Turf Specialties, Inc.

Thatch Master Verti-Cut

- 4, 5, & 6 Feet Wide
- Carbide Tipped Blades
- Heavy Duty Construction
- Low Maintenance
- 2 Year Warranty

IMPROVING TURF FOR 15 YEARS

For Additional Information or Product CD
Phone: 1-800-201-1031
Email: ThatchMaster@turfspecialties.Net
a geo-textile fabric to separate the base from the sub-base, and then construct the base. The base shall consist of proper sized stones and fine grading to achieve desired drainage. Stone selection is crucial to the project. The stones comprise the base. They are important for the drainage of the field and the finished base product. The stones used shall have gone through a sieve analysis to ensure proper drainage of the base. "Shock pads" are sometimes used. This is a product that lies between the base and the actual carpet to absorb shock.

Once the base is complete, the synthetic turf company will come in and complete the project by installing the chosen synthetic surface on the field. The carpet is rolled out and seamed together. This is usually done by using adhesives or sewing. Once the carpet is laid, the infill is added. The infill is usually an all rubber product or a rubber/silica sand mixture.

Play begins. In summary, the steps include:

1. Determine needs
2. Choose site and make certain site can support desired field
3. Choose synthetic turf company
4. CHOOSE QUALIFIED BASE CONTRACTOR
 a. Build Field
 b. Play
 c. Maintain

As stated earlier, the perceived and often real need for fewer management inputs is one of the reasons owners cite to select a synthetic turf field. Although less maintenance is generally required for synthetic fields compared to natural turf grass fields, there are still maintenance requirements that must be executed to extend the life of a finished synthetic turf field. These maintenance requirements include (but are not limited to): removal of debris, brushing and dragging to re-distribute infill product, and spot cleaning to take care of biological spills.

With all things considered, the choice basically lies with the owner. What are your needs?

Does a synthetic turf application work for you?

Reference
American Sports Builders Association
C. Leroy Lawson, Jr. Territory Sales Manager,
Sports Construction Management Inc.

Currently we have 288 new & renewed members. In November 2006, SFMANJ mailed invoices for 2007 membership dues to all current members. If you did not receive an invoice, please contact us at 908-730-7770 or download the 2007 membership form available at www.sfmanj.org. Remember to mail your renewal/payment direct to SFMANJ, P.O. Box 370, Annandale, NJ 08801.

Albanian, Ralph
Allan, Tom
Almendinger, Bill
Autorino, Robert
Barone, Victor E.
Berardi, Anthony
Bertone, John
Bona, Vincent
Caputo, Virgil
Coombs, John
Crosett, Jr., Norman
Curry, Robert
DellPiere, Darren
Di, Kenneth
Dougherty, Pat
Fik, Thomas
Fulton, Jay
Guerro, Ron
Hedges, Steve
Jachoe, Frank
Middlesex County, Dept. of Parks
Monroe Township
Piscataway Ym. Board of Ed.
Paramus Board of Education
Weehawken Township
College of Staten Island
College of Staten Island
College of Staten Island
Monroe Township
Coombs Farms, LLC
Washington Township
Covermaster Inc.
College of Staten Island
Lakewood Township DPW
National Seed
B2A Consultants,
A Carroll Engineering Co.
Monroe Township
Nature’s Architect, LLC
Manalapan Township
Lesco, Inc.

SFMANJ Annual Membership Registration Form
*receive update information by email

Name: ____________________________
Title: ____________________________
Employer: _________________________
Address: __________________________
City: _____________________________
State: _______ Zip: ___________
Phone: ___________________________
Fax: _____________________________
E-mail: ___________________________
Signature: ________________________

Individual: $50
Associate: $50
Organization/Institution: $50
Additional member from facility: $30
Commercial/Contractor/Supplier: $105
Additional member from company: $35
Student: $15

Send with Check or voucher to:
SFMANJ
P.O. Box 370 • Annandale, NJ 08801

Meeting Needs with Synthetic Turf

(continued from page 17)

18 Sports Field Managers Association of New Jersey

May/June 2007
Infield Soils and Topdressings Part 2

Paul Zwaska

Editor’s Note: The following article is the second in a two part series authored by Paul Zwaska, Beacon Athletics. This article was written in 1999 when the author was Head Groundskeeper, Baltimore Orioles.

Infield Topdressings

In general, there are four types of topdressings on the market today. Calcined clay is probably the most widely known.

Calcined Clays: Quality calcined clays are usually made from the montmorillonite family of clays. They are fired to about 1200 degrees, a point where the clay particles become stable. Stable particles will not become soft or melt into a slimy clay when wet. Instead, they maintain their original shape and hardness. The firing process evaporates the moisture in the micro pores of the clay particles, making them extremely absorbent. Particles will release absorbed moisture, but at a slower rate. Calcined clays work exceptionally well as a topdressing for high-sand infield mixes. The firing process gives the clay particles a light bulk density. This prevents too much clay from sinking into the skin. It also helps hold moisture at the surface. Normally, large pore spaces in high-sand base mixes allow gravity to pull moisture out.

Calcined clay also works on normal infield mixes, but at times it can hamper field preparations after a rain. Particles that are on the field when rain comes absorb the water to their field capacity. When you’re trying to dry out the skin, the particles continue to release moisture. You have to add more calcined clay to the field to dry it up, and suddenly you have too much topdressing on the skin.

Vitrified Clay: Vitrified clay topdressing is made from the montmorillonite and illite clay families. These clays are fired to 2000 degrees, causing the particles to expand. The process creates macropores and reduces the amount of micropores. Thus, the vitrified clays absorb much less water than the coarse grades.

Vitrified clay topdressings are not to be used on infield base mixes with high sand content. Vitrified clays have a heavier bulk density than calcined clays, and the topdressing will sink fairly quickly as it is agitated by play and regular maintenance.

However, vitrified clays work tremendously well on normal or high-clay/silt infield base mixes. They can be used straight, but they work even better when mixed with a calcined clay in approximately a 60:40 or 70:30 vitrified to calcined ratio.

Meeting Needs with Synthetic Turf

(continued from page 14)

Which turf do we need for our field? There are several synthetic companies in the industry. The owner should meet with various different companies and discuss their needs. The owner should also visit previous projects done by the companies represented to help with this decision. The owner then must pick a particular synthetic company to surface their field. Once a decision to build a synthetic field is made, the actual construction process can begin.

Base construction is the most integral part of the process. The base should exceed the life of the turf. Unfortunately, several synthetic fields have base failures due to settling of the sub base and erosion of improperly designed and constructed bases. How does one avoid such a pitfall? Make certain all the legs work is done prior to beginning the project. Do all of the necessary geological testing and make certain the site is suitable to support the desired field.

What else can be done to ensure a quality finished product?

(continued on page 18)

HIRE A QUALIFIED BASE CONTRACTOR!

Some things that need to be considered when choosing a qualified base contractor are as follows: How many years have the base contractor been in business? How many synthetic bases has the contractor constructed? Make the contractor provide an acceptable reference list and check as many of these references as possible. It is highly recommended that owners visit previous base install projects of their base contractor in addition to or in conjunction with the synthetic turf projects mentioned above.

Once you are certain you have a qualified base contractor, the process can proceed. Base construction basically consists of all steps necessary to prepare the field for the synthetic company to come in and install their product. The steps through reasonably simple are very important to the finished product. The finished product will mirror the base.

Once a site has been chosen and the geological testing of the site has been completed and approved, the base contractor can come in and construct the base for the synthetic surface. The base contractor will come in and strip the site. The base contractor will then cut and fill where necessary to level the site. The base contractor will then laser grade the site, install appropriate drainage, lay down the sub base and erosion of improperly designed and constructed bases. How does one avoid such a pitfall? Make certain all the legs work is done prior to beginning the project. Do all of the necessary geological testing and make certain the site is suitable to support the desired field.

What else can be done to ensure a quality finished product?

(continued on page 18)

HIRE A QUALIFIED BASE CONTRACTOR!

Some things that need to be considered when choosing a qualified base contractor are as follows: How many years have the base contractor been in business? How many synthetic bases has the contractor constructed? Make the contractor provide an acceptable reference list and check as many of these references as possible. It is highly recommended that owners visit previous base install projects of their base contractor in addition to or in conjunction with the synthetic turf projects mentioned above.

Once you are certain you have a qualified base contractor, the process can proceed. Base construction basically consists of all steps necessary to prepare the field for the synthetic company to come in and install their product. The steps through reasonably simple are very important to the finished product. The finished product will mirror the base.

Once a site has been chosen and the geological testing of the site has been completed and approved, the base contractor can come in and construct the base for the synthetic surface. The base contractor will come in and strip the site. The base contractor will then cut and fill where necessary to level the site. The base contractor will then laser grade the site, install appropriate drainage, lay down the base.

Base soilds are the most integral part of the process. The base should exceed the life of the turf. Unfortunately, several synthetic fields have base failures due to settling of the sub base and erosion of improperly designed and constructed bases. How does one avoid such a pitfall? Make certain all the legs work is done prior to beginning the project. Do all of the necessary geological testing and make certain the site is suitable to support the desired field.

What else can be done to ensure a quality finished product?

(continued on page 18)

HIRE A QUALIFIED BASE CONTRACTOR!

Some things that need to be considered when choosing a qualified base contractor are as follows: How many years have the base contractor been in business? How many synthetic bases has the contractor constructed? Make the contractor provide an acceptable reference list and check as many of these references as possible. It is highly recommended that owners visit previous base install projects of their base contractor in addition to or in conjunction with the synthetic turf projects mentioned above.

Once you are certain you have a qualified base contractor, the process can proceed. Base construction basically consists of all steps necessary to prepare the field for the synthetic company to come in and install their product. The steps through reasonably simple are very important to the finished product. The finished product will mirror the base.

Once a site has been chosen and the geological testing of the site has been completed and approved, the base contractor can come in and construct the base for the synthetic surface. The base contractor will come in and strip the site. The base contractor will then cut and fill where necessary to level the site. The base contractor will then laser grade the site, install appropriate drainage, lay down the base.
Infield Soils and Topdressings - Part 2

(continued from page 4)

Vitrified clay in these base mixes creates a buffer zone between players’ cleats and the infield base mix. This allows you to wait a little longer before you cover the field for a light to moderate rain. Vitrified clay sheds water as it gets wet. It allows the water to roll through to the base mix until it has absorbed all that it can handle. Any excess water will run off if the grade on your infield is correct. A small amount of calcined clay in your mix will help increase your water holding capacity a little.

Unlike calcined clay, vitrified clay won’t absorb water to field capacity and extend your drying time by releasing the moisture.

Because of its lack of moisture-absorbing micropores, vitrified clay products will not work as a drying agent during a game. Also, it’s not highly recommended as a soil amendment for tilling into your base mix.

Crushed Aggregates: The third type of topdressing material, crushed aggregates, combines various crushed stone products with crushed brick. These materials absorb minimal amounts of water, and they have a heavy bulk density.

Again, because of the bulk density, crushed aggregates should not be used on any high-sand base mixes due to rapid migration down into the mix. They can be used on normal infield mixes, and even high-clay/silt mixes, but only as a topdressing.

These topdressings perform better when enhanced with some calcined clay. Don’t till these materials into your mix, or you may eventually wind up with something similar to concrete.

Diatomaceous Earth: The fourth and final topdressing material is diatomaceous earth. It’s made of sedimentary rock composed of fossilized skeletal remains of diatoms (microscopic, single-celled plants). The material is very high in silica (between 86% and 94%). During processing, it is crushed, dried, and calcined to remove any organic contaminants. It becomes a very porous product that can absorb large amounts of moisture.

Diatomaceous earth works well for drying a field after rains, but it’s very expensive and creates several major problems. First, it has a very light bulk density. This allows it to easily blow off your field in the wind, causing density.

(continued on page 6)
Infield Soils and Topdressings - Part 2

(continued from page 5)

major problems with lips where your skin meets the turf edge. Also, when incorporated into the soil, diatomaceous earth tends to float back to the surface in time. It breaks down very rapidly from friction wear (dragging the infield). And finally, due to the high content of silica, it has a funny color and has shown some problems with glare on sunny days. For Oriole Park at Camden Yards, we currently use a mixture of 80% vitrified clay and 20% calcined clay as a topdressing for our infield. We maintain approximately a 1/4-inch layer of topdressing on our skin areas.

Maintenance issues

Base Mix: Here, the key is moisture, moisture, moisture. Moisture is what will give your base mix the corky feel that the players desire. Try to keep your infield skin as moist as possible. Soak the skin deep in the evening after the last game has been played. It then has all night to perk as deep as it can into your mix without evaporation stealing too much away from it.

During the daytime, add water as time and weather dictate. I can’t stress enough how important it is to keep your field moist as long as possible. When it dries out, it takes a long time to reestablish a good moist base again.

If your base mix is getting too tight or hard, you might decide that you want to open it up to introduce some pore space into it. You want to till it; I prefer to save rototilling for when I’m adding an amendment to the soil mix and I want to mix it really well. Otherwise, I think a rototiller adds too much air to the base mix at one time. You have to spend too much time with a roller trying to firm the base mix back up.

I like to use a greens aerator to open up my infield mix. It increases pore space while maintaining most of the integrity (firmness) of the base mix. Unless you want to use it to amend the base mix, scrape off your infield topdressing or pull it to the side before you start.

You should re-level your infield at least once a year, and twice if it receives year-round play. At Oriole Park, we level our base mix three to four times per season. Frequency should be based on how mobile a base mix you have, the level of activity the field receives, and your manpower and time availability.

Re-level your skin periodically to prevent drainage problems caused by high and low spots.

Re-leveling allows you to cut down any high spots and fill any low areas. These areas can develop for two reasons: high concentrations of play (around bases and players positions), and dragging/grooming patterns you use on the field.

We check our grade by running a tight string line from the turf edge at the front of the infield to the turf edge at the back of the infield. It’s important to remove any lips at the turf’s edge before you run your string lines, since they can seriously throw off your grade reading. Roll and soak the base once you’ve completed the re-leveling project.

Topdressing: When you initially put your topdressing over your base mix, it should be spiked into the top 1/2 to one inch of the base mix. Once you’ve finished working this in, drag it and water it. Adjust your topdressing application so that you have about 1/4 to 1/2 inch of loose topdressing on top, and maintain that throughout the season by replenishing when necessary.

Spike your infield on a regular basis to smooth out cleat marks and other imperfections. You shouldn’t have to cut deeper than 1/2 inch. Follow-up by dragging and watering the skin. Again, keep that skin moist as much as possible during the season.

Special pure clays are used in the batter’s boxes, catcher’s

(continued on page 8)
In today's ever-changing world where cell phones and computers have become common household items, so too has the business of athletic field building changed to meet the needs of its users. Synthetic turf applications are rapidly growing across the country. Why? Reasons vary, but some of the most common cited include the ability to maximize field usage, the perceived and often real need for fewer maintenance inputs, and the fact that synthetic fields are an alternative to natural grass fields where drought and water restrictions are prevalent; although, the application of irrigation water is often recommended to reduce the surface temperature of synthetic fields.

While synthetic turf is not for everyone, it definitely has a place in the athletic field market. Once a decision to go with synthetic turf is made, there are several items that owners must take into consideration. Owners must assess the situation and determine their needs. What will be the use of the field? What sports will be played on the field? This will determine certain criteria such as dimensions of the field, the type of synthetic turf that best fits the application, and the markings on the field to accommodate the desired sports. Location must also be considered. Where will we build the field? Site choice is very crucial. The site and soils present must be tested. Geological testing must be done on the site to ensure that the site can support the desired field. The site must be size appropriate to accommodate the type of field desired. The soil quality of the site is also an important factor that can affect budgets. The soil makes up the sub base, which is the foundation for the base to follow. The overall field is only as good as the base underneath. Having certified engineers and architects on board is also another great idea. These qualified professionals can help work with both owners and contractors to make certain that the finished product will satisfy the needs at hand.

(continued on page 17)
box and the pitcher’s landing area. Topdressing these areas takes a little more care. This clay is chewed-up by cleats and eventually spread around into the topdressing, so it’s a good idea to sweep off and replace this topdressing on a regular basis.

When that clay mixes with the topdressing, it inhibits the flow of moisture and makes the topdressing very sticky. This makes it hard for deep watering of the mound and home plate skin areas. At Oriole Park, we usually replace ours after every third game.

If you use dry line chalk to mark your foul lines and batter’s boxes, it’s a good idea to scoop up what’s left of the lines after the days games. This will prevent the chalk from becoming part of your skin mix, which can cause discoloration, a change in your soil texture over time, and a decrease in the flow of moisture into the base mix.

Finally, as you head into winter, when the field will be unused for several months, either scrape the topdressing off the field and remove it, or create a catch basin an inch or so deep in the skin wherever the skin meets the turf. This prevents large amounts of topdressing from blowing into the turf edge and creating large lips during the windy months of winter. Here at Oriole Park, we do both as a good preventative maintenance practice for lips.

Remember, these are just guidelines to help you make better decisions when building, renovating, or maintaining an infield skin. There are many variables, especially when it comes to soils.

It’s the responsibility of each groundskeeper to know what makes an ideal skin and to apply that knowledge. Use the resources available to you. You may not have the time or dollars to create the perfect skin infield, but you can’t improve what you have unless you know what you’re working towards.

Paul Zwaska, Beacon Athletics, Middleton, WI. Paul provides technical support and troubleshooting for Beacon Athletics customers.
Kudos to these Vendors!
The following vendors purchased booth space and/or an equipment demonstration at the
rain-soaked SFMANJ Spring Field Day 2007 at South River, NJ

Aer-Core, Inc - www.aercore.com
Binder Machinery Company - www.bindermachinery.com
Fisher & Son, Inc. - www.fisherandson.com
Levitt's LLC - www.levittsllc.com

Northern Nurseries - www.northernnurseries.com
Storr Tractor Co. - www.storrtractor.com
The Terre Co. of NJ, Inc. - www.terrecompany.com
Wilfred MacDonald - www.wilfredmacdonald.com

PLEASE SUPPORT THESE VENDORS

View of the New York City Skyline from Shea Stadium, Flushing, NY

Dr. Henry W. Indyk
Graduate Fellowship in Turfgrass Science

As many of you know, the turfgrass industry lost a dear friend and
colleague in September 2005. We will all miss Henry very much
and would like to ensure that his legacy lives on. The Indyk family
would like to establish a memorial fellowship to support graduate
students interested in applied turfgrass science. This fellowship
will be offered annually in Henry's name. To fund this program,
the family and the Turfgrass Science Program at Rutgers University
are seeking donations. It is our hope that each year a total of
$400,000 will be raised to support this scholarship.

To make a tax-deductible contribution today, please send a
check payable to the Rutgers University Foundation, 7 College
Avenue, New Brunswick, NJ 08901. To be sure to indicate "Indyk Fellowship Turfgrass" in the memo
portion of your check. If you desire, you may provide a donation in the form of a pledge payable
over several years.

For information on other ways to support this fellowship, please
contact Dr. Bruce C. Clarke, Director – Rutgers Center for Turfgrass
Science (732) 932-0440, ext. 3311; or clarke@rscif.rutgers.edu or
John Pincen, Director of Leadership Gifts at the Foundation, by
calling (732) 932-7600 or email: pincen@rscif.rutgers.edu

WELCOME NEW & RENEWED SFMANJ MEMBERS

(continued from page 3)

Leonard, Joseph
Lewin, Art
Manning, Robert
Mayerowitz, Larry
Milewski, Edmund
O'Brien, Kenneth
Olivi, Carl
Pastrick, Bradford
Regis, Stephen
Ryan, Edward
Ryan, Mike
Schmidt, Brandon
Shannon, Michael
Shipman, Kevin W.
Shipman, Kevin W.
Simpkins, Brad
Slikes, CFPM, Brent J.
Sparling, Roland
Torpey, Tom
Walker, Robert
Warden, George
Wilkenski, Tony
Woods, Ralph

College of Staten Island
Turf Specialties, Inc.
Princeton Top Board of Ed
Middlesex County, Dept. of Parks
Rutgers University
Mendham Borough - DPW
Princeton Top Board of Ed
North Brunswick Township
Bouston, Township of
The LandTek Group
The LandTek Group
Paramus Board of Education
Hanson Aggregates BMC
Ringway Regional
School District
Plant Food Company
Mansfield Township
Jefferson Township
Morris Township
South River Borough
Middlesex County, Dept. of Parks
Morris Township
Paramus Board of Education

12 Sports Field Managers Association of New Jersey

Call for a Catalog or Inquiries.

Telephone: (973) 473-3393
Fax: (973) 473-4402

The Terre Co. of N.J., Inc.
276 Shantona Avenue
Clifton, NJ 07014

TERRE has a full line of Sports Turf Products

- Infield Clay Mixes
- Turf Surface Soil Conditioners
- Grass Seed
- Fertilizers
- Pesticides
- Top Dressing
- Rubber Mulch
- Turf Blankets
- Marking Paints

Keep your Ballfields safe and looking great!!
The tour moved to the Shea Stadium outfield where Deacon described his fertility program and soil testing schedule. He core cultivates, removes cores, and tops dresses with sand identical to the sand comprising the rootzone.

Moving into the center field, sunflower seeds, presumably left by Carlos Beltran or an opposing player, were scattered throughout the defensive location routinely played the center fielder.

Deacon discussed the techniques he uses to manage the deepest portion of the ballpark: the warning track. Generally considered by baseball enthusiasts to be a “pitcher’s ballpark,” the stadium extends to 410-ft to straightaway center, 338-ft down the lines, and 371-ft in the “alleys.”

The on-field tour concluded with a visit to the visitors’ bullpen where Deacon elaborated on how he manages the clay used to construct the bullpen mounds.

In 2009, the Mets will be moving into a new ballpark being constructed in what was formerly a parking lot surrounding Shea Stadium. The students walked-up several ramps in left field to a location where they could see the new ballpark being built. Following the Mets’ move-in, Shea will be dismantled.

After the tour, the Rutgers Turfgrass club was treated to the Mets’ game against the Atlanta Braves – tickets were compliments of the New York Mets.

A special thanks goes out to Bill Deacon and the New York Mets for providing the Rutgers Turfgrass Club with a personalized tour of Shea as well as tickets for the ballgame that evening.