatures and minimize turf damage. Late frost on sensitive turf can burn the leaf tissue and counteract early gains in turf development. Although a minor setback, turf generally recovers from frost burn with little or no lasting ill effects.

3. Be prepared to initiate your mowing program earlier than usual and as always follow the 1/3 rule, never to remove more than 1/3 the leaf at any one time.

4. Last but not least, turf blankets are nothing more than a tool. When used in conjunction with an effective turf management program, turf blankets can enhance benefits realized from that program. That program should include but not be limited to:
 a. Periodic soil testing
 b. Effective nutrient management thru a site specific fertility program based on soil test results
 c. Aeration a minimum of two to three times a year
 d. Proper mowing management

References
Soil Sampling
a critical step in the soil testing process

*by Clare Liptak, RCE Soil Testing Lab

Soil testing is an investment yielding information worth much more than the initial cost and time required to collect a representative sample. The testing can be a routine process of agronomic management or part of an effort to resolve observed problems with field performance. In either case, the collection of a proper sample is a crucial step in the soil testing process. Improper sampling, not the analytical procedures of a laboratory or the calibration of turfgrass field equipment, may be the greatest source of error in nutrient management.

It’s important to collect samples according to the recommendations of the laboratory that will be doing the analysis. The Rutgers Soil Testing Laboratory recommends that all samples submitted for nutrient testing should be composite samples, meaning that they are produced by gathering and mixing smaller soil subsamples from different areas that have important characteristics in common. This is the only way to average areas where the spreader distributing the fertilizer may have applied too much or too little. Composite sampling also minimizes other subtle but significant differences in soil produced by grading when the field was built or irregularities in irrigation patterns.

When the soil is dry enough to be crumbly in your hand, collect the subsamples from random locations of the test area using a trowel, spade or soil probe. Each subsample will be a thin slice of soil taken from below the thatch layer to a depth of six or seven inches. Each subsample, free of blades of grass and bits of thatch, should be placed in a clean, plastic bucket. Ten to fifteen subsamples from the area, broken up and mixed together, will provide plenty of soil from which to collect 2 cups for sending to the lab for testing.

Sometimes clients have difficulty deciding if one composite soil sample is sufficient for a given field. Usually an entire field may be represented by one composite sample if the type of turf and the history of lime and fertilizer applications are the same throughout the field. But there are other important differences to consider as well. If a field has a section where the soil is a different color, or texture, or if that area drains differently, that also is a reason to test the area separately. Finally, another reason to test an area separately is to determine what soil characteristics, (including drainage capacity, cation exchange capacity, organic matter content, and relative amounts of sand, silt and clay, as well as nutrient levels) might account for problems that repeatedly occur in one area while the greater portion of a field is free of these problems.

Testing every two or three years is usually frequent enough to keep the pH and nutrient levels of an athletic field within the optimum ranges. A significant departure from the optimum ranges can account for loss of color, vigor, and density in a stand of turfgrass.
Also, improper pH or nutrient levels can make a turfgrass stand more susceptible to attack by fungus diseases such as brown patch, leaf spot or dollar spot.

However, many other factors affect turf appearance and growth besides nutrient levels. Salt accumulation, insects and diseases, poor drainage, compaction, shallow rooting depth, drought and weed competition all have significant impacts on field performance. For example, poorly drained or compacted soils contain little oxygen, which reduces potassium uptake even when the level of the nutrient is sufficient in the soil. Drainage or compaction problems will not be evident in the samples sent to the lab but should be considered as possible sources of problems when observed in the field.

Many people ask why the Rutgers Soil Testing Laboratory doesn’t routinely test for nitrogen. Nitrogen exists in the soil in different, rapidly interchangeable chemical states, and the nitrate form is easily leached from soil. These facts limit the value of nitrogen analysis because the levels of various forms of nitrogen in the field may have changed by the time the results are available.

Turf managers should keep the plant disease triangle in mind. One corner of the triangle represents the disease organism, which is always present. Turf managers can not do anything about that. Another corner of the triangle is the environment. While the turf manager can not affect the weather, he or she can certainly affect the soil environment, especially when new fields are being built. Managers can adversely affect the soil environment through improper turf maintenance practices. The remaining corner of the disease triangle is the host plant. Soil testing is an inexpensive and relatively simple way to maintain the health, color and density of the host plant - in this case, the appropriate turfgrass for a particular field. This is the corner of the disease triangle in which athletic field managers can have immediate and significant impact.

For more information on soil sampling and soil testing see the RCE – Soil Testing website www.rce.rutgers.edu/soiltestinglab/
Getting Equipment Ready to Go

by Gilbert Pena, Marketing Manager, Commercial Mowing, John Deere Turf Care & Steve and Suz Trusty, Trusty & Associates

While many of us will put our mowing equipment to bed for the winter, others will continue in the snow removal season. As you finish storing mowing equipment, go ahead and get snow removal equipment ready to go for that first surprise storm.

A pre-season service for two-cycle machines should start with fresh fuel and oil. To prevent the engine from running hot, make sure to have a proper fuel/oil ratio mix. For models that do not require a fuel/oil mixture, add fresh fuel. Each model’s operator’s manual will have the exact measurements.

Check the belts on the drive mechanism to ensure that they still move freely and haven’t hardened. If the belts have hardened, they’re more likely to break during a job, leaving your customer with downtime.

Do not forget to lubricate, adjust and inspect all moving parts and safety devices before the first use of the season. Safety shields and guards should be in good shape and fastened in place.

To minimize chute clogging, try spraying slip-plate lubricant onto the surface of the chute.

For walk-behind snow removal equipment, make sure that the operator presence system is engaged.

Do not forget about safety. Take the opportunity to remind all operators of important safety precautions. Shop safety posters, for example, are an ideal way to inform your employees and customers about safe operating habits. Those practices include blowing snow away from people, parked cars and buildings; never putting hands in the discharge chute to unclog snow or debris and wearing protective eyewear and clothing. Again, since all models have specific safety features, refer to your operator’s manuals for important seasonal safety tips.

Tackling the Equipment

Once the turf preparations for winter have been completed, it’s time to concentrate on preparing the equipment. At the end of the mowing season, one of the worst things you can do to a mower of handheld product is to simply “put it up” until the next season. Proper store affects its useful life and reliability.

First and foremost, prepare the fuel system for storage. If left over long periods of time, fuel can deteriorate and turn into a gel or paste-like substance that will clog the fuel lines and varnish the carburetor. You can either run the fuel completely out of the engine, or rotate the fuel shutoff valve and run until the engine dies to empty the carburetor so it does not gum up. If you have a full line of Sports Turf Products

- Infield Clay Mixes
- Turface soil conditioners
- Grass Seed
- Fertilizers
- Pesticides
- Top Dressing
- Goose Control
- Turf Blankets
- Marking Paints

Keep Your Ball field’s safe and looking great!! TERRE has the products from grass seed and fertilizer to infield clays and Sports Field Conditioners like Turface products.

Call For a Catalog or Inquiries
Tel: 973-473-3393
Fax: 973-473-4402
206 Delawanna Ave Clifton NJ 07014

Sports Field Managers Association of New Jersey
have a full tank of gas left and do not want to burn if unnecessarily, you can add a fuel stabilizer and run the engine for about 10 minutes to ensure that the stabilizer has been mixed with the fuel.

Change the oil and the oil filter (if equipped). True, the fresh oil will just sit over the off-season, but it will provide you and opportunity to examine the oil system for any contaminants. If you see anything unusual, you can have the problem repaired during normal downtime and prevent a slow start to the next mowing season. When changing the oil, if you notice milky oil or a shiny sludge in the filter, it is a sign of coolant leakage. If the oil smells burned, it is a sign of overheating. Put a dab of oil on a paper towel: A lighter stain “halo” around the darker stain indicates fuel in the oil. You may also be able to smell the fuel in the filter.

Servicing the air filter system at the end of the mowing season is especially important, if you plan to also use your mowing equipment for fall-cleanup activities such as mulching leaves. Using a mulching mower or a vacuum system makes leaf cleanup quick, but it’s also a very tough environment for

continued on page 12

An example of an accomplishment: It Can Be Done.

As a Northern Michigan University student in the late 1980’s, Heather Nabozny tuned in Detroit Tigers radio broadcasts to remind her of home, family and the excitement shared during the team’s championship 1984 season. While that World Series run may seem particularly distant for fans of a franchise that lost 119 games in 2003, the 33-year old Milford, Mich., native has never felt closer to the franchise. Armed with a turf-management degree from Michigan State and a track record of success as head groundskeeper for the West Michigan Whitecaps, Nabozny became the first (and remains the only) female head groundskeeper in Major League Baseball history when the Tigers hired her in 2000. Paul Steinbach asked Nabozny how she groomed her own path to the bigs. She is also a Certified Sports Field Manager.

Q: What led you to consider this profession?
A: At NMU, I thought I wanted to do social work. Then in the summertime, I worked for my father’s lawn-care company and he would send his employees to turf-management seminars. Michigan State was at the one of them talking about its turf-management program, and the light bulb just went on: “Wow, you can go to school for that?”

Q: What about turf management appealed to you?
A: I am not much of an office person. I do what I have to do here to keep everything organized, but I love to be outdoors. And the reason I steered toward athletic fields is I love to be athletic myself. I run on the warning track during batting practice when the team is in town.

Q: Why has groundskeeping traditionally been a male-only field?
A: Athletic fields have just come into the forefront as an area of study, and until I took this position there really weren’t any women doing athletic turf. I don’t think young women really even know anything about managing turf.

Q: Do you avail yourself to women wishing to learn?
A: There have been women who have called at his suggestion of men: “Hey, call Heather up. You’ll probably feel comfortable talking to her about how to break into the business and how to move up.” To be completely honest, being in the minority gives us a better chance of being remembered. But it’s also very important that we do an excellent job. If you’re in the spotlight, there’s extra pressure.

Q: How did you react to the launch of the Unofficial International Heather Nabozny Fan Club?
A: It kind of cheeped me out at first. They’d say, “Yeah, we’re in your fan club. Can we get our picture taken with you?” Being kind of a private person, it’s a little odd to me, but it’s also and honor.

Q: What kind of player feedback have you gotten for your efforts?
A: The younger players who come up are real complimentary, and the others are just kind of out here to do their job. To me, if there’s no news, that’s good news.

Person to Person
engines. The powdery residue, dust and debris can clog the air filter and prevent the machine from working at optimum power. When checking the air filter at such frequent intervals, special care needs to be taken not to break the seal and allow dirt and debris into the engine. To reduce the risk of additional contaminants, watch the air restriction indicator and wipe the area thoroughly before opening the system. Once the system is open, take advantage of the opportunity to inspect for any possible problems. Check intake hoses and the fill canister. Look for cracks, missing washers, seals and loose connections.

It's also recommended to service the spark plug. Remove the spark plug and put 1 ounce of oil in each cylinder. The oil creates a barrier to protect the cylinder wall and makes for easier starting next mowing season. Reinstall the plug, but leave the plug wire off. Then crank or turn the engine over five to six times to ensure that the oil coats the cylinder walls evenly.

Additionally, make sure to remove the battery, if applicable. Clean and charge as necessary, then store in a cool, dry place where it will not freeze.

Removing the battery reduces sources of unintentional engine ignition and will help prolong battery life. If you have a hydrostatic unit, relieve the hydraulic pressure to prevent leakage.

Before putting your equipment away for the season, take time to do a thorough inspection of all safety shields, belts, hoses and hardware to make sure all are present and in good repair. Lubricate all cables and linkages to prevent seizing over the cold season. You can wait to sharpen or replace blades on mowing equipment until the next mowing season. A freshly sharpened blade can rust, requiring yet another sharpening at the beginning of the next season. Clean debris from around the engine cooling fins and then wash. Paint any scratched or roughed up areas to prevent rust. Coating exposed areas with a protective spray such as Fluid Film is also recommended. Then store the equipment in a dry place, or cover the unit(s) to protect from the weather.

Not only can taking the time to store your outdoor power equipment properly add longevity to your equipment fleet, but it can also help identify potential problems that can be corrected in the off-season.
Storr Tractor Company
Supplier to the New York Yankees

A Proud Distributor of Toro Products

3191 Route 22 • Somerville, New Jersey 08876
Phone: 908-722-9830 www.storrtractor.com

Storr Tractor Company
Serving the Turf Industry
Since 1945
First Annual District #2 Infield Symposium:

by Jim Hermann, CSFM

Our first annual infield symposium was held November 6th at William Warren Park in Woodbridge, NJ. The Sports Field Managers Association of New Jersey gratefully acknowledges the generosity of the Middlesex County Parks Department for providing this location. Storr Tractor Company of Somerville, New Jersey sponsored the event. During and after lunch we had the opportunity to inspect infield-grooming equipment provided by both Storr Tractor Company and the Middlesex County Parks System. Approximately 30 sports field managers attended the symposium.

Managers traveled from as far as Delaware to participate. Although the weather didn’t permit access to the playing fields, the indoor facilities allowed for a slide show presentation provided by Fred Castenschild. The presentation was a step-by-step documentation of the spring preparation for a skinned infield at Delaware Valley Regional High School. After the presentation, we discussed the priorities in infield maintenance. Jim Hermann, CSFM, monitored the discussion. Many in attendance contributed a lot of good information and all who attended viewed the program a success.

Field Tip

Shoot first and ask questions later. When grading or renovating your infield, use a transit level to shoot elevations of turf perimeters, base paths, base inserts, home plate, pitchers mound etc. Document these elevations as a reference any time drainage or other problems arise. Water typically requires a 1/8" slope (1/8" per foot) to flow freely off an infield. Try to maintain a minimum of 1% slope on all skinned areas.

Note: Whenever shooting elevations, always shoot a benchmark. This is the elevation of a stationary object in the close vicinity of your infield such as a catch basin, head wall etc. This benchmark can be used as a reference to correlate changes in field elevations caused by wear, erosion, lip buildup etc. If your benchmark reads 4' this time and 5' the next time you are taking shots, all you need to do is add 1 foot to all your documented elevations and they will be relative to your new shots.

NATIONAL SEED

PROFESSIONAL TURF PRODUCTS
Specializing in Quality Grass Seed To Meet All Your Turf Performance Standards
Call For a Catalog 800-828-5856
Carrying a full line of quality mixtures especially formulated for:

SPORTS & ATHLETIC FIELDS
LOW MAINTENANCE AREAS
GENERAL GROUNDS
GOLF, LAWN, RECLAMATION

Technical Agronomic Support and Custom Blending Available

SFMANJ

Shirts For Sale
If you are a member of Sports Field Managers Association of New Jersey, you may be interested in owning a collared knit shirt with our logo. To purchase one of these fine shirts just send a check for $25.00 to SFMANJ
Editors note from Wisconsin Sports Turf Managers Association: I ran across an appropriate article, for this time of year, on the Ohio State University’s sports turf website-http://bcs.osu.edu/sportsturf. The article is being reprinted with permission from Pam Sherratt, website editor and sports turf extension specialist, OSU.

The weather the last few weeks has been like a yo-yo. For example, this past Sunday (November 23rd), temperatures were in the 60’s and people were wearing shorts. Conversely, on Monday (November 24th), the high temperature was in the 30’s with snow showers. The up and down weather pattern can cause problems if people are continuing to play on green or athletic fields. At the moment, conditions have been OK to have play on golf greens and athletic fields if they are well drained. This time of the year and through winter, questions always arise about when to allow play, and when to use temporary greens or limit use of fields.

I have ranked the various winter situations from least to worst damage. I would say that any play on frozen turf (leaf blades, plants) should be avoided. Immediate damage will occur to the plant similar to playing on a frosted turf. A problem with winter play is that in areas of concentrated traffic, wear is a potential problem, with recovery slow due to lack of growth. If possible, use temporary greens and prevent play on athletic fields to protect them from wear injury, and compaction.

Possible Scenarios: (Ranked least to worst damage)

1) Play on dry unfrozen soil – Although wear injury is always a potential problem, this situation will result in the least damage.

2) Play on frozen soil – Most likely will result in wear injury to the turf but little soil compaction.

3) Play on wet, unfrozen soil – The potential damage under this scenario is soil compaction, but less wear injury. At the moment, this has been the most common situation.

4) Play on a thawing soil (unfrozen-wet on the surface), that is frozen below – This is the worst situation to have play, because both wear injury and soil compaction can occur.

Note from this editor: Number 4 only reaffirms my belief that soccer and lacrosse should not play on the athletic fields until after April 15. Let's all get together, from central Jersey to the north, to put a ban on playing on athletic fields until April 15 (of course this can only stand for grade schools and municipalities). My town and surrounding towns have.

2004 Proud Sponsor Directory

WILFRED MAC DONALD, INC

Turf Equipment Specialists
Bernie White – Sales Representative
19 Central Blvd., S. Hackensack, NJ 07606
(888) 831-0891 ext 114, Fax (201) 931-1730
sales@wilfredmacdonald.com

SPORTS TURF SYSTEMS by SAUL BROS.

Drill & Fill, Deep Tine Aeration
Jerry Saul & Danny Saul
P.O Box 299
Livingston, NJ 07039
Ph. (973) 983-1141 Fax (973) 983-8845

MENDHAM GARDEN CENTER

Turf Products
Mendham – (908) 543-4178
Chester – (908) 879-5020
Annandale – (908) 730-9008

STORR TRACTOR COMPANY

Turf, Irrigation and Ballfield Equipment
3191 Highway 22
Somerville, NJ 08876
(908) 722-9830, Fax (908) 722-9847

US ATHLETIC FIELDS

Sports Field Maintenance, Renovation & Construction
John McKnight and Jim Gilligan
P.O Box 38 – Skillman, New Jersey 08558
(609) 466-2846, fax (609) 466-1808
john@usathleticfields.com dslb@ptdprolog.net

GSI CONSULTANTS – TURFCON DIV.

Dr. Henry Indyk, Sports Field Consultant
Ph. (732) 247-8026

Put your ad here: To become a Proud Sponsor

Call 908-730-7770.

$150 for one year

January/February 2004
Or Current Occupant

Bradley Park
Rutgers University, Dept. of Plant
Bio/Pathology
59 Dudley Road
New Brunswick, NJ 08901

SportsTurf
MANAGERS ASSOCIATION
Experts on the Field, Partners in the Game.

THE GREATEST TEAM ON TURF!

Wilfred MacDonald is your team when it comes to athletic field equipment. We offer a wide array of equipment from striping reel and rotary mowers to athletic field conditioners, line strippers, groomers, top dressers, aerifiers and more! Our comprehensive line of Textron Turf, Smithco, Turfco, National and Vertidrain gives you the largest variety of turf equipment to choose from! Contact your sales representative today for a demonstration!

Wilfred MacDonald, Inc
19 Central Boulevard
South Hackensack, NJ 07606
888-831-0891
www.wilfredmacdonald.com

Sales Representatives:
Bernie White
Mike Clifford
Tim Kerwin
Mike Pelrine