Figure 99. The effect of potassium applications on tissue potassium (Site B; fescue study; 26 May 1978).

Figure 100. The effect of potassium and limestone applications on tissue calcium (Site B; fescue study; 26 May 1978).
Figure 101. The effect of limestone applications on tissue manganese (Site B; fescue study; 26 May 1978).

Figure 102. The effect of potassium applications on tissue sodium (Site B; fescue study; 26 May 1978).
Figure 103. The effect of limestone and phosphorus applications on tissue sodium (Site B; fescue study; 26 May 1978).

Figure 104. The effect of limestone and phosphorus applications on tissue nitrogen (Site B; ryegrass study; 2 June 1978).
Figure 105. The effect of phosphorus applications on tissue phosphorus (Site B; ryegrass study; 2 June 1978).

Figure 106. The effect of limestone and potassium applications on tissue potassium (Site B; ryegrass study; 2 June 1978).
Figure 107. The effect of potassium applications on tissue calcium (Site B; ryegrass study, 2 June 1978).

Figure 108. The effect of potassium applications on tissue magnesium (Site B; ryegrass study, 2 June 1978).
Figure 109. The effect of potassium applications on tissue iron (Site B; ryegrass study; 2 June 1978).

Figure 110. The effect of limestone and phosphorus applications on tissue manganese (Site B; ryegrass study; 2 June 1978).
Figure 111. The effect of limestone and potassium applications on tissue zinc (Site B; ryegrass study; 2 June 1978).

Figure 112. The effect of potassium applications on tissue aluminum (Site B; ryegrass study; 2 June 1978).
Figure 113. The effect of potassium applications on tissue sodium (Site B; ryegrass study; 2 June 1978).

Figure 114. The effect of limestone and phosphorus applications on clipping yields (Site B; bluegrass study; 26 May 1978).
Figure 115. The effect of phosphorus applications on clipping yields (Site B; bluegrass study; 2 June and 13 June 1978).

Figure 116. The effect of limestone and phosphorus applications on clipping yields (Site B; bluegrass study; 27 June 1978).
Figure 117. The effect of limestone and potassium applications on clipping yields (Site B; bluegrass study; 11 July 1978).

Figure 118. The effect of potassium applications on clipping yields (Site B; bluegrass study; 25 July 1978).
Figure 119. The effect of limestone and potassium applications on clipping yields (Site B; bluegrass study; 21 August 1978).

Figure 120. The effect of limestone and potassium applications on clipping yields (Site B; bluegrass study; 20 September 1978).
Figure 121. The effect of phosphorus applications on clipping yields (Site B; fescue study; 26 May 1978).

Figure 122. The effect of potassium applications on clipping yields (Site B; fescue study; 27 June 1978).
Figure 123. The effect of limestone and potassium applications on clipping yields (Site B; fescue study; 11 July 1978).

Figure 124. The effect of limestone and phosphorus applications on clipping yields (Site B; ryegrass study; 2 June 1978).
Figure 125. The effect of limestone and phosphorus applications on clipping yields (Site B; ryegrass study; 13 June 1978).

Figure 126. The effect of potassium applications on clipping yields (Site B; ryegrass study; 11 July 1978).
Figure 127. The effect of limestone and potassium applications on clipping yields (Site B; ryegrass study; 25 July 1978).

Figure 128. The effect of limestone and potassium applications on clipping yields (Site B; ryegrass study; 21 August 1978).
Figure 129. The effect of phosphorus and limestone applications on clipping yields (Site B; ryegrass study; 20 September 1978).

Figure 130. The effect of phosphorus and potassium applications on percent ground cover (Site B; bluegrass study; 2 November 1977).
Figure 131. The effect of phosphorus and potassium applications on percent ground cover (Site B; bluegrass study; 12 April 1978).

Figure 132. The effect of phosphorus applications on quality (Site B; bluegrass study; 31 May and 27 June 1978).
Figure 133. The effect of phosphorus and limestone applications on sod strength (Site B; bluegrass study; 11 October 1978).

Figure 134. The effect of phosphorus applications on percent ground cover (Site B; fescue study; 2 November 1977 and 12 April 1978).
Figure 135. The effect of phosphorus applications on quality (Site B; fescue study; 31 May 1978).

Figure 136. The effect of phosphorus and limestone applications on quality (Site B; fescue study; 11 October 1978).
Figure 137. The effect of potassium and limestone applications on quality (Site B; fescue study; 11 October 1978).

Figure 138. The effect of potassium and limestone applications on sod strength (Site B; fescue study; 11 October 1978).
Figure 139. The effect of phosphorus applications on percent ground cover (Site B; ryegrass study; 2 November 1977 and 31 May 1978).

Figure 140. The effect of phosphorus applications on quality (Site B; ryegrass study; 27 June and 26 July 1978).
Figure 141. The effect of potassium applications on soluble salts (Site C; tests C1, C3, and C4; 5 September 1978).

Figure 142. The effect of potassium applications on soluble salts (Site C; test C2; 5 September 1978).
Figure 143. The effect of potassium applications on relative blue-grass germination (Site C; tests C1, C3, and C4; 30 August 1978).

Figure 144. The effect of potassium applications on relative blue-grass germination (Site C; test C2; 30 August 1978).
Figure 145. The effect of limestone and phosphorus applications on percent ground cover (Site C; test C5; 28 September 1978).

Figure 146. The effect of limestone and phosphorus applications on percent ground cover (Site C; test C7; 28 September 1978).
Figure 147. The effect of limestone applications on percent ground cover (Site C; test C8; 28 September 1978).

Figure 148. The effect of phosphorus applications on percent ground cover (Site C; test C6; 28 September 1978).
Figure 149. The effect of phosphorus applications on clipping yield (Site D; tests D1 and D2; 25 October 1978).

Figure 150. The effect of two limestone applications on soil pH (Site E; 1 November 1978).
Figure 151. The effect of two limestone applications on soil buffer pH (Site E; 1 November 1978).

Figure 152. The effect of three phosphorus applications on available soil phosphorus (Site E; 1 November 1978).
Figure 153. The effect of three potassium applications on exchangeable soil potassium (Site E; 1 November 1978).

Figure 154. The effect of three potassium applications on percent potassium saturation (Site E; 1 November 1978).
Figure 155. The effect of two limestone applications on exchangeable soil calcium (Site E; 1 November 1978).

Figure 156. The effect of three potassium and two limestone applications on percent calcium (Site E; 1 November 1978).
Figure 157. The effect of three potassium and two limestone applications on percent magnesium saturation (Site E; 1 November 1978).

Figure 158. The effect of two limestone and two nitrogen applications on tissue nitrogen (Site E; 26 May 1978).
Figure 159. The effect of two nitrogen and two phosphorus applications on tissue phosphorus (Site E; 26 May 1978).

Figure 160. The effect of two potassium and two limestone applications on tissue calcium (Site E; 26 May 1978).
Figure 161. The effect of two potassium and two limestone applications on tissue iron (Site E; 26 May 1978).

Figure 162. The effect of two limestone and two nitrogen applications on tissue manganese (Site E; 26 May 1978).
Figure 163. The effect of two potassium and two nitrogen applications on tissue aluminum (Site E; 26 May 1978).

Figure 164. The effect of two potassium and two nitrogen applications on tissue sodium (Site E; 26 May 1978).
Figure 165. The effect of one phosphorus and one potassium application on clipping yields (Site E; June 1977).

Figure 166. The effect of one phosphorus application on clipping yields (Site E; July 1977).
Figure 167. The effect of one limestone application on clipping yields (Site E; September 1977).

Figure 168. The effect of two phosphorus applications on clipping yields (Site E; October 1977).
Figure 169. The effect of two potassium applications on clipping yields (Site E; May and June 1978).

Figure 170. The effect of three potassium and two limestone applications on clipping yields (Site E; July 1978).
Figure 171. The effect of two limestone applications on clipping yields (Site E; August 1978).

Figure 172. The effect of two limestone and two phosphorus applications on turfgrass quality (Site E; November 1977).
Figure 173. The effect of two limestone applications on turfgrass quality (Site E; June and July 1978).

Figure 174. The effect of two limestone applications on red thread incidence (Site E; 10 July 1978).
Figure 175. The effect of two nitrogen applications on red thread and dollar spot incidence (Site E; 1 July and 16 July 1977 respectively).

Figure 176. The effect of three nitrogen applications on red thread incidence (Site E; 10 July 1978).
Figure 177. The effect of two limestone and two nitrogen applications on winter injury (Site E; 12 April 1978).

Figure 178. The effect of three nitrogen applications on dandelion encroachment (Site E; 28 August 1978).
Figure 179. The effect of two limestone applications on soil pH (Site F; 9 October 1978).

Figure 180. The effect of two limestone applications on soil buffer pH (Site F; 9 October 1978).
Figure 181. The effect of two limestone applications on exchangeable soil calcium (Site F; 9 October 1978).

Figure 182. The effect of two limestone applications on percent calcium saturation (Site F; 9 October 1978).
Figure 183. The effect of three phosphorus applications on available soil phosphorus (Site F; 9 October 1978).

Figure 184. The effect of three potassium applications on exchangeable soil potassium (Site F; 9 October 1978).
Figure 185. The effect of three nitrogen and three potassium applications on percent potassium saturation (Site F; 9 October 1978).

Figure 186. The effect of two nitrogen applications on tissue nitrogen (Site F; 11 May 1978).
Figure 187. The effect of two nitrogen and two potassium applications on tissue potassium (Site F; 11 May 1978).

Figure 188. The effect of two nitrogen and two limestone applications on tissue calcium (Site F; 11 May 1978).
Figure 189. The effect of two nitrogen and two phosphorus applications on tissue manganese (Site F; 11 May 1978).

Figure 190. The effect of two limestone applications on tissue manganese (Site F; 11 May 1978).
Figure 191. The effect of two potassium and two nitrogen applications on turfgrass quality (Site F; April 1978).

Figure 192. The effect of two nitrogen applications on red thread incidence (Site F; 27 May 1978).
Figure 193. The effect of one limestone application on soil pH (Site G; 30 May 1978).

Figure 194. The effect of one limestone application on soil buffer pH (Site G; 30 May 1978).
Figure 195. The effect of one limestone application on exchangeable soil calcium (Site G; 30 May 1978).

Figure 196. The effect of one limestone application on percent calcium saturation (Site G; 30 May 1978).
Figure 197. The effect of two phosphorus applications on available soil phosphorus (Site G; 30 May 1978).

Figure 198. The effect of two phosphorus and two potassium applications on exchangeable soil potassium (Site G; 30 May 1978).
Figure 199. The effect of two nitrogen and two potassium applications on percent potassium saturation (Site G; 30 May 1978).

Figure 200. The effect of two phosphorus applications on tissue phosphorus (Site G; 5 June 1978).
Figure 201. The effect of two phosphorus and two potassium applications on tissue potassium (Site G; 5 June 1978).

Figure 202. The effect of one limestone application on tissue manganese (Site G; 5 June 1978).
Figure 203. The effect of two limestone and three phosphorus applications on clipping yields (Site G; July 1978).

Figure 204. The effect of phosphorus applications on turfgrass quality (Site G; July 1977 and July 1978; after one and two phosphorus applications respectively).
Figure 205. The effect of one potassium and one limestone application on turfgrass quality (Site G; July 1977).

Figure 206. The effect of one potassium and one limestone application on turfgrass quality (Site G; August 1977).
Figure 207. The effect of one limestone application on turfgrass quality (Site G; September 1977).

Figure 208. The effect of two nitrogen applications on Helminthosporium leaf spot incidence (Site G; 15 June 1978).
Figure 209. The effect of three nitrogen applications on crabgrass encroachment (Site G; 5 September 1978).

Figure 210. The effect of two nitrogen and one limestone applications on soil pH (Site H; 11 May 1978).
Figure 211. The effect of two phosphorus applications on available soil phosphorus (Site H; 11 May 1978).

Figure 212. The effect of two nitrogen and two potassium applications on exchangeable soil potassium (Site H; 11 May 1978).
Figure 213. The effect of two nitrogen and two potassium applications on percent potassium saturation (Site H; 11 May 1978).

Figure 214. The effect of two nitrogen and two phosphorus applications on tissue phosphorus (Site H; 5 June 1978).
Figure 215. The effect of one limestone and two nitrogen applications on tissue manganese (Site H; 5 June 1978).

Figure 216. The effect of two potassium and two nitrogen applications on clipping yields (Site H; June 1978).
VITA

Thomas Reams Turner, son of E. Randolph and Helen Turner, was born March 22, 1951 in Richmond, Virginia. He attended grade school through high school in the Mt. Pleasant School District in Wilmington, Delaware. In 1969 he enrolled at Virginia Polytechnic Institute and State University and graduated in 1973 with a Bachelor of Science in Agronomy. He received a Master of Science Degree in Agronomy from the Pennsylvania State University in 1976 and was admitted to their doctoral program later that year. He is currently a member of Sigma Xi, The American Society of Agronomy, The Crop Science Society of America, and the Soil Science Society of America.