EVALUATION AND BREEDING OF *HILARIA BELANGERI*
FOR TURFGRASS USE.

by

Andrew Edward Ralowicz

A Dissertation Submitted to the Faculty of the
DEPARTMENT OF PLANT SCIENCES

In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
WITH A MAJOR IN AGRONOMY AND PLANT GENETICS

In the Graduate College
THE UNIVERSITY OF ARIZONA

1991
As members of the Final Examination Committee, we certify that we have read the dissertation prepared by Andrew Edward Ralowicz entitled Evaluation and Breeding of Hilaria belangeri for Turfgrass Use. and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy.

Charles F. Mancino
Date 10/21/91

David M. Kopec
Date 10/21/91

William R. Kneebone
Date 10/21/91

Sue DeNise
Date 10/21/91

Allan M. Matthias
Date 10/21/91

Phil Ogden
Date 10/21/91

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Charles F. Mancino
Dissertation Director
Date 10/21/91
STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the Head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED: Andrew E. Rodriguez
ACKNOWLEDGEMENTS

First, thanks go to Dr. Charles Mancino for employing me, for serving as my major professor, and for reviewing this manuscript.

Gratitude must be extended to Drs. Sue DeNise, Bob Kneebone, David Kopec, Allen Matthias, and Phil Ogden for serving on my committee, for critically reviewing this manuscript, and for their patience during the 'wrapping up' stage. Special thanks are extended to Drs. Matthias and Ogden for representing my minor field of study, and Dr. DeNise for help with statistical genetics via Harvey.

I am very grateful to the United States Golf Association for supplying research funding for this project. None of this would be a reality without their financial support. I also thank the Department of Plant Sciences for my Graduate Associateship during this project.

Appreciation is extended to many other individuals: Dr. Donald Garrot Jr. for the use of computer facilities, Dr. Robert Kuehl and Rick Axelman for statistical assistance, the Arizona Crop Improvement Association and the USDA/ARS SCS Plant Materials Center for equipment and use of facilities, and the Farm Staffs at the Safford, and Tucson Agricultural Centers for field space and equipment. Thanks also go to Alison Maricic for assistance with data collection and plot maintenance. Special thanks go to Terry McGriff for help with the collection of specimens.

Thanks also go to another two special people: Susan and Joseph Dzik, my better half and her fine son. They helped with many parts of this project: collection trips, field plot maintenance and emotional support.

Finally, I would like to thank all the members of my family: my mother Helen, and siblings Leo, Philip, Steven, Ravi Inder Kaur, Peter, and John. They have supplied the unending encouragement needed to remain focused for an endeavor such as this.
DEDICATION
This dissertation is dedicated in loving memory to my father
Edward Daniel Ralowicz
who fostered my love for the plant kingdom, and showed me the
power of knowledge and the good things that can come from it,

and to my ageless mother

Helen Elizabeth McGlaughlin Ralowicz
who has provided me with endless support and encouragement
in all of my endeavors.
TABLE OF CONTENTS

LIST OF ILLUSTRATIONS ... 8

LIST OF TABLES. .. 9

ABSTRACT ... 12

1. INTRODUCTION AND REVIEW OF THE LITERATURE 14
 Water and Turf in the Desert 14
 Research Objectives and Accomplishments 14
 Previous Work and Present Outlook 15
 Turfgrass Breeding and Improvement 16
 Selection and Environmental Ramifications 18
 Views on Seeding ... 20

2. HERITABILITY ESTIMATES TO ASSESS THE POTENTIAL FOR GENETIC IMPROVEMENT ... 22
 Introduction .. 22
 Materials and Methods 23
 Field Sites and Experimental Designs 24
 Data Collection and Analysis 25
 Heritability Estimates 29
 Gains from Selection 31
 Results and Discussion 31
 Measured Characters 33
 Visually Rated Characters 35
 Germination and Seed Characters 38
 Estimates of the Components of Variance 42
 Heritability Estimates 49
 Phenotypic and Genotypic Correlations 55
 Safford .. 55
 Tucson .. 57
 Response to Selection 63
 Summary ... 63

3. INFLUENCE OF MOWING HEIGHT AND NITROGEN LEVEL ON TURFGRASS QUALITIES OF MESQUITEGRASS 66
 Introduction .. 66
 Materials and Methods 67
 Plant Material ... 67
 Field Site and Experimental Design 67
 Management Practices 68
 Statistical Analysis 70
Results and Discussion .. 70

Color ... 70
Ground Cover ... 79
Summary ... 90

4. INFLUENCE OF SEEDING DATES AND RATES ON SEEDLING
ESTABLISHMENT AND GROUND COVER OF MESQUITEGRASS 93

Introduction .. 93
Materials and Methods ... 93
Seed Source and Field Site ... 93
Watering Schedule .. 94
Experimental Design
and Statistical Analysis .. 94
Results and Discussion ... 95
Seedling Establishment .. 95
Ground Cover .. 98
Summary ... 101

5. RESEARCH SUMMARY AND CONCLUSIONS 102

APPENDIX A .. 103

METHODOLOGY FOR DETERMINING THE STANDARD
ERRORS FOR THE COMPONENTS OF VARIANCE 103

APPENDIX B .. 104

COLLECTION LOG: COLLECTIONS OF HILARIA
BELANGERI IN ARIZONA .. 104

APPENDIX C .. 118

SELECTED REFERENCES PERTAINING TO STATISTICAL
THEORY, BIOMETRICAL GENETICS, AND POPULATION
IMPROVEMENT .. 118

LITERATURE CITED ... 124
LIST OF ILLUSTRATIONS

Figure 1. Color ratings averaged across cutting and nitrogen treatments over time for accessions of mesquitegrass (*Hilaria belangeri*) 72

Figure 2. Color ratings averaged across accessions and cutting treatments over time for nitrogen treatments on mesquitegrass (*Hilaria belangeri*) 73

Figure 3. Color ratings averaged across accessions and cutting treatments for nitrogen treatments on mesquitegrass (*Hilaria belangeri*). 74

Figure 4. Ground cover (%) ratings averaged across cutting and nitrogen treatments over time for accessions of mesquitegrass (*Hilaria belangeri*) 82

Figure 5. Ground cover (%) ratings averaged across accessions and nitrogen treatments over time for cutting treatments on mesquitegrass (*Hilaria belangeri*) 83

Figure 6. Ground cover (%) ratings averaged across accessions and cutting treatments over time for nitrogen treatments on mesquitegrass (*Hilaria belangeri*). 84

Figure 7. Relationship between Time (days after seeding) and Ground Cover (averaged over seeding rates) for mesquitegrass (*Hilaria belangeri*). ... 100
LIST OF TABLES

Table 1. Location, date, character, and method of evaluation for clones of mesquitegrass (*Hilaria belangeri*) in 1990. 26

Table 2. Location, date, character, and method of evaluation for maternal half-sib progeny families of mesquitegrass (*Hilaria belangeri*) in 1990. ... 27

Table 3. Numbers of surviving progeny at Safford and Tucson, AZ for parental clones of mesquitegrass (*Hilaria belangeri*). 32

Table 4. Means and ranges of measured characters on parental clones and MHS families of mesquitegrass (*Hilaria belangeri*) at Safford and Tucson, AZ in 1990. 34

Table 5. Significance of effects from ANOVA on measured characters of populations of mesquitegrass (*Hilaria belangeri*) at Safford and Tucson, AZ in 1990. 36

Table 6. Means and ranges of means for visually rated characters on clones of mesquitegrass (*Hilaria belangeri*) at Safford and Tucson, AZ in 1990. 37

Table 7. Significance of effects from ANOVA on visually rated characters for clones of mesquitegrass (*Hilaria belangeri*) at Safford and Tucson, AZ in 1990. 39

Table 8. Means and ranges of germination and seed characters on clones of mesquitegrass (*Hilaria belangeri*) at Safford and Tucson, AZ in 1990. 40

Table 9. Significance of effects from ANOVA on germination and seed characters for clones of mesquitegrass (*Hilaria belangeri*) at Safford and Tucson, AZ in 1990. 43

Table 10. Estimates of variance components for measured characters within locations on populations of mesquitegrass (*Hilaria belangeri*) in 1990. 44

Table 11. Estimates of variance components within locations for visually rated characters on clones of mesquitegrass (*Hilaria belangeri*) in 1990. ... 47
Table 12. Estimates of variance components within locations for germination and seed characters of clones of mesquitegrass (*Hilaria belangeri*) in 1990. .. 48

Table 13. Broad-sense (h^2_b) and narrow-sense (h^2_n) heritability estimates of measured characters for mesquitegrass (*Hilaria belangeri*) at different locations in 1990. .. 50

Table 14. Broad-sense (h^2_b) heritability estimates of visually rated characters on mesquitegrass (*Hilaria belangeri*) clones at different locations in 1990. 52

Table 15. Broad-sense (h^2_b) heritability estimates of germination and seed characters of mesquitegrass (*Hilaria belangeri*) clones grown at different locations in 1990. 54

Table 16. Phenotypic (r_p) and genotypic (r_g) correlations of traits measured on clones of mesquitegrass (*Hilaria belangeri*) grown at Safford, AZ in 1990. .. 56

Table 17. Phenotypic (r_p) and genotypic (r_g) correlations of measured characters on progeny of mesquitegrass (*Hilaria belangeri*) grown at Safford, AZ in 1990. 58

Table 18. Phenotypic (r_p) and genotypic (r_g) correlations of traits measured on clones of mesquitegrass (*Hilaria belangeri*) grown at Tucson, AZ in 1990. .. 59

Table 19. Phenotypic (r_p) and genotypic (r_g) correlations of measured characters on progeny of mesquitegrass (*Hilaria belangeri*) grown at Tucson, AZ in 1990. .. 62

Table 20. Predicted responses to selection (G_i) based on the selection differentials (ΔX), and heritability estimates (h^2_n) of measured characters in 1990 for mesquitegrass (*Hilaria belangeri*). 64

Table 21. Dates of visual ratings performed on mesquitegrass (*Hilaria belangeri*) accessions vegetatively established 29 and 30 March 1989 at Tucson, AZ. 69
Table 22. Split-split plot design ANOVA for the Cultural Practices Experiment performed on mesquitegrass (*Hilaria belangeri*). 71

Table 23. Analysis of variance for the mean Color rating of mesquitegrass (*Hilaria belangeri*). 77

Table 24. Mean separations for average Color rating within cutting and nitrogen treatments of mesquitegrass (*Hilaria belangeri*). 78

Table 25. Mean separations for average Color rating within accessions among cutting heights, and among accessions within cutting heights for mesquitegrass (*Hilaria belangeri*). 80

Table 26. Mean separations for average Color rating within accessions among nitrogen treatments, and among accessions within nitrogen treatments for mesquitegrass (*Hilaria belangeri*). 81

Table 27. Analysis of variance for the mean Ground cover rating of mesquitegrass (*Hilaria belangeri*). 87

Table 28. Mean separations for average Ground cover ratings of cutting and nitrogen treatments on mesquitegrass (*Hilaria belangeri*). 88

Table 29. Ground cover means for accessions of mesquitegrass (*Hilaria belangeri*) within cutting heights and nitrogen treatments. 89

Table 30. Analysis of variance for number of seedlings established for mesquitegrass (*Hilaria belangeri*) in the 1989 Seeding Study. 96

Table 31. Mean separations of average number of seedlings established for seeding rates of mesquitegrass (*Hilaria belangeri*) within seeding dates in the 1989 Seeding Study. 97

Table 32. Analysis of variance for Ground Cover (%) for mesquitegrass (*Hilaria belangeri*) in the 1989 Seeding Study. 99
ABSTRACT

Curly mesquite (*Hilaria belangeri* (Steud.) Nash) is a palatable, nutritious range grass in the southwestern United States. A research project was initiated in 1988 on plant material collected within Arizona to determine the value of this species as a turfgrass, if sufficient genetic variation existed in vegetative, reproductive, and germination traits to allow for improvement of the turfgrass value by breeding, and if this species could be successfully established by seeding.

Curly mesquite can withstand the rigors of turfgrass cultural practices (mowing and fertilizing), while maintaining an attractive, healthy appearance. Plant material from five separate geographic origins was subjected to 5 cm and 10 cm heights of cut, and a no cut treatment, along with nitrogen applications of 0, 48, and 96 kg ha\(^{-1}\) yr\(^{-1}\) in a randomized complete block split-split plot design. Cutting at 10 cm, and application of 96 kg N ha\(^{-1}\) yr\(^{-1}\) produced the best color and highest ground cover. Control (uncut) plots exhibited low vigor and color.

Broad-sense \((h^2_b)\) and narrow-sense \((h^2_n)\) heritability estimates were computed for measured and rated characters on clones and their open-pollination progeny grown at Safford (S) and Tucson (T), AZ. Estimates of \(h^2_b\) of measured characters were: leaf length 0.29 (S) and 0.45 (T), stature 0.83 (S) and
0.71 (T), and flowers·spike"\(^{-1}\) 0.40 (S) and 0.36 (T). Significant variation was not observed in leaf width. Significant \(h^2\) estimates of 0.31, 0.51, and 0.30 were obtained for leaf length, stature, and flowers·spike"\(^{-1}\), respectively. Broad-sense heritability estimates ranged from 0.46 to 0.79 for color, and 0.47 to 0.69 for density ratings. Cumulative germination percentages had \(h^2\) estimates ranging from 0.45 to 0.61. Hard seed (%) and seed weight (mg 100 seed"\(^{-1}\)) had \(h^2\) estimates of 0.83 and 0.95, respectively.

Successful seedling establishment occurred after June, July and August sowings. Ground cover at the close of the season was greatest for the June seeding. A significant difference did not exist between the ground cover means of seeding rates (1 and 2 gm m"\(^{-2}\)).

The results of these investigations clearly warrant further efforts in the development of curly mesquite into a low maintenance turfgrass.
CHAPTER 1

INTRODUCTION AND REVIEW OF THE LITERATURE

Water and Turf in the Desert

The southwestern desert (west Texas, New Mexico, Arizona, and southern California) is characterized by extremely high temperatures and evaporation. Annual precipitation typically is 30 cm or less. Turfgrass in this region takes the forms of resorts and golf courses, public parks, cemeteries, and school yards. Limited turfgrass use occurs on home lawns. In Arizona, turfgrass facilities larger than 5 hectares are required to limit irrigation water use to 1.5 m ha\(^{-1}\) yr\(^{-1}\) (Arizona Dept. of Water Resources, 1988). These facilities must develop strategies to comply with the regulations set forth by the Arizona Department of Water Resources Groundwater Management Plan.

Several strategies are in use on a national level to reduce turfgrass irrigation requirements: increasing irrigation efficiency, improving irrigation scheduling, and developing grasses which are naturally adapted to moisture stress.

Research Objectives and Accomplishments

The focus of this research has been to investigate the potential of curly mesquite (\textit{Hilaria belangeri} (Stued.) Nash)
to become a low maintenance, low water requiring turfgrass established by seeding. Curly mesquite will be referred to hereafter as mesquitegrass in an effort to increase public acceptance of this potential turfgrass. Collections of the species were conducted in Cochise, Gila, Graham, Greenlee, Navajo, Pima, Pinal, Santa Cruz, and Yavapai Counties in Arizona. Morphological and reproductive traits were evaluated to assess germplasm diversity and genetic potentials for improvement. Concurrent experiments have examined turfgrass management practices, and factors affecting establishment by seeding. This research has a) identified genetically superior plants to begin a conventional breeding and turfgrass improvement program, and b) the practices to secure and sustain this species as turf.

Previous Work and Present Outlook

A major goal of current turfgrass research is to reduce water inputs while maintaining attractive, functional turf. One strategy is the development of previously underutilized grass species possessing turfgrass qualities and mechanisms permitting growth in harsh environments.

Mesquitegrass is an important range grass in the Southwest and has been recognized for its turfgrass potential (Kneebone, 1985; Humphrey, 1960; Bentley, 1898; Lamson-Scribner, 1897). Turfgrass attributes of this grass include
perennial growth, low stature, tolerance to defoliation, fine leaf texture, asexual spread by stolons, and establishment by seed. Its elevational range of adaptation in Arizona extends from approximately 600 to 1800 meters. The species grows in patches differing in density that colonize small (<10 cm³) to extensive areas (1 hectare).

Turfgrass Breeding and Improvement

Most, if not all, turfgrass breeding programs begin with the acquisition of the targeted species from natural habitats, and these ecotypes are evaluated in space planted nurseries. Discovering naturally occurring variants presents one of the most productive methods of securing the variable germplasm necessary for a successful breeding program (Funk, 1981; Burton, 1974, 1969). Masson and Bourgoin (1985) stated that prerequisite to breeding was the identification of the available diversity of germplasm. Examination of cytological, floral, morphological, and physiological variation was compulsory in assessing germplasm diversity.

Breeding and improvement strategies at the onset of turfgrass domestication programs have been outlined by Meyer and Funk (1989), Hurly and Funk (1985), Funk (1981), Berner (1977), Daniel (1970), Burton (1989, 1974, 1969), and Burton and DeVane (1953). Ecotypic selection was followed by evaluations of plant material for turfgrass traits entailing
measurements or ratings. Hurly and Funk (1985), Wofford and Baltensperger (1985), Burton (1969, 1951), Lebsock and Kalton (1954), and Burton and De Vane (1953) stated that in turfgrass breeding a survey of the nature and amount of variation in important traits could guide the breeder in determining the most effective breeding procedures to be used.

Evaluation of breeding potential is a 3-step process: a) partitioning of the observed variance in desired traits into genetic and environmental components to estimate heritability in the broad sense (h^2_b), b) estimating narrow-sense heritability (h^2_n) from progeny data, and c) calculating the expected gains from selection based on h^2_n estimates (Rogers, 1989; Wofford and Baltensperger, 1985; Burton and DeVane, 1953; Burton, 1951). Broad-sense heritability estimates were calculated from analysis of variance (ANOVA) for the respective trait. The narrow-sense heritability of a trait was determined by the regression of progeny values on the values of a) maternal parents, b) paternal parents, c) the parental averages, and also by the intra-class correlation of half-siblings (Rogers, 1989; Wofford and Baltensperger, 1985; Falconer, 1981).

Heritability studies estimate genetic expression and transmission at the population level. Genes, not genotypes, link the generations. Estimates of heritability are obtained
from the degree of resemblance between relatives. The use of genetically identical plants (clones) permits estimation of the environmental effects on expression of a quantitative trait as no genetic variation exists within a clone. Any measured variation within a clone should be due to the environment (Wofford and Baltensperger, 1985; Falconer, 1981; Burton, 1969; Burton and DeVane, 1953).

Heritability studies are best performed in different environments (Falconer, 1981; Berner, 1977). Performance at one location can be considered to be a particular character (Gallais, 1984; Falconer, 1981). When this is done, the heritability values can be viewed as estimates of two different traits, for example, leaf length in environment A and leaf length in environment B. This estimates the effects of environment on gene expression and leads to the conclusions: a) the environment does not allow full expression of the genes, and b) different genes are working in different environments (a significant genotype x environment interaction).

Selection and Environmental Ramifications

The ultimate aim of the breeder is to develop superior plant material. Heritability information is used to predict the gain from selection. All selection is indirect in that breeders select 'genotypes' based on phenotypic measurements of individuals or groups of their progenies (Gallais, 1984).
Environmental differences in the phenotypic expression of a trait, and significant genotype x environment interactions affect decisions as to where to perform selection, or conduct the breeding program, in the 'good' or 'poor' environment. Hammond (1947) presented a two-fold argument. Firstly, an environment favoring expression of the desired character will permit more rapid progress from selection (compared to an unfavorable environment). Secondly, if the improved breed is moved to stress conditions, it will perform better than if the breed had been developed under less favorable conditions. Falconer (1952) countered with the argument that a superior genotype in one environment cannot be expected to be superior in all environments. Byth et al. (1969) in soybeans (Glycine max (L.) Merr.) and Frey (1964) in oats (Avena spp.) found no differences between selection in fertile or poor environments. Arboleda-Rivera and Compton (1974) demonstrated that selection in a favorable environment was not associated with a significant advance in poor growing conditions for maize (Zea mays L.).

There is no simple answer to the question of conditions under which selection should be conducted. Falconer (1952) acknowledged that each case must be treated individually. He proposed treating the performances in two environments as genetically correlated characters, and imposed the restriction of, specifically and only, using two
environments. James (1961) developed a selection index combining performance in both environments. Freeman and Perkins (1971) developed linear regression techniques to relate performance of genotypes to environmental conditions. These researchers admitted, however, that environmental quantification was generally difficult in practice. Gallais (1984) pointed out that selection in stress situations will favor 'adaptation', and selection in good environments will be for 'potential'.

Views on Seeding

Burton (1989), Hintzen and Van Wijk (1985), Hurly and Funk (1985), Berner (1977), and Daniel (1970) encouraged assessing genetic variation in an effort to improve seed production at the beginning of a turfgrass breeding program. Vogel et al. (1989), McKell (1972), and Rogler (1954) asserted that a major objective of a grass breeding program should be increasing seedling vigor. Factors affecting seedling vigor are seed size, seed quality, germination rate, emergence rate, and relative growth rate. Rogler (1954) concluded that selection for large or heavy seed increased seedling vigor in crested wheatgrass (*Agropyron desertorum* Fisch. ex Link). Kneebone (1972) stated that selection of individuals that partition large quantities of carbohydrate reserves into seeds, or that mature more viable seeds than the
rest of the population was equally as important as the selection of vigorous seedlings that had displayed rapid and uniform germination.

Establishment by seeding will facilitate acceptance and commercial production of a grass. Vogel et al. (1989), Masson and Bourgoin (1985), Funk (1981), and Burton (1969) emphasized ease and economy of establishment were of primary importance in developing turfgrasses. Seed propagation decreases turfgrass establishment costs. Breeding superior seed producing turfgrass varieties, however, is more difficult and time consuming than genetic improvement of vegetatively propagated species (Burton, 1969).