FEATURE ARTICLE

Low-Temperature Kill

James B Beard

major cause of winter injury of both cool- and warm-sea-A son turfgrasses is low-temperature kill. It is caused by ice crystal formation and resultant stress at temperatures below $32^{\circ}F(0^{\circ}C)$. This stress may be either an intracellular or extracellular occurrence, in which the brittle protoplasmic organization is fatally damaged via mechanical destruction. Typically, the higher the hydration level or water content in the cells of sensitive tissues such as the meristems, the greater the likelihood of low-temperature kill. Note that low-temperature kill is distinctly different from chilling stress injury.

A question frequently asked is-"at what temperature will a particular turfgrass species or cultivar be killed?" A knowledgeable individual will not attempt to answer this question, as it

Relative

varies greatly depending on the environmental conditions during freezing and the degree of plant low-temperature hardiness as influenced by environmental and cultural factors. In terms of freezing conditions, the absolute temperature at which a particular turfgrass is killed may vary depending on the (a) freezing rate, (b) thawing rate, (c) number of times frozen, (d) length of time frozen, and/or (e) post-thawing culture.

Low-Temperature Kill Hardiness. The hardiness of turfgrasses to low-temperature kill involves the ability of a plant to survive potentially lethal low-temperature stress at temperatures below 32°F (0°C). It is achieved primarily by the redistribution of water, including lowering the hydration level of the critical meristematic tissues, and usually an increase in carbohydrate storage. For most turfgrass species, temperatures between 34 and 40°F (1–4°C) are optimum for the low-temperature hardening process to occur. The relative low-temperature kill hardiness of 31 autumn-hardened turfgrasses is shown in the accompanying table.

Influential environmental factors that contribute to low-temperature hardiness typically affect the plant tissue hydration level. They include poorly drained soils, with fine, clayey soil textures or compacted soil conditions, increasing the likelihood of surface water accumulations that result in increased tissue hydration. Depressional areas where water stands following intense rainfall and/or mid-winter thawing of snow also accentuate tissue hydration. High sunlight or irradiance enhances physiological hardening via an increased carbohydrate accumulation.

Accelerated shoot growth usually adversely increases the tissue hydration level. Influential cultural factors that may contribute to enhanced low-temperature hardiness, especially during the hardening period, include:

- · high tissue potassium levels.
- moderate to low tissue nitrogen levels.
- · higher mowing heights that increase carbohydrate storage.
- avoidance of excessive irrigation. .
- . ensuring proper surface and subsurface water drainage.
- control of excessive thatch, which elevates the nodes on lateral stems.
- selection of low-temperature hardy turfgrass species and cultivars.

Low-Temperature Kill Hardiness	Turfgrass	Scientific Name
excellent	rough bluegrass	Poa trivialis
	creeping bentgrass	Agrostis stolonifera
	turf timothy	Phleum bertolonii
good	Kentucky bluegrass	Poa pratensis
	Canada bluegrass	Poa compressa
	velvet bentgrass	Agrostis canina
	crested wheatgrass	Agropyron cristatum
	colonial bentgrass	Agrostis capillaris
	redtop	Agrostis gigantea
moderate	creeping bluegrass	Poa annua var. reptans
	fine-leaf fescues	Festuca spp.
	American buffalograss	Buchloe dactyloides
	blue grama	Bouteloua gracilis
	annual bluegrass	Poa annua var. annua
	perennial ryegrass	Lolium perenne
	tall fescue	Festuca arundinacea
	meadow fescue	Festuca pratense
	Japanese zoysiagrass	Zoysia japonica
poor	dactylon bermudagrass	Cynodon dactylon
	manila zoysiagrass	Zoysia matrella
	seashore paspalum	Paspalum vaginatum
	hybrid bermudagrass	Cynodon hybrid
very poor	centipedegrass	Eremochloa ophiuroides
	mascarene zoysiagrass	Zoysia tenuifolia
	common carpetgrass	Axonopus fissifolius
	annual ryegrass	Lolium multiflorum
	bahiagrass	Paspalum notatum
	St. Augustinegrass	Stenotaphrum secundatum
	kikuyugrass	Pennisetum clandestinum
	tropical carpetgrass	Axonopus compressus
	serangoongrass	Digitaria didactyla

January-February, 2000; Vol. 8, No. 1