The Choice Of The Professionals

Athletic Field Construction & Drainage Specialists

Site Evaluations
Design/Build
Laser Grading
Renovations
Specializing in Sand/Slit Drainage Systems

235 County Line Road
Amityville, NY 11701
631-691-2381
Fax: 631-691-2392
Welcome New & Renewed SFMANJ Members

Currently we have 330 members. If you did not see your name in last months or this newsletter please call (908)730-7770 to see if you renewed your membership. This year you can not renew with the National STMA chapter if you did please call us. Take advantage of the Spring Field Day discount by renewing today.

Charlie
Ralph Albanir
James Alberti
Bill Almendinger
Wayne Atkinson
Victor Barone
Tom Barton
Eugene Belluci
Vincent Benemati
Robert Beutel
Nancy Bigos
Vincent Bono
Louis Bosco
James Bradbury
Paul Brandon
Bob Buono
Jack Campbell
Frank Cannella Jr.
John Carbone Jr.
Mulch Pro Inc.
Middlesex County. Dept. Parks
Holmdel Township Board of Ed.
Piscataway Twp. Board of Ed.
Cranford Board of Education
Weehawken Township
Berkeley Heights Township
Ridgewood Village
Tenafly Board of Education
Tenafly Borough
Ridgewood, Village of
College of Staten Island
Philadelphia Turf Co.
Manalapan-Englishtown BOE
Finch Turf Equipment
Tri State Athletic Field
Edison Board of Education
Eatontown Borough
Morris & Bergen Cnty Irrigation

SFMANJ Annual Membership Registration Form

* receive update information by email

Name __
Title __
Employer ___
Address __
City __
State Zip County Phone Fax
*E-mail __

Signature __

Individual .. $35
Associate .. $35
Organization/Institution $35
Additional member from facility $20
Commercial/Contractor/Vendor/Supplier $85
Additional member from company $25
Student ... $10

Send with Check or voucher to:
SFMANJ
P.O. Box 370
Annandale, NJ 08801

2004

SFMANJ Board of Directors

President Eleanora Murtiff-Hermann, CRS
Washington Twp Parks & Recreation
Vice President Jim Hermann CSFM
Total Control Inc
Secretary Fred Castenschiold
Storr Tractor Company
Treasurer Dean Marzocca
Dean's Lawn & Landscape Co.

Directors

Dr. James Murphy - Rutgers University
Jeff Cramer – Plainsboro Township DPW
Clare Liptak – Rutgers University
Brad Park – Rutgers University
George McCarthy – Spring Irrigation Co., Inc.
Robin VanDerlyn, Chatham School District

Advisor.........................Dr. Henry Indyk
TurfCon GSI Consultants, Inc.

Mission Statement
Committed to enhancing the professionalism of athletic field managers in New Jersey by improving the safety, playability and appearance of athletic fields at all levels through seminars, field days, publications and networking with those in the sports turf industry.

Contact us at:
P.O. Box 370
Annandale, NJ 08801
Web Site – www.sfmanj.org
E-mail – hq@sfmanj.org
Ph/Fax – 908-730-7770

National Organization
Sports Turf Managers Association
www.sportsturfmanager.com
e-mail: SportsTMgr@aol.com
Phone: 1-800-366-0391

Robert Carfagno
Fred Castenschiold
Dr. Richard Caton
James Chimento
Dr. Bruce Clarke
Dave Coleman
Matthew Conti
Jeff Cramer
Timothy Cronin
Kevin Crossley
Mario Cunha
Robert Czumbil
Dan Dandrea
Gregory DeBuck
Dennis DeSanctis Sr.
John DeVries Jr.
Cranford Board of Education
Storr Tractor Co., Inc.
NJ Turfgrass Association
JC Landscape Constr/Mgmt.
Cook College Pathology
Raritan Township Public Works
Princeton University
Plainsboro Township
Ridgewood, Village of
Ho-Ho-Kus, Borough of
Cranford Board of Education
Ewing Township
Buena Regional School District
DeBuck’s Sod Farm of NY, Inc.
Aer-Core, Inc.
Hillside Gardens Inc.

continued on page 4
Calendar of Events

Rutgers University Athletic Turf Classes
* February 24-26 Athletic Field Construction and Maintenance course
* March 9th The Importance of Understanding Athletic Field Soil
* March 16th The Importance of Understanding Athletic Field Turfgrass
* March 23rd Understanding Athletic Field Construction Procedures
For information call 732-932-9271
10% off for SFMANJ members

Annual SFMANJ Spring Field Day
April 20, 8am-3:00pm
Drum Point Sports Complex, Brick NJ
Box lunch included, Door prizes
No vendor booths
$35 members, $45 non-members
For more info call 908-730-7770
Fliers will be sent soon.

New Jersey Recreation & Parks Assoc.
Annual Convention & Trade Show
March 14-17 at Ballys in Atlantic City
For more information call NJRPA at 732-568-1270

continued from page 3

Anthony Diaforli
Joy Dobrofsky
Robert Druzsba
Thomas Elder
Ralph Ellis
Salvatore Fama
Will Fanner
Thomas Fisher
Dave Fitzgerald Sr.
Donald Frederick
George Frey
Peter Galosi
Scott Geier
Sean Goodwin
Joe Gourmiek
Dr. John Grande
Todd Gritschke
Michael Haener
Erik Hammerdahl
Rob Haynes
John Helton
Ken Henshaw
Robert Hickey
Luis Hidalgo
Christopher Holenstein
Barry Imboden
Dr. Henry Indyk
Kenneth Jenks
Van Kampen
William Koonz
Tom LaRowe
TJ Lawson
Diane Leon
Frank LoSasso
Gary R. Lukas
Robert Manning
Thomas Martin
Paul Martino
Dean Marzocca
Ron Matakitis
William Mateyka
Ken Mathis
Larry Mayerowitz
George McCarthy
Brian McCormick
Craig McCoy
Brian McGuirt
Bill McNish
Thomas Miller
Chris Monohan
Mike Moore
John Mujica
Dennis Murphy
Art Neff
Thomas Newbery
Nat Nuovo
Richard Oates
Bradley Park
J. Casey Parker, CPWM
Tony Pavelice Jr.
Wes Perrine
Harold Pierce
Ray Poerio
Steve Polakowski
Judy Policastro
Rich Resavy
Melissa Ripa
Steve Riviello
Rich Romanik
Charles Romano
James Saxton
Michael Shannon
Kevin Shipman
Frederic Sibley
Ed Sinclair
Brent Slifer, CPWM
Thomas Stokes
James Stryker
Mark Tindall
Robert Tirserio
Craig Tolley
Steven Toth
Robert Tranquilli
Suz Trusty
Walter Tucker
Dawn Tuttle
Scott Van Demark
Barry Vansant
David Ward Sr.
George Warden
Jay Weisenbach
Bethy Weist
Wayne White
Bruce Wild
Greg Winfree
Thomas Witt
Thomas Wojcik
Robert Young
Ron Zaleski
John Zambrano
Van Kampen Advertising, Ltd.
Koonz Sprinkler Supply
Delaware Township
Rutgers University
Leons Sod Farm, Inc.
Hamonton Board of Ed.
Lucks Sales Associates
Piscataway Twp Board of Ed
Pritchard Industries, Inc.
Applied Landscape Technologies
Dean's Lawn & Landscape
Delbarton School
Old Bridge Township
Brick Township
Middlesex County Parks
Spring Irrigation Co. Inc.
College of Staten Island
Scotch Plains Township
Cliffside Park Recreation
Mendham Borough
Environmental Resolutions, Inc.
Scotch Plains Township
Springfield Public School
Cranford Board of Education
Allendale Borough
Croton, Village Of
Rahway Public Works
Field Pro Enterprises, LLC
Ocean City Utilities Authority
Rutgers Univ. Plant/Pathology
Lacey Township
Pavelic Bros. Golf Course Cnstr.
Geo.Schofield Co. Inc.
Winslow Twp. Board of Ed.
Scotch Plains Township
Seton Hall University
Irrigation Association of NJ
Hillsborough Township
DVs Athletic Turf
Moyer & Son. Inc.
Millville, City of
Cliffside Park Recreation
Glen Rock Dept. Public Works
Better Materials Corp.
Pine Hill Public School
Medway, Town of
Mahwah Township
Mansfield Township
Cranford Board of Education
Delaware Valley Reg.Hgh Sc
Cinnaminson Board of Ed.
Glen Rock Public Works
County College of Morris
Montville Township
Springfield Public School
SFMA
Ocean City
Bow School District
Mahwah Board of Education
National Seed
Roxbury Township
Middlesex County. Dept.Parks
Glen Ridge Borough
NJ Landscape Contractors As.
Holmdel Township Board of Ed.
Storr Tractor Co.
DVs Athletic Turf
Cranbury Township
Finch Services Inc.
Fair Lawn Borough
Glen Ridge Borough
Monmouth University

Sports Field Managers Association of New Jersey
Head Groundskeeper – Newark Bears

Specific responsibilities include but are not limited to, the following:

- Responsible for all field maintenance including, fertilization, pesticides, mowing, turf areas, skin area (mound, Plate and infield)
- Manage pre game set up & post game break down of field operations
- Must have knowledge of sand based fields.
- Working knowledge of irrigation systems, sprayer, spreaders, and tractors and mowing equipment.
- Develop and manage relationships with outside vendors
- Negotiate prices and contracts
- Maintain inventories
- Order supplies
- Schedule all maintenance & repairs necessary for field through outside vendors.
- Hire, train and supervisor full-time hourly employees and game day staff.
- Establish and maintain budgets.
- Be a team player. Actively participate in other operational functions as necessary including but not limited to pulling tarp, attending all scheduled events and meetings.

To apply: Send or e-mail cover letter, resume and list of three professional references to:
Dean Rivera, General Manager
Newark Bears
450 Broad Street
Newark, NJ 07102
drivera@newarkbears.com

You’re Always Ahead of the Game with a COVERMASTER® Raincover...

"Great Service..., The Best..."

wrote Chip Baker, Asst. Baseball Coach, Florida State University, Tallahassee, FL

Chip’s comments confirm what we hear from the many groundskeepers who use a COVERMASTER® raincover to keep their fields dry and ready for play. Call us and we'll gladly tell you more.

The COVERMASTER® Advantage...
- Superior in strength and UV resistance
- Outstanding heat reflective properties
- Light weight - easy to handle
- Widest materials for least number of seams
- Largest choice of weights and colors
- Backed by truly dependable warranties

TARP MACHINE VIDEO!
Call, fax or e-mail for a free video, material samples and a brochure.

CALL TOLL FREE 1-800-387-5808 covermaster.com
E-MAIL: info@covermaster.com

COVERMASTER INC., 100 WESTMORE DR. 11-D, REXDALE, ON, M9V 6C3 TEL 416-745-1811 FAX 416-742-6837

March/April 2004
In view of the fact that you can't keep the infield mix from moving to the turf perimeter, it is sometimes beneficial to move the turf perimeter away from areas of concentrated disturbance caused by game play. By cutting out existing turf and increasing the distance from first and third base to the outer perimeter of the infield, the amount of mix that is deposited into the turf can be greatly reduced. There are different designs conducive to this concept. The number of options is limited only by your imagination.

Grooming technique is most limiting and therefore first on the list of preventative maintenance considerations. Always rake parallel to the foul lines and turf perimeters. When dragging the infield, always stay 6" from the turf. Vary your dragging pattern. Alternate your starting and stopping point. Never contaminate the turf with infield mix for any reason.

The amount of moisture contained by an infield mix, while being maintained within maximum and minimum limits could be considered the glue that holds an infield together and as such is a factor in lip management. The key is to determine these limits. The limits will vary based on site-specific factors. The most important factor to be considered when addressing moisture management is particle size and distribution of your infield mix. What is the physical analysis of your infield mix? What is the sand, silt and clay particle size analysis? Would your mix be considered a sandy mix or would your mix be considered a clayey mix?

The ASTM Standard Guide for Construction and Maintenance of Skinned Areas on Sports Fields has provided guidelines to help in identifying and classifying your particular mix. In general a mix containing 70%-85% sand size particles and containing 15%-30% clayey mix is considered an acceptable product. The sandier a mix is, typically the less stable it is given the affects of game play. The higher the percentage of sand a infield mix contains, the more difficult it is to maintain moisture at levels sufficient to promote stability.

The more clayey an infield mix is, the more that mix tends to retain moisture and the more effective moisture becomes as a means of stabilization. Let me repeat; this moisture is only beneficial when maintained between site-specific limits. Most all of us are aware that a clayey mix is much more to condition after a heavy rain than a sandy mix. The benefit derived from the ability of a clayey mix to retain moisture is lost in this circumstance because the level of moisture has exceeded the limits of potential benefit.

It should be understood that a mix on the clayey side of the ASTM standard that is allowed to become very dry is somewhat difficult to rewet. Tilling or some other means of cultivation is sometimes necessary as a part of the wetting procedure.

When a level of maintenance is reached which allows for the "scheduled" periodic application of water, a soil amendment such as calcined clay may be beneficial in extending the duration of time between water applications. It must be understood that these products constitute the potential for a double-edged sword.

As was addressed earlier, a sandier mix or a mix with more sand "sized" particles is less stable and is more likely to migrate given the effects of game play. If moisture levels are permitted to vary beyond the limits of potential benefit (either too wet or too dry), these products will display characteristics similar in nature to sand. When allowed to dry out, a mix that has been modified with an amendment such as calcined clay will have characteristics similar to a sandier mix, which does not have an amendment added. If allowed to become saturated, a mix amended with a product such as this will move in much the same way as a sandier mix.

For the purposes of this article the characteristics of a dry infield mix are determined almost solely by particle size and nothing more. When discussing the stability of an infield mix, a dry calcined clay particle will differ little from a dry sand particle given the same particle size. If anything, the clay
particle will be more mobile due to being lighter and maintaining a lower bulk density. The benefits of products such as calcined clay are only realized in their ability to absorb moisture and aid in maintaining moisture levels between site-specific maximum and minimum limits.

I have in the past used the following comparison to explain the affects of moisture on a sandy infield mix. When walking along the beech an observation can be made. Up on the beach where the sand is dry the conditions are very unstable. You sink into the sand. As you approach the waterline, the sand has more moisture content and as such gains stability and firmness. As you enter into the water and the sand becomes saturated it again loses stability. The moisture in the sand provides stability only between maximum and minimum saturation levels.

Wind erosion is a subtle culprit that can slowly but surely eat away at the integrity of your infield. It is obviously site specific based on the severity and consistency of the wind. As with any erosion problem (wind or rain) wind erosion impacts on the smaller and or lighter particles. For this reason wind erosion has the potential to erode the silt, clay, fine sand and or added amendments from your infield and deposit this material at the turf perimeter adding to the problem of lip buildup. Along with adding to lip buildup, if allowed to persist, wind or rain erosion will destroy the integrity of a clayey mix and leave you with a sand box.

Controls would include providing a windbreak to minimize wind velocity. This can be incorporated into the permanent perimeter fencing. It can also be provided as snow or silt fence utilized during the off-season. If snow or silt fence is utilized as a windbreak during the off-season, remember to keep it away from the turf on the down wind side of the field. If a windbreak is installed to close to the turf it will cause airborne particles to drop right into the turf. As can be observed by the effective use of snow fence in winter storm management, drifting occurs on the downwind side. Maintaining moisture levels within the mix will increase stability of the mix and also minimize erosion.

When discussing erosion of a specific infield mix caused by water (rain), two major factors contribute to the severity of the problem. These two factors are water volume and velocity. The more water there is and the faster it travels, the more severely it impacts on the stability of the infield mix.

First, consider water volume. The volume of water is the amount of water you are dealing with. Although you cannot control the amount of rain you receive, there are a number of ways to control the volume of water that travels within the confines of an Infield.

1. Cover the infield when it rains. For most of us this is an impossibility
2. As water travels along a linear path it increases in volume. Limit the distance the water travels before exiting the infield and you limit the accumulated volume. By properly grading the infield, you can direct water the shortest distance to the perimeter thereby limiting the volume of water. An example of one such grading plan would be to maintain the pitchers area as the high point of the infield and slope the infield to the perimeter with all bases being approximately level to one another.
3. Limit the concentration of water in specific areas when exiting the field. An example of the very worst grading design which encompasses the very worst of examples #2, #3 and #4 would be a skinned infield with home plate as the low point of the entire infield. As

Only Rain Bird rotors feature Rain Curtain™ Nozzle Technology that delivers uniform water distribution across the entire radius range for green grass results. Gentle, effective close-in watering around the rotor eliminates dry spots without seed washout, and larger water droplets assure consistent coverage, even in the windiest conditions.

Install Confidence. Install Rain Bird.
water is funneled to a central location
potential volume is increased and
therefore the potential severity of
erosion is increased. This problem is
also magnified due to the distance the
water has traveled in order to exit the
infield.

4. Eliminate the potential for water
to enter the infield from other areas
during episodes of rain. If the outfield
or foul territory is higher than the
infield, water should be channeled away
from the infield by some means.

The second player in this game of
erosion is velocity or the speed of the
water. Water increases in speed or
“velocity” with an increase in slope. By
minimizing slope you minimize velocity
and therefore minimize erosion. Professional fields I have read about maintain around ½ % slope. This
equals to approximately 5½ inches of
fall from the area at the base of the
pitchers mound to the turf radius
assuming a 90’ radius. I prefer to
maintain a slope of between ¾ % and
1½ % on the infield I take care of. I
believe, at less than ¾ % there is too
much potential for ponding and above
1½ % there is too much potential for
erosion. These tolerances become more
critical as the distance to exit increases.
Remember, volume and velocity
increase with distance as long as the
supply (rain) remains constant

The last factor that contributes to
the development of a lip that I stumbled
on (literally) by accident is the combined
affects of freezing and thawing along
with the increased development of a
thatch layer at the turf perimeter.

In November of last year I returned
to an infield I had recently renovated to
admire my work. I had completely
resodded the perimeters of the infield
and for that reason I was certain there
was no lip. To my dismay a defined lip
had developed within a period of days.
The freezing and heaving of the very
edge of the sod caused the lip. I believe
this honeycombed soil structure provides
an avenue for the invasings of material
from the infield. In addition to increasing
the volume of soil within the lip, this
modified root zone coupled with
increased moisture supply at the
perimeter of the infield promotes a
localized environment conducive to the
development of a concentrated root
system. With this proliferation of root
development comes an increase in
thatch layer and therefore an increase
in elevation contributing to a lip.

Depending upon the severity of the
lip, there are a number of ways to deal
with it after it has established. *The most
aggressive procedure would be to use
a sod cutter and remove the entire area
of turf that rises above the desired
elevation. The excess material that has
accumulated below the sod is removed
and the area is either resodded using
the existing sod or new sod is brought
in for the procedure.

A less aggressive approach to the
problem is to dig a shallow trench
adjacent to the turf lip and roll the lip
into the trench. This procedure is most
effective if the lip is very narrow and
defined in relation to the desired
elevation.

* A procedure that fills the gap
between the least invasive (trench and
roll) and most invasive (sod cut)
procedures is to aggressively core
aerate the area of lip, remove the cores
and then roll the lip to the desired
elevation. There must be enough volume
of material removed through the
aeration process to allow for the
movement of remaining material without
increasing compaction. The aeration
procedure must penetrate deep enough
to provide compaction relief 2” to 3”
below the desired finish grade. There
must be sufficient soil moisture available
so as to allow for movement in the soil
but not so much moisture so as to allow
for smearing of the soil, which is in fact
damaging to the soil structure.

*This idea was contributed by
Brian Meola of Washington Township
Parks & Recreation (Morris County).*

Did You Know?

Phosphorous is the least soluble
of the major turf nutrients and as such
moves very slowly through most native
soil root zones. For this reason much of
the phosphorous applied, is not available
to the turf roots in the year of
application. In new construction, if soil
test results report phosphorous as “low”
availability, it is advisable to incorporate
half of the recommended phosphorous
into the root zone prior to seeding and
topdress the balance. *
Rutgers Corner — Crabgrass control strategies for sports fields

By Brad Park, Rutgers University — park@aesop.rutgers.edu

"Crabgrass can grow on bowling balls in airless rooms, and there is no known way to kill it that does not involve nuclear weapons" — Dave Barry, Miami Herald

With spring soon to arrive, it is an important time to begin thinking about options for controlling crabgrass. If a significant soil seed bank exists and there are voids in the turfgrass stand which minimize competitive benefits of the turf, as a summer annual, crabgrass will germinate profusely in the spring, mature throughout the summer months, and die in early fall at the first killing frost leaving dead "skeletons" throughout the landscape. Crabgrass seed will typically begin germinating after April 10 in South Jersey and by April 20 in Central and North Jersey. Crabgrass will continue to germinate through mid-July.

Integrated Pest Management (IPM)

Recall that IPM attempts to reduce the risk that pest control strategies may have on the environment and people by incorporating all suitable techniques to maintain pests within acceptable limits. Although it is a common misconception, IPM does not entail the elimination of pesticide use.

Simply mowing at a cutting height suitable for the specific turfgrass species or mowing at a frequency such that scalping is avoided can constitute IPM. Improper mowing techniques leading to scalped turf will thin-out turfgrass areas, lead to voids in the stand, and subsequently provide opportunities for crabgrass to encroach. IPM also entails proper fertilization. Under-fertilizing turfgrass will often result in a weak stand, poor turf density, and an environment in which crabgrass can readily invade. Yearly nitrogen requirements per 1000 ft² for cool season turfgrasses used on New Jersey sports fields are: Kentucky bluegrass, 2-5 lbs; perennial ryegrass, 3-5 lbs; tall fescue, 2-4 lbs. High-use sports fields often necessitate the high-end of these nitrogen fertilization guidelines in order to encourage turfgrass recovery from traffic.

Preemergence herbicides: Are they an option?

For sports field managers whose cultural program includes spring overseeding of his or her fields, applying most preemergence herbicide products at the time of seeding will not only deter crabgrass emergence, it will also inhibit establishment of cool season turf. Products such as pendimethalin (Pendulum or Pre-M), benefin + trifluralin (Team), prodiamine (Barricade), oxadiazon (Ronstar), and dithiopyr (Dimension) are not viable options for preemergence crabgrass control if overseeding is a part of the manager's spring program. Depending on the product and the application rate, the residual of these products is such that the seeding of desired cool season turfgrasses may not begin for 2 to 6 months following the application of the herbicide. Additionally, these products many not be used in newly seeded turf as young turfgrass seedlings are highly susceptible to the phytotoxic effects of these herbicides.

Siduron

Siduron (Tupersan) is a herbicide that is labeled for preemergence crabgrass control in newly seeded Kentucky bluegrass, tall fescue, and perennial ryegrass. Tupersan is formulated as a wettable powder and should be applied in the spring to coincide with maximum crabgrass germination. The label calls for either a

NATIONAL SEED

PROFESSIONAL TURF PRODUCTS

Specializing in Quality Grass Seed To Meet All Your Turf Performance Standards

Call For a Catalog 800-828-5856

Carrying a full line of quality mixtures especially formulated for:

SPORTS & ATHLETIC FIELDS

LOW MAINTENANCE AREAS

GENERAL GROUNDS

GOLF, LAWN, RECLAMATION

Technical Agronomic Support and Custom Blending Available

March/April 2004
single application of product at 4.0-12.0 lbs/Acre or sequential applications at 6.0-12.0 lbs/Acre followed by a 4.0-6.0 lbs/Acre application 4 weeks later.

Postemergence herbicides

In order to use the chemical tools available to selectively treat crabgrass postemergence, the sports field manager must be able to accurately identify crabgrass at various seedling stages. Large crabgrass seedlings are characterized by upright growth and leaves that are rolled in the bud, lack auricles, and have a jagged membranous ligule. Large crabgrass leaf blades and sheaths are covered with stiff hairs. Smooth crabgrass is similar to large crabgrass, however it has fewer hairs on its leaf blades and sheaths.

Quinclorac and fenoxaprop

Quinclorac (Drive) and fenoxaprop (Acclaim Extra) are labeled for the selective postemergence control of crabgrass in perennial ryegrass, Kentucky bluegrass, and tall fescue. Quinclorac is effective in controlling young, un-tillered crabgrass seedlings and may be applied up to 0.75 lbs/Acre (1.0 lb Drive/Acre). To increase the efficacy of weed control, the label recommends applying quinclorac with an oil-based adjuvant such as crop oil concentrate or methylated seed oil.

Quinclorac may be applied up to 7 days prior to the seeding of tall fescue, Kentucky bluegrass, and perennial ryegrass, at the time of seeding for perennial ryegrass and tall fescue, 7 and 14 days after the emergence of tall fescue, and 1 month after the emergence of Kentucky bluegrass, perennial ryegrass and tall fescue. The label notes that adjuvants should not be added to quinclorac applications to newly seeded turf prior to 28 days after seedling emergence.

Fenoxaprop may be applied at rates ranging from 0.016-0.17 lbs/A (3.5-39.0 fl oz Acclaim/A) depending on the stage of crabgrass growth and established turfgrass species. For example, 4-5 tiller crabgrass may be treated with fenoxaprop at 0.17 lbs/A (39.0 fl oz Acclaim Extra/A) in perennial ryegrass and tall fescue whereas no more than 0.12 lbs of fenoxaprop (28.0 fl oz Acclaim Extra/A) may be applied to 3-4 tiller crabgrass in Kentucky bluegrass turf.

Following applications of fenoxaprop, tall fescue and perennial ryegrass may be seeded immediately. Following germination of tall fescue and perennial ryegrass, fenoxaprop should not be applied until seedlings have matured for 1 month. Of the cool season turfgrasses used on sports fields in New Jersey, Kentucky bluegrass is the most susceptible to phytotoxic effects associated with fenoxaprop. For example, when utilizing fenoxaprop rates greater than 0.04 lbs/A (9.0 fl oz Acclaim Extra/A), Kentucky bluegrass seedlings must be at least 3 growing months old before fenoxaprop can be applied. Additionally, 21 waiting days should be allowed following the application of fenoxaprop prior to seeding Kentucky bluegrass.

Due to the complexity of Drive and Acclaim Extra labeling with respect to crabgrass growth stage susceptibility, individual turfgrass species herbicide tolerances, and turfgrass seeding timings, pesticide labels must be thoroughly read and understood prior to the application of these materials.

Literature Cited