LandTek

The Choice Of The Professionals

Athletic Field Construction & Drainage Specialists

Site Evaluations
Design/Build
Laser Grading
Renovations
Specializing in Sand/Slit Drainage Systems

235 County Line Road
Amityville, NY 11701
631-691-2381
Fax: 631-691-2392
Welcome New & Renewed SFMANJ Members

Currently we have 325 members. If you have not seen your name in this newsletter please call (908)730-7770 or email us at hq@sfmanj.org.

Beachy, Scott
Bini, Steven
Cordero, Craig
Downing, Kevin
Miller, Marty
Myers, Dennis
Rickard, Michelle
Sibicky, Timothy
Singer, Karl
Taylor, Joel
Wright, Linda

Millstone Township
Steven Bini Landscaping Inc.
Union Township
St. Joseph’s Church
Kearny DPW, Shade Tree Div.
Ranney School
New Jersey Turfgrass Assoc.
Rutgers University Student
Bayone, City of
Haddon Twp. Board of Ed
Profile Products

2004

SFMANJ Board of Directors

President Eleanora Murfitt-Hermann, CRS
Washington Twp Parks & Recreation
Vice President Jim Hermann CSFM
Total Control Inc
Secretary Fred Castenschiold
Storr Tractor Company
Treasurer Dean Marzocca
Dean’s Lawn & Landscape Co.

Directors

Dr. James Murphy - Rutgers University
Jeff Cramer - Plainsboro Township DPW
Clare Liptak - Rutgers University
Brad Park - Rutgers University
George McCarthy - Spring Irrigation Co., Inc.
Robin VanDervyn, Chatham School District
Don Savard, Salesianum School
Advisor Dr. Henry Indyk
TirrCon GSI Consultants, Inc.

Mission Statement
Committed to enhancing the professionalism of athletic field managers in New Jersey by improving the safety, playability and appearance of athletic fields at all levels through seminars, field days, publications and networking with those in the sports turf industry.

Contact us at:
P.O. Box 370
Annandale, NJ 08801
Web Site - www.sfmanj.org
E-mail - hq@sfmanj.org
Ph/Fax - 908-730-7770

National Organization
Sports Turf Managers Association
www.sportsturfmanager.com
e-mail: SportsTMgr@aol.com
Phone: 1-800-323-3875

Field Tip

Repair the damaged turf areas of your athletic fields with sod in November and have them ready to go in the spring. Sod installed in November on heavy textured soil typically needs no supplemental irrigation. In lieu of a current soil test apply 10-20-20 fertilizer at the rate of 5 pounds per thousand square feet to the soil before placing the sod.
Calendar of Events

December 7-9th 2004 New Jersey Turfgrass Expo: Athletic field education sessions 8th and 9th, see front page. Taj Mahal, Atlantic City. For more info call 856-853-5973 or 732-821-7134

Rutgers University Winter Courses: 10% off to all SFMANJ members mention this newsletter
February 22-24, 3-Day Athletic Field Construction & Maintenance Course
March 1, 8, 15, 22, Athletic Field Special Topics: Soils, Turf, Athletic Field Construction and Synthetic Turf Products. To register call 732-932-9271 ext. 630

Rutgers Corner - October 2004
Sports Turf Workshop Recap

By Brad Park, Rutgers University park@aesop.rutgers.edu

A Sports Turf Workshop was held on October 7, 2004 at Rutgers University Hort. Farm II, in cooperation with Sports Field Managers Association of New Jersey (SFMANJ), in which sports field managers from locations ranging from Cape May County, to Delaware, to New York City participated in a day filled with educational topics.

The rewards of attending the workshop began at the registration table. All registered attendees received a turfgrass cap compliments of the Rutgers Center for Turfgrass Science and a packet of handouts that included soon-to-be Rutgers Fact Sheets outlining Kentucky bluegrass, tall fescue, and perennial ryegrass varieties ideal for sports fields in New Jersey based on Rutgers turfgrass traffic tolerance research.

Following lunch and introductions, the schedule of events moved outside. Given the weather for the day, October 7 may have been the day in 2004. Bright sunny skies, 70-degree temperatures, and low humidity provided optimal conditions for a field plot tour.

Dr. Stacy Bonos and Dr. Bill Meyer began the day discussing Kentucky bluegrass and tall fescue and their use on sports fields. Both the Kentucky bluegrass and tall fescue trials were National Turfgrass Evaluation Program (NTEP) tests. Dr. Meyer then described a newly-seeded perennial ryegrass NTEP trial in which numerous varieties had fallen victim to gray leaf spot, a turfgrass disease that affects perennial ryegrass. This talk was extremely pertinent as sports field managers routinely overseed high-traffic fields with perennial ryegrass. Several commercially available varieties showed superior gray leaf spot resistance including Paragon GLR, Palmer IV, Repell GLS, and Protege.

The plot tour moved to the opposite end of Hort. Farm II where Dr. Steve Hart discussed pre and postemergence crabgrass control. Treatment differences were readily apparent in the plots as some materials effectively controlled crabgrass while others did not.

The focus of the field day shifted to Kentucky bluegrass as Dr. Jim Murphy stressed the importance of fertilization and irrigation inputs necessary to establish Kentucky bluegrass on a sand rootzone. Brad Park followed with a discussion of current Rutgers research investigating the effects of wear, compaction, and season-specific wear on various Kentucky bluegrass varieties. One take-home message from this study is the strong ability of Kentucky bluegrass to recover from damage, particularly if use of a field is withheld to allow recuperation.

Rich Buckley, coordinator of the Rutgers Plant Diagnostic Lab, ended the educational sessions with a presentation on gray leaf spot and other diseases that affect New Jersey Sports Fields. This presentation was timely given the level of gray leaf spot infection on perennial ryegrass seen previously in the day.

For those registered attendees wishing to receive NJ DEP pesticide credits, three Category 3B credits were given. The day ended with a popular SFMANJ tradition - the awarding of door prizes. Door prizes included Rutgers Center for Turfgrass Science golf shirts, a 1-yr membership to SFMANJ, a registration to New Jersey Turfgrass Association’s Expo 2004 in Atlantic City, a soil probe (complimentary of Dr. Henry Indyk), and several soil tests kits from the Rutgers Soil Test Lab.

A special thanks goes out to numerous people who helped prepare the test plots, the day’s speakers, SFMANJ for co-sponsoring the day, and especially all those who attended. – Brad •

Continued from page 1

9:00 am Work smarter, not harder
Floyd Perry – President, Grounds Maintenance Services, FL

9:30 am Weed problems and their control
Brad Park, Rutgers Univ./Cook College

10:00 – 12:30 pm
TRADE SHOW – Estees Arena, Free Snacks and Beverages

NJ DEP Credits: (1) Core
12:30 pm Annual Business meeting of SFMANJ, Elections
Eleanora Murfitt Hermann – CRS, President SFMANJ

1:00 pm Reducing potential litigation – improving safety
Floyd Perry – President, Grounds Maintenance Services, FL

1:30 pm Irrigation techniques for water conservation
George McCarthy – Spring Irrigation, Cranbury, NJ

2:00 pm Grooming: Improving playability of infields
James Hermann – CSFM, Vice Pres. SFMANJ, Total Control, Inc.

2:30 pm Update on school IPM program
Dr. George Hamilton, Rutgers Univ. •
Understanding pesticide toxicity

The following was taken from an article in Hunterdon Observer, written by Jeff Rugg entitled Nontoxic use of pesticides requires know-how.

All substances, including water are poisonous at some level of dosage. Toxicity refers to a substance’s ability to produce injury or death. Toxicity can be acute or chronic. Acute toxicity is poisoning resulting from a single exposure to a large dose of a chemical. Chronic toxicity is poisoning from repeated low doses over a prolonged period of time. Most chemicals have the ability to produce acute and chronic toxicity.

The human body has the ability to filter out, or metabolize, many chemicals before they can build up to a poisonous level through repeated exposure. There is a lethal dose of caffeine in 200 cups of coffee, a lethal dose of ethanol in a fifth of bourbon and a lethal dose from aspirin in 200 pills. We are not killed by low level doses because the body can destroy the chemicals before they reach the toxic level.

Toxicity alone does not measure the danger of a chemical. Exposure and toxicity together form a chemicals ability to be a hazard. A highly toxic chemical may present little hazard when formulated in a very diluted concentration, or it is formulated to not be inhaled or absorbed through the skin, or it is applied under conditions that prevent contact. The opposite is also true. A normally non-toxic chemical can be hazardous if it is used in a form that concentrates it, or it is used in a way that allows contact with the skin, or inhalation. Repeated doses of chemicals that break down slowly in the body or that are stored in the body may cause a hazard.

Chemicals should be avoided whenever possible, used as safely as possible and disposed of properly. To do this, consider which chemical is least toxic and least persistent while still being effective. It is more important to know the safety level of a chemical than whether it is of a natural, organic or synthetic origin. The natural insecticide pyrethrum is a little less toxic than the synthetic insecticide Sevin and they are both much less toxic than the natural insecticide rotenone. Sometimes synthetic versions of natural compounds are necessary to make them strong enough to work. Sometimes refining removes some toxicity. Crude citrus oils kill fleas, but they also kill cats. Two refined citrus oil compounds, linalool and D-limonene still kill fleas but have a low toxicity to cats.

Toxic chemicals are not necessarily dangerous in their use, but rather in their misuse. A wide range of items fit this category, from antifreeze to vitamins and from mothballs to air deodorizers.

The preceding article stands to reaffirm the need for education and understanding when using pesticides. Always read the entire label. Know your product. Know your site. Know your target.
Fields that enter winter in top shape have the best chance of emerging from winter stress in playable condition. Survival strategies include a well-managed, year-round maintenance program, and as much fall preparation as field use schedules, weather, time, and funding allow.

Ideally, baseball and softball fields should be completely ready for play when they are put to bed for the winter. Repair lip areas and basepaths; prep batter’s boxes and pitching mound areas; and where turf covers are available, blanket skinned areas prior to heavy snow cover. When basepath covers aren’t in the budget, it may help to erect an upright screen of landscape-type fabric to reduce wind and storm damage.

Whenever possible, aerate turf to reduce compaction and improve water infiltration and percolation. Timing of core aeration is critical. This is especially true for uncovered fields with high exposure to winter winds because of the desiccation factor. Take into consideration existing field conditions, soil profile, turfgrass varieties and cultivars, traditional winter and early-spring weather conditions, and reliability of long-range weather forecasts.

Remove excess thatch prior to the onset of winter to avoid disease infestation. But be careful, too little thatch can expose turfgrass crowns to desiccation, especially in areas with multiple freeze-thaw cycles. On fields subjected to winter play or other traffic, some thatch is needed to cushion turfgrass crowns from wear.

Lower mowing heights late in the season to reduce surface injury from traffic, and to reduce disease susceptibility. But again, be careful. Dropping the height of cut too early may reduce leaf surface enough to drop carbohydrate production to an unacceptable level. The height of cut and timing of height reduction depends on the turfgrasses involved, soil profile, field use, and off-season traffic. For late-season overseeding of cool-season turf, time your program based on whether you want germination during the current season or early the following spring. Some sports turf managers make one late-season overseeding with a mix of turfgrasses to cover both needs. High-use, multi-sport, low- to medium-maintenance fields can be overseeded with turf-type tall fescues, perennial ryegrasses, and bluegrasses. The fescues and ryegrasses will germinate late, while bluegrass germination will follow in the spring.

Evaluate late-season turf fertility before setting a fertilization strategy. Provide adequate phosphorus for strong root development and support of new seedlings. Adequate potash will help overall turf vigor and provide resistance to stress.

Late-season nitrogen (N) applications depend on existing levels, turf development, types of turfgrasses, type of N, and weather conditions. Cool-season turf needs a period of lower N levels to harden off, but levels must be sufficient to support fall growth and to start spring green-up.

Apply preventive fungicide for snow molds on high-profile, high-maintenance fields where air movement is restricted by a stadium enclosure, snow cover, or tarping. Moisture and temperature conditions leading into winter dictate the number and timing of applications.

Tarps protect turfgrasses from snow and ice buildup, excess moisture, extreme cold, and desiccation. They retain warmth, keeping turf growing longer into the fall and giving it an earlier start in the spring.

Sustained periods of above-normal temperatures can combine with lack of air movement to produce excess heat beneath a tarp. This promotes inappropriate turf growth and anaerobic decomposition in the thatch layer, and it creates favorable conditions for disease.

Temporarily increase air circulation across the turf to prevent these problems. You can lift a portion of the tarp to introduce air flow beneath it, or temporarily remove the tarp if conditions are severe enough to warrant it.

Drying winds moving across open fields may combine with lack of precipitation to produce damaging conditions. If temperatures are high enough to allow acceptable water penetration, irrigate to counteract the lack of moisture.

Check turf and soil conditions frequently as temperatures warm. If conditions are favorable for disease, consider alternatives to change one or more of the contributing factors. Increase air movement, reduce temperatures, or reduce moisture. If these conditions can't be changed and signs of disease are present, a preventive spray may be cost effective.

Consider overseeding these areas in spring to counteract turf loss. Match spring tarp removal to appropriate weather conditions: cool, cloudy, and still. Too much sun, heat, or wind can desiccate newly uncovered turf, especially when soil temperatures are too cool to allow roots to replace surface moisture loss. Be prepared to syringe the field lightly, but frequently, to avoid desiccation.

A competent, vigilant sports turf manager is the greatest factor in winter field survival.
Question and Answer

Question: How do I calculate the number of clay bricks I need to modify my pitchers mound and home plate area.

Answer: The Pitchers mound on an official baseball or Babe Ruth field with 90' baselines has a plateau or flat spot on top measuring approx. 3' x 5' or 15 Square feet. The landing zone is approx. 4' x 6' or 24 square feet. You may want to place the bricks narrower at the top of landing zone close to the pitching rubber and wider at the bottom but the square footage should remain about the same. This gives you 39 square feet. Deduct 1 square foot (6" x 24") for the pitching rubber and you end up with 38 square feet. Each clay brick is 4" x 8" or 32 square inches. To convert the square footage you have to square inches multiply 38 x 144 for a total of 5472 square inches. Divide 5472 by 32 (the number of square inches in a brick) and you will find you need approx. 171 bricks for the pitchers mound. This number can be adjusted to conform to the individual wear pattern of your pitchers mound.

The home plate area has two batters boxes, measuring 4' x 6' each and a catchers box measuring 3’ 7” x 5’. These total 9492 square inches for a total of 297 bricks in the home plate area.

Nominations for SFMANJ Board of Directors for 2005

Come vote at 2004 Expo

Here is your chance to have a voice in 2005 leadership of the SFMANJ. We are now accepting nominations for Board of Directors. You are welcomed to nominate yourself.

There are 12 people representing Parks & Recreation, Schools, Colleges, Professional DPW, Facilities, Education/Extension, Commercial/Contractors and Buildings & Grounds who serve on the chapters' Board of Directors. Each Director serves a two-year term beginning January 1, 2005. There are four openings. A nomination committee will select members based on the following criteria:

1. Have been interested and active in SFMANJ (a member in good standing)
2. Are proven leaders
3. Are representative of the entire organization, both professionally and geographically
4. Are willing to commit time to the development of our organization
5. Understand when accepting this nomination you are expected to attend one meeting a month (evenings, minimum of 8 meetings), be a Chairperson of one committee, report on that committee at the monthly meeting and help with field days.

If you or someone you know are interested in serving on the Board of Directors fax or send your name, address and phone number where you may be reached. E-mail or fax by November 30, 2004 to: SFMANJ, PO Box 370, Annandale, NJ 08801 or fax to 908-730-7770.
Division Manager, Joe Warner:
Joe Warner came to DVH in 2000 after 20 years of running his own business, bringing with him a level of expertise which has enabled our company to provide affordable solutions to athletic fields.
Email: jwarner@thedvhgroup.com

Renovation & Construction Services:
Design/layout, top-soiling, soil amendments, Laser-guided grading...in-field mix, sod/seed, pitcher's mound & batter's box construction.

Supplies: In-field conditioners, drying agents, mound/batter's clay, bricks & marking lime.

Turf Management Services:
Complete fertilization programs, top-dressing, deep-tine core aeration, slice-seeding, grub & disease control.

Division Manager, Greg Winfree:
Greg's hands-on approach to Athletic Turf Management solutions is providing our customers with a level of comfort knowing their athletes will get the best turf possible.
Email: gwinfree@thedvhgroup.com

Only Rain Bird rotors feature Rain Curtain™ Nozzle Technology that delivers uniform water distribution across the entire radius range for green grass results. Gentle, effective close-in watering around the rotor eliminates dry spots without seed washout, and larger water droplets assure consistent coverage, even in the windiest conditions.
Install Confidence. Install Rain Bird.
"JUST ADD WATER..."

Like part of any good recipe, the proper amount of water at the right time will enhance and protect your turf.

Don't let an automatic underground sprinkler system be your facility's missing ingredient.

SPRING IRRIGATION CO., INC.

DESIGN INSTALLATION MAINTENANCE

SPRING IRRIGATION CO., INC.
P.O. BOX 523
DAYTON, NJ 08810
NJ IRRIGATION LICENSE # 15040
IA CERTIFIED DESIGNER # 180186
(732) 821-5767 FAX (732) 821-0130
springirr@netzero.com

NATIONAL SEED
PROFESSIONAL TURF PRODUCTS
Specializing in Quality Grass Seed To Meet All Your Turf Performance Standards
Call For a Catalog 800-828-5856

Carrying a full line of quality mixtures especially formulated for:
SPORTS & ATHLETIC FIELDS LOW MAINTENANCE AREAS GENERAL GROUNDS GOLF, LAWN, RECLAMATION

Technical Agronomic Support and Custom Blending Available

Please Note!

For your convenience we have included in this newsletter a 20003/2004 Membership Additions/Update Directory.
The list includes Member Agencies, Commercial Members, and Student Members

Please cut out page 11 and insert it into your SFMANJ Directory Binder

November/December 2004
Fusarium Patch - Snow Mold

Dr. Tim Rhoudus, OSU Dept. of Horticulture and Crop Science
International Sports Turf News 2004-03-19

Fusarium patch (Microdochium nivale) is a serious disease of cool season golf and sports turf grasses (bentgrass, perennial ryegrass, annual bluegrass etc.)

* Try to maintain as dry a surface as possible. For example remove dew every morning.
* Try to minimize the amount of thatch present.
* Maximize air movement over the turf canopy.

CHEMICAL CONTROLS

When dealing with the control of a disease like Fusarium patch it is always best to spray preventively as once the disease is visible the damage is done. The following are some of the systemic herbicides that are available for the control of Fusarium: cyproconazole, fenarimol, iprodione, mancozeb, propiconazole, thiophanate-methyl, triadimefon, and vinclozolin.

Fusarium patch is found mostly in regions with cool humid weather conditions due to the way the disease spreads and survives. The pathogen usually infests the thatch layer where the spores can be easily spread and survive. The mycelium is pink to rose in color; it normally attacks the shoots of the plant. It will survive in both live and dead plant tissue; the optimum pathogenicity temperature range is 32-44 degrees F (0-6 degrees C)

Research shows that the pathogen does not infect the crown or root of the plant, but only causes leaf blade damage. Therefore, if conditions are favorable for growth the grass will recover.

In North America, Fusarium patch is often referred to as “pink snow mold”. The pathogen, Microdochium nivale, is the causal agent of both Fusarium patch and pink snow mold. The term pink snow mold however is used when the disease occurs under snow or tarp or leaf cover, while the term Fusarium patch is used when snow cover etc. is absent.

CULTURAL CONTROLS

* Avoid excessive nitrogen fertilization as this stimulates lush succulent shoot growth, especially during humid wet periods.
* Maintain a soil pH of less than 6.5.

Authors: Dr. Karl Danneberger & Robert Kerr. Robert is a Scottish native, currently working as Dr. Danneberger’s student research assistant. He previously worked at Gleneagles in Scotland and most recently at Shinnecock Hills in NY. He is studying for his BSc. (Hons) in Turfgrass Science at Myerscough College in England.

Fusarium patch usually first appears as 1-2 inch (25-50mm) diameter water soaked circular patches. They can enlarge up to as much 12 inches (300mm) in diameter. The patches will start of with a yellow to orange-brown color. As the diseased patch gets bigger the center of the patch turns brown or tan in color. The patches can combine to form large circular or irregular shapes. When conditions are moist and the mycelium is active, there will sometimes be a ring of pink to white mycelium around the outside of the patch.

Terre Has a full line of Sports Turf Products
- Infield Clay Mixes
- Turface soil conditioners
- Grass Seed
- Fertilizers
- Pesticides
- Top Dressing
- Goose Control
- Turf Blankets
- Marking Paints

Keep Your Ball field’s safe and looking great!! TERRE has the products from grass seed and fertilizer to infield clays and Sports Field Conditioners like Turface products

Call For a Catalog or Inquiries
Tel: 973-473-3393
Fax: 973-473-4402
206 Delawanna Ave Clifton NJ 07014

Sports Field Managers Association of New Jersey