THE IMPACT OF GOLF COURSE CONSTRUCTION AND MANAGEMENT ON SOIL QUALITY: EVALUATING SOIL QUALITY WITH MULTIPLE INDICATORS

by

GREGORY DENNIS PILLAR

B.S., University of Minnesota, Minneapolis, MN, 1999

A THESIS

submitted in partial fulfillment

of the requirements for the degree

MASTER OF SCIENCE

Department of Agronomy College of Agriculture

KANSAS STATE UNIVERSITY Manhattan, Kansas

2002

Approved by

Major Professor Dr. Stephen J. Thien

THE IMPACT OF GOLF COURSE CONSTRUCTION AND MANAGEMENT ON SOIL QUALITY: EVALUATING SOIL QUALITY WITH MULTIPLE INDICATORS

by

GREGORY DENNIS PILLAR

B.S., University of Minnesota, Minneapolis, MN, 1999

A THESIS

submitted in partial fulfillment

of the requirements for the degree

MASTER OF SCIENCE

Department of Agronomy College of Agriculture

KANSAS STATE UNIVERSITY Manhattan, Kansas

2002

Approved by:

Anajor Professor Dr. Stephen J. Thien

ABSTRACT

Somewhere in the United States, on average, more than one new golf course opens every day. With the recent boom in golf course construction, there is greater need to understand the environmental impacts of construction and management of golf courses. Golf courses are only as sustainable as their weakest natural component, which is often soil quality. Little research has been conducted on the assessment of the longterm impact and sustainability of golf courses on the soil environment. A method for evaluating environmental quality of large-scale landscapes such as golf courses that connects scientific research and public use is in great demand. The development of a multiple indexing system to gauge the environmental quality of golf courses was used to examine the impact and influence of golf course construction and management on soil quality. The overlying goal was to use the multiple indexing system (spider/radar graphs) to assist golf course superintendents to evaluate environmental quality.

Two studies conducted at Colbert Hills Golf Course in Manhattan, KS were used to assess the impact of golf course management and construction on environmental quality. A small-scale study was used to evaluate the use of swine and dairy compost on high-sand greens and tee boxes. Seventeen soil quality indicators were monitored over six months from May to October 2000. Even over this short time these amendments influenced some of the soil quality indicators. The use of a multiple index system allowed for easy identification of areas requiring remediation or additional attention.

A second study was initiated in 1997-1998 to assess the impact of golf course construction on environmental quality. Measurements of native, or pre-construction conditions were made on a natural grassland site prior to construction to establish baseline values for a host of physical, chemical, and biological soil quality indicators. After construction was completed in May 2000, the same sites were sampled each spring and fall. Using a multiple indexing system (spider/radar graphs), the status of eighteen different soil quality indicators were monitored. The construction of Colbert Hills and the resulting management have impacted numerous soil properties. The construction of the golf course had an immediate impact on soil quality indicators and while some such as aggregate stability and soil pH have started to slowly return to pre-construction conditions, others such as numerous biological properties continue to be at levels below the pre-construction conditions. Further work is recommended to closely monitor indicators that continue to be below or above established control limits. Additional research will help to strengthen soil quality indices as well as provide more conclusive evidence about the impact golf course management and construction has on environmental quality. Use of the spider/radar graphs to evaluate the status of environmental quality at Colbert Hills Golf Course has illustrated the promise this technique has as a management tool.

TABLE	E OF	CONT	TENTS

LIST OF FIGURES	xi
LIST OF TABLES	xx
ACKNOWLEDGEMENTS	xxiii
DEDICATION	xxiv
CHAPTER 1. LITERATURE REVIEW	1
1.1 Introduction	1
1.2 Steps in Soil Quality Evaluation	4
1.2.1 Identification of Critical Soil-Use Functions	5
1.2.2 Selection of Indicators to Evaluate Soil Function	6
1.2.2.1 Selection of Physical Soil Quality Indicators	10
1.2.2.2 Selection of Chemical Soil Quality Indicators	12
1.2.2.3 Selection of Biological Soil Quality Indicators	16
1.2.3 Analysis and Assessment of Critical Threshold Values for	
Soil Quality Indicators	19
1.2.4 Development and Implementation of Soil Quality Indices	21
1.2.5 Selection of Appropriate Remedial Management for	
Degraded Indicators	25
1.3 Application of Organic Compost to Improve Soil Quality	25
1.3.1 Influence of Compost Application on Physical Properties	26
1.3.2 Influence of Compost Application on Chemical Properties	29
1.3.3 Influence of Compost Application on Biological Properties	31
1.3.4 Negative Effects of Compost Application on Soil Quality	33
1.4 Literature Cited	37

CHAPTER 2. CONSTRUCTION OF A SOIL QUALITY INDEX

FOR TURF GRASS ECOSYSTEMS	51
2.1 Introduction	51
2.2 Constructing a Composite Soil Quality Index	53

2.2.1 Identification of Soil Functions	53
2.2.2 Selection of Appropriate Indicators to Evaluate Soil Quality	54
2.2.3 Measurement of Indicator Status	55
2.2.4 Assessment of Indicator Status	55
2.6.4.1 Establishment of Control Chart Indices	55
2.6.4.2 Transformation of Multiple Indices into Environmental	
Quality Evaluation Graph	56
2.2.5 Selection of Appropriate Remedial Management for	
Degraded Indicators	57
2.2.6 Monitoring of Indicators Over Time	57

CHAPTER 3. IMPACT OF DAIRY AND SWINE AMENDMENTS ON TURF

SOIL QUALITY: EVALUATING SOIL QUALITY	
WITH MULTIPLE INDICATORS	60
3.1 Abstract	60
3.2 Objective	61
3.3 Materials and Methods	61
3.3.1 Site Description	61
3.3.2 Soil Sampling and Analysis	67
3.4 Results and Discussion	69
3.4.1 Measurement and Analysis of Soil Quality Indicators	69
3.4.2 Physical Soil Quality Indicators	72
3.4.2.1 Bulk Density	72
3.4.2.2 Porosity	74
3.4.3 Chemical Soil Quality Indicators	76
3.4.3.1 Exchangeable Sodium Percentage	76
3.4.3.2 Electrical Conductivity	78
3.4.3.3 Cation Exchange Capacity	81
3.4.3.4 Calcium Saturation	84
3.4.3.5 Magnesium Saturation	87
3.4.3.6 Potassium Saturation	89
••	

3.4.3.7 Soil pH (1:1 Water)	93
3.4.3.8 Soil pH (2:1 CaCl ₂)	95
3.4.3.9 Total Carbon	97
3.4.3.10 Total Nitrogen	100
3.4.4 Biological Soil Quality Indicators	103
3.4.4.1 Microbial Biomass Carbon	103
3.4.4.2 Mineralizable Carbon	106
3.4.4.3 Microbial Biomass Nitrogen	109
3.4.4.4 Mineralizable Nitrogen	113
3.4.4.5 Microbial Biomass C to Total C Ratio	116
3.4.4.6 Microbial Biomass N to Total N Ratio	118
3.4.4.7 Soil Respiration	120
3.4.5 Additional Soil Quality Indicators	123
3.4.5.1 Water Content	123
3.4.5.2 Soil Temperature	125
3.5 Interpreting Soil Quality: Spider Radar Graphs for	
Multiple Indicators	126
3.6 Conclusion	148
3.7 Literature Cited	152

CHAPTER 4. IMPACT OF GOLF COURSE CONSTRUCTION AND

MANAGEMENT ON TURF SOIL QUALITY	160
4.1 Abstract	160
4.2 Objective	161
4.3 Materials and Methods	162
4.3.1 Site Description	162
4.3.2 Soil Sampling and Analysis	164
4.4 Results and Discussion	165
4.4.1 Measurement and Analysis of Soil Quality Indicators	165
4.4.2 Pre-Construction and Native Soil Condition	168
4.4.3 Post-Construction Analysis of Soil Quality Indicators	174

4.4.3.1 Physical Soil Quality Indicators	174
4.4.3.1.1 Bulk Density	175
4.4.3.1.2 Porosity	176
4.4.3.1.3 Aggregate Stability	178
4.4.3.2 Chemical Soil Quality Indicators	183
4.4.3.2.1 Sodium Saturation	183
4.4.3.2.2 Electrical Conductivity	185
4.4.3.2.3 Cation Exchange Capacity	1 87
4.4.3.2.4 Calcium Saturation	189
4.4.3.2.5 Free Calcium Carbonate (CaCO ₃) Content	192
4.4.3.2.6 Magnesium Saturation	194
4.4.3.2.7 Potassium Saturation	1 97
4.4.3.2.8 Soil pH (1:1 Water)	201
4.4.3.2.9 Soil pH (2:1 CaCl ₂)	203
4.4.3.2.10 Total Carbon	205
4.4.3.2.11 Total Nitrogen	207
4.4.3.3 Biological Soil Quality Indicators	209
4.4.3.3.1 Microbial Biomass Carbon	209
4.4.3.3.2 Mineralizable Carbon	211
4.4.3.3.3 Microbial Biomass Nitrogen	213
4.4.3.3.4 Mineralizable Nitrogen	215
4.4.3.3.5 Microbial Biomass C to Total C Ratio	217
4.4.3.3.6 Microbial Biomass N to Total N Ratio	219
4.4.3.3.7 Mineralizable Carbon and Nitrogen	221
4.5 Interpreting Soil Quality: Spider Radar Graphs for Multiple	
Indicators	223
4.6 Conclusion	237
4.7 Literature Cited	240

APPENDIX A. CHEMICAL, BIOLOGICAL, AND PHYSICAL DATA

FOR 0.0 – 2.5 cm AND 2.5 – 5.0 cm LAYER IN GREEN	
AND TEE BOX SOILS (CHAPTER 3)	246
Table A.1. Bulk density of 0-5.0 cm in green and tee box soils	246
Table A.2. Soil porosity of 0-5.0 cm in green and tee box soils	246
Table A.3. Exchangeable sodium of 0-2.5 cm layer in	
green and tee box soils	247
Table A.4. Exchangeable sodium of 2.5 -5.0 cm layer in	
green and tee box soils	247
Table A.5. Electrical conductivity of 0-2.5 cm layer in	
green and tee box soils	248
Table A.6. Electrical conductivity of 2.5 -5.0 cm layer in	
green and tee box soils	248
Table A.7. Cation exchange capacity (CEC) of 0-2.5 cm layer in	
green and tee box soils	249
Table A.8. Cation exchange capacity (CEC) of 2.5-5.0 cm layer in	
green and tee box soils	249
Table A.9. Calcium concentration of 0-2.5 cm layer in	
green and tee box soils	250
Table A.10. Calcium concentration of 2.5-5.0 cm layer in	
green and tee box soils	250
Table A.11. Calcium saturation (percentage) of 0-2.5 cm layer in	
green and tee box soils	251
Table A.12. Magnesium concentration of 0-2.5 cm layer in	
green and tee box soils	251
Table A.13. Magnesium concentration of 2.5-5.0 cm layer in	
green and tee box soils	252
Table A.14. Magnesium saturation (percentage) of 0-2.5cm layer in	
green and tee box soils	252
Table A.15. Sodium concentration of 0-2.5 cm layer in	
green and tee box soils	253

v

Table A.16. Sodium concentration of 2.5-5.0 cm layer in	
green and tee box soils	253
Table A.17. Potassium concentration of 0-2.5 cm layer in	
green and tee box soils	254
Table A.18. Potassium concentration of 2.5-5.0 cm layer in	
green and tee box soils	254
Table A.19. Potassium saturation (percentage) for 0-2.5 cm layer in	
green and tee box soils	255
Table A.20. Soil pH (1:1 water) of 0-2.5 cm layer in	
green and tee box soils	256
Table A.21. Soil pH (1:1 water) of 2.5-5.0 cm layer in	
green and tee box soils	256
Table A.22. Soil pH (2:1 CaCl ₂) of 0-2.5 cm layer in	
green and tee box soils	257
Table A.23. Soil pH (2:1 CaCl ₂) of 2.5-5.0 cm layer in	
green and tee box soils	257
Table A.24. Total carbon of 0-2.5 cm layer in	
Table A.24. Total carbon of 0-2.5 cm layer ingreen and tee box soils	258
	258
green and tee box soils	258 258
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in	·
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils	·
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils Table A.26. Total nitrogen of 0-2.5 cm layer in	258
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils Table A.26. Total nitrogen of 0-2.5 cm layer in green and tee box soils	258
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils Table A.26. Total nitrogen of 0-2.5 cm layer in green and tee box soils Table A.27. Total nitrogen of 2.5 -5.0 cm layer in	258 259
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils Table A.26. Total nitrogen of 0-2.5 cm layer in green and tee box soils Table A.27. Total nitrogen of 2.5 -5.0 cm layer in green and tee box soils	258 259
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils Table A.26. Total nitrogen of 0-2.5 cm layer in green and tee box soils Table A.27. Total nitrogen of 2.5 -5.0 cm layer in green and tee box soils Table A.28. Microbial biomass carbon of 0-2.5 cm layer in	258 259 259
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils Table A.26. Total nitrogen of 0-2.5 cm layer in green and tee box soils Table A.27. Total nitrogen of 2.5 -5.0 cm layer in green and tee box soils Table A.28. Microbial biomass carbon of 0-2.5 cm layer in green and tee box soils	258 259 259
green and tee box soils Table A.25. Total carbon of 2.5-5.0 cm layer in green and tee box soils Table A.26. Total nitrogen of 0-2.5 cm layer in green and tee box soils Table A.27. Total nitrogen of 2.5 -5.0 cm layer in green and tee box soils Table A.28. Microbial biomass carbon of 0-2.5 cm layer in green and tee box soils Table A.29. Microbial biomass carbon of 2.5-5.0 cm layer in	258 259 259 260

Т	Table A.31. Mineralizeable carbon of 2.5-5.0 cm	layer in	
	green and tee box soils		61
Т	Table A.32. Microbial biomass nitrogen of 0-2.5	cm layer in	
	green and tee box soils		62
Т	Table A.33. Microbial biomass nitrogen of 2.5-5	.0 cm layer in	
	green and tee box soils		62
Т	Table A.34. Mineralizable nitrogen of 0-2.5 cm l	ayer in	
	green and tee box soils		63
Т	Table A.35. Mineralizeable nitrogen of 2.5 -5.0 c	em layer in	
	green and tee box soils		63
Т	Table A.36. Microbial biomass carbon:total carb	on ratio (MBC/TC)	
	of 0-2.5 cm layer in green and tee bo	ox soils 2	64
Т	Table A.37. Microbial biomass nitrogen:total nit	rogen ratio (MBN/TN)	
	of 0-2.5 cm layer in green and tee bo	ox soils 2	64
Т	Table A.38. Microbial respiration of 0-2.5 cm la	yer in	
	green and tee box soils		65
ΔΡΡΕΝΙΓ	DIX B. TEMPERATURE DATA FOR GREEN	AND	
	TEE BOX SOILS (CHAPTER 3		66
	Figure B.1. Temperature measurements at surfac		00
.	in untreated green and tee box soils.		66
F	Figure B.2. Temperature measurements at surfac		00
Г			67
F	in swine 1x amended green and tee b Figure B.3. Temperature measurements at surfac		07
Γ			68
F	in swine 2x amended green and tee b		00
.	Figure B.4. Temperature measurements at surfac	· •	<u> </u>
	in dairy 1x amended green and tee b		69
F	Figure B.5. Temperature measurements at surfac		70
~	in dairy 2x amended green and tee b		70

Figure B.6. Surface temperature measurements for all amended and

Figure B.7. 1" depth temperature measurements for all amended and	
untreated green and tee box soils	272
Figure B.8. 3" depth temperature measurements for all amended and	
untreated green and tee box soils	273
APPENDIX C. STANDARDIZED DATA FOR GREEN AND	
TEE BOX SOILS (CHAPTER 3)	274
Table C.1. Standardized data for high sand green before first	
compost application	275
Table C.2. Standardized data for high sand green 45 days (October 26th)	
after last compost application	276
Table C.3. Standardized data for tee box areas before first	
compost application	277
Table C.4. Standardized data for tee box areas 45 days (October 26th)	
after last compost application	278
APPENDIX D. CHEMICAL, BIOLOGICAL, AND PHYSICAL DATA	
FOR 0.0 – 12.0 cm LAYER IN FAIRWAY SOILS (CHAPTER 4)	279
Table D.1. Bulk density of 0-5.0 cm layer on fairway soils at Colbert	
Hills Golf Course	279
Table D.2. Porosity of 0-5.0 cm layer on fairway soils at Colbert	
Hills Golf Course	279
Table D.3. Aggregate stability (MWD) of 0-12.0 cm layer on fairway	
soils at Colbert Hills Golf Course	280
Table D.4. Aggregate stability (GMD) of 0-12.0 cm layer on fairway	
soils at Colbert Hills Golf Course	280
Table D.5. Sodium concentration of 0-12.0 cm layer on fairway	
soils at Colbert Hills Golf Course	281
Table D.6. Sodium saturation of 0-12.0 cm on fairway soils at	
Colbert Hills Golf Course	281

Table D.7. Electrical conductivity of 0-12.0 cm layer on fairway	soils
at Colbert Hills Golf Course	
Table D.8. Cation exchange capacity (CEC) of 0-12.0 cm layer of	n
fairway soils at Colbert Hills Golf Course	
Table D.9. Calcium concentration of 0-12.0 cm layer on fairway	soils
at Colbert Hills Golf Course	283
Table D.10. Calcium saturation of 0-12.0 cm layer on fairway so	ils
at Colbert Hills Golf Course	283
Table D.11. Magnesium concentration of 0-12.0 cm layer on fair	way
soils at Colbert Hills Golf Course	
Table D.12. Magnesium saturation of 0-12.0 cm layer on fairway	soils
at Colbert Hills Golf Course	
Table D.13. Potassium concentration of 0-12.0 cm layer on fairw	ay soils
at Colbert Hills Golf Course	
Table D.14. Potassium saturation of 0-12.0 cm layer on fairway s	soils
at Colbert Hills Golf Course	
Table D.15. Soil pH (1:1 water) of 0-12.0 cm layer on fairway so	ils
at Colbert Hills Golf Course	
Table D.16. Soil pH (2:1 CaCl ₂) of 0-12.0 cm layer on fairway s	oils
at Colbert Hills Golf Course	
Table D.17. Total carbon of 0-12.0 cm layer on fairway soils at	
Colbert Hills Golf Course	
Table D.18. Total nitrogen of 0-12.0 cm layer on fairway soils at	
Colbert Hills Golf Course	
Table D.19. Free CaCO ₃ of 0-12.0 cm layer on fairway soils at	
Colbert Hills Golf Course	
Table D.20. Microbial biomass carbon of 0-12.0 layer cm on fair	way
soils at Colbert Hills Golf Course	
Table D.21. Mineralizable carbon of 0-12.0 cm layer on fairway	soils
at Colbert Hills Golf Course	

ix

Table D.22. Microbial biomass nitrogen of 0-12.0 cm layer on fairway	
soils at Colbert Hills Golf Course	289
Table D.23. Mineralizable nitrogen of 0-12.0 cm layer on fairway	
soils at Colbert Hills Golf Course	290
Table D.24. Microbial biomass carbon:total carbon ratio of 0-12.0 cm	
layer on fairway soils at Colbert Hills Golf Course	290
Table D.25. Microbial biomass nitrogen:total nitrogen ratio of 0-12.0 cm	
layer on fairway soils at Colbert Hills Golf Course	291

APPENDIX E. STANDARDIZED DATA FOR FAIRWAY

SOILS (CHAPTER 4)	292
Table E.1. Standardized data for fairway soils in October 2001 at	
Colbert Hills Golf Course	293
Table E.2. Standardized data for 10 th fairway from October 1999 to	
October 2001 Colbert Hills Golf Course	294

APPENDIX F. WATER QUALITY ANALYSIS OF THE WATER SYSTEM	
FOR THE CITY OF MANHATTAN, KS	295
Table F.1. Water quality analysis for the City of Manhattan's water	
system. A portion of Colbert Hills irrigation water is from	
the city water system	295

LIST OF FIGURES

Figure 1.1. Relationship between soil pH and availability (or abundance)	
of soil nutrients and microbes	13
Figure 1.2. A control chart illustrating upper control limits and lower control	
limits to set an acceptable range for monitoring soil quality	20
Figure 2.1. Flow chart illustrating the stages of soil quality research. First,	
specific soil functions are identified. Next, appropriate soil quality	
indicators are selected and connected to specific soil functions.	
Then, indicators are measured and analyzed using control charts.	
Numerous control charts are then integrated into a spider radar	
graph to give a composite picture of soil quality	58
Figure 2.2. The use of a spider/radar graph to represent the status of numerous	
soil quality indicators	59
Figure 3.1. The green located on the 2^{nd} hole of the research course at	
Colbert Hills	63
Figure 3.2. The first tee box located on the 3^{rd} hole of the research course	
at Colbert Hills	63
Figure 3.3. The second tee box located on the 3 rd hole on the research course	
at Colbert Hills	64
Figure 3.4. Tee box on the 4 th hole on the research course at Colbert Hills	64
Figure 3.5. Diagram of 2^{nd} Green on the research course at Colbert Hills.	
Diagram is not to scale	65
Figure 3.6. Diagrams of Tee Box soils on the 3^{rd} and 4^{th} hole of the research	
course at Colbert Hills. Diagram is not to scale	66
Figure 3.7. Bulk density of green and tee-box soils amended with swine and	
dairy compost	73
Figure 3.8. Soil porosity of green and tee-box soils amended with swine and dairy	
dairy compost	75

Figure 3.9. Exchangeable sodium of green and tee-box soils amended with	
swine and dairy compost	77
Figure 3.10. Electrical conductivity of green and tee-box soils amended	
with swine and dairy compost	80
Figure 3.11. Cation exchange capacity (CEC) of green and tee-box soils	
amended with swine and dairy compost	83
Figure 3.12. Calcium saturation of green and tee-box soils amended with	
swine and dairy compost	86
Figure 3.13. Magnesium saturation of green and tee-box soils amended with	
swine and dairy compost	88
Figure 3.14. K saturation of green and tee-box soils amended with swine	
and dairy compost. Blue lines reflect fertilizer applications	
presented in Table 2.5	91
Figure 3.15. Soil pH (1:1 water method) of green and tee-box soils amended	
with swine and dairy compost	94
Figure 3.16. Soil pH (2:1 calcium chloride method) of green and tee-box soils	
amended with swine and dairy compost	96
Figure 3.17. Total carbon in green and tee-box soils amended with swine and	
dairy compost	99
Figure 3.18. Total nitrogen in green and tee-box soils amended with swine and	
dairy compost. Blue lines reflect fertilizer applications	
presented in Table 2.6	101
Figure 3.19. Microbial biomass carbon in green and tee-box soils amended	
with swine and dairy compost	105
Figure 3.20. Mineralizable carbon in green and tee-box soils amended with	
swine and dairy compost	108
Figure 3.21. Microbial biomass nitrogen in green and tee-box soils amended	
with swine and dairy compost. Blue lines reflect fertilizer	
applications presented in Table 3.7	111

Figure 3.22. Mineralizable nitrogen in green and tee-box soils amended with	
swine and dairy compost. Blue lines reflect fertilizer applications	
presented in Table 3.7	115
Figure 3.23. The ratio of microbial biomass carbon to total carbon in green	
and tee box soils amended with swine and dairy compost	117
Figure 3.24. The ratio of microbial biomass nitrogen to total nitrogen in	
green and tee box soils amended with swine and dairy compost	119
Figure 3.25. Microbial respiration in green and tee-box soils with swine	
and dairy compost	122
Figure 3.26. Water content in green and tee-box soils with swine and	
dairy compost	124
Figure 3.27. Composite soil quality index for seventeen soil quality indicators	
for untreated green soil before first application date. Standardized	
values for calcium saturation and potassium saturation are both	
shown as 2x the upper control value. Actual values are 4.25x	
and 10.3x the upper control limit for calcium and potassium	
saturation respectfully	128
Figure 3.28. Composite soil quality index for seventeen soil quality indicators	
for untreated green soil 45 days (Oct. 26 th , 2000) after last	
application date. The standardized value for potassium saturation	
is shown at 2x the upper control limit, while, the actual value is	
2.78x the upper control limit	129
Figure 3.29. Composite soil quality index for seventeen soil quality indicators	
for swine 1x treated green soil before first application date.	
Standardized values for magnesium saturation and potassium	
saturation are both shown as 2x the upper control limit. Actual	
values are 2.5x and 13.2x the upper control limit for magnesium	
and potassium saturation respectfully	130
Figure 3.30. Composite soil quality index for seventeen soil quality indicators	
for swine1x treated green soil 45 days (Oct. 26 th , 2000) after last	
application date	131

xiii

Figure 3.31. Composite soil quality index for seventeen soil quality indicators	
for swine 2x treated green soil before first application date.	
Standardized values for calcium saturation and potassium saturation	
are both shown as 2x the upper control limit. Actual values are	
4.75x and 7.6x the upper control limit for calcium and potassium	
saturation respectfully	132
Figure 3.32. Composite soil quality index for seventeen soil quality indicators for	
swine2x treated green soil 45 days (Oct. 26 th , 2000) after last	
application date. The standardized value for potassium saturation	
is shown at 2x the upper control limit, while, the actual value is	
2.5x the upper control limit	133
Figure 3.33. Composite soil quality index for seventeen soil quality indicators	
for dairy 1x treated green soil before first application date.	
Standardized values for calcium saturation and potassium	
saturation are both shown as 2x the upper control value. Actual	
values are 2.75x and 9.9x the upper control limit for calcium and	
potassium saturation respectfully	134
Figure 3.34. Composite soil quality index for seventeen soil quality indicators	
for dairy 1x treated green soil 45 days (Oct. 26 th , 2000) after last	
application date. The standardized value for potassium saturation	
is shown at 2x the upper control limit, while, the actual value is	
2.2x the upper control limit	135
Figure 3.35. Composite soil quality index for seventeen soil quality indicators	
for dairy 2x treated green soil before first application date.	
Standardized values for calcium saturation, magnesium saturation,	
and potassium saturation are all shown as 2x the upper control	
value. Actual values are 3.75x, 2.7xx and 12.6x the upper control	
limit for calcium, magnesium, and potassium saturation	
respectfully	136

Figure 3.36. Composite soil quality index for seventeen soil quality indicators	
for dairy 2x treated green soil 45 days (Oct. 26 th , 2000) after	
last application date	137
Figure 3.37. Composite soil quality index for seventeen soil quality indicators	
for untreated tee box soil before the first application date. The	
standardized value for calcium saturation is shown at 2x the	
upper control value, while, the actual value is 4.25x the upper	
control limit	138
Figure 3.38. Composite soil quality index for seventeen soil quality indicators	
for untreated tee box soil 45 days (Oct. 26 th , 2000) after last	
application date. The standardized values for calcium saturation	
and microbial nitrogen ratio are shown at 2x the upper control	
limit, while, the actual values are 3.75x and 4.25x the upper	
control limit respectively	139
Figure 3.39. Composite soil quality index for seventeen soil quality indicators	
for swine 1x treated tee box soil before the first application date.	
The standardized value for calcium saturation is shown at 2x the	
upper control value, while, the actual value is 4.25x the upper	
control limit	140
Figure 3.40. Composite soil quality index for seventeen soil quality indicators	
for swine 1x treated tee box soil 45 days (Oct. 26 th , 2000) after	
last application date. The standardized value for calcium	
saturation is shown at 2x the upper control limit, while, the actual	
value is 3.25x the upper control limit	141
Figure 3.41. Composite soil quality index for seventeen soil quality indicators	
for swine 2x treated tee box soil before the first application date.	
The standardized value for calcium saturation is shown at 2x the	
upper control value, while, the actual value is 4.75x the upper	
control limit	142

xv

Figure 3.42.	Composite soil quality index for seventeen soil quality indicators	
	for swine 2x treated tee box soil 45 days (Oct. 26 th , 2000) after	
	last application date. The standardized value for calcium	
	saturation is shown at 2x the upper control limit, while, the	
	actual value is 2.75x the upper control limit	143
Figure 3.43.	Composite soil quality index for seventeen soil quality indicators	
	for dairy 1x treated tee box soil before the first application date.	
	The standardized value for calcium saturation is shown at 2x the	
	upper control value, while, the actual value is 4.75x the upper	
	control limit	144
Figure 3.44.	Composite soil quality index for seventeen soil quality indicators	
	for dairy 1x treated tee box soil 45 days (Oct. 26 th , 2000) after	
	last application date. The standardized value for calcium	
	saturation is shown at 2x the upper control limit, while, the actual	
	value is 3.75x the upper control limit	145
Figure 3.45.	Composite soil quality index for seventeen soil quality indicators	
	for dairy 2x treated tee box soil before the first application date.	
	The standardized value for calcium saturation is shown at 2x the	
	upper control value, while, the actual value is 4.75x the upper	
	control limit	146
Figure 3.46.	Composite soil quality index for seventeen soil quality indicators	
	for dairy 2x treated tee box soil 45 days (Oct. 26th, 2000) after	
	last application date. The standardized value for calcium	
	saturation and microbial nitrogen ratio are shown at 2x the upper	
	control limit, while, the actual values are 3.25x and 2.25x the	
	upper control limit respectively	147
Figure 4.1.	Land development breakdown and location of sampling sites for	
	Colbert Hills Golf Course	163
Figure 4.2.	Soil map for development site of Colbert Hills Golf Course	169
Figure 4.3.	Bulk density of fairway soils at Colbert Hills Golf Course	175

.

Figure 4.4.	Soil porosity of fairway soils at Colbert Hills Golf Course	177
Figure 4.5.	Aggregate stability and size distribution (MWD) of fairway	
	soils at Colbert Hills Golf Course	181
Figure 4.6.	Aggregate stability and size distribution (GMD) of fairway	
	soils at Colbert Hills Golf Course	182
Figure 4.7.	Sodium saturation of fairway soils at Colbert Hills Golf Course	184
Figure 4.8.	Electrical conductivity of fairway soils at Colbert Hills Golf	
	Course	186
Figure 4.9.	Cation exchange capacity of fairway soils at Colbert Hills Golf	
	Course	188
Figure 4.10.	Calcium saturation percentage of fairway soils at Colbert Hills	
	Golf Course	191
Figure 4.11.	Free CaCO ₃ on fairway soils at Colbert Hills Golf Course	193
Figure 4.12.	Mg saturation percentage of fairway soils at Colbert Hills	
	Golf Course	195
Figure 4.13.	Ca:Mg ratio of fairway soils at Colbert Hills Golf Course	196
Figure 4.14.	K saturation percentage for fairway soils at Colbert Hills	
	Golf Course	198
Figure 4.15.	Ca:K ratio of fairway soils at Colbert Hills Golf Course	199
Figure 4.16.	Mg:K ratio of fairway soils at Colbert Hills Golf Course	200
Figure 4.17.	Soil pH (1:1 water) for fairway soils on Colbert Hills Golf Course	202
Figure 4.18.	Soil pH (2:1 CaCl ₂) for fairway soils at Colbert Hills Golf Course	204
Figure 4.19.	Total C in fairway soils at Colbert Hills Golf Course	206
Figure 4.20.	Total N for fairway soils at Colbert Hills Golf Course	208
Figure 4.21.	Microbial biomass C of fairway soils at Colbert Hills Golf	
	Course	210
Figure 4.22.	Mineralizable C in fairway soils at Colbert Hills Golf Course	212
Figure 4.23.	Microbial biomass N for fairway soils at Colbert Hills Golf Course	214
Figure 4.24.	Mineralizable N for fairway soils at Colbert Hills Golf Course	216
Figure 4.25.	Microbial biomass C:Total C Ratio for fairway soils at Colbert	
	Hills Golf Course	218

Figure 4.26.	Microbial biomass N:Total N ratio for fairway soils at Colbert	
	Hills Golf Course	220
Figure 4.27.	Composite soil quality index for eight-teen soil quality indicators	
	on the 10 th fairway (CH10). The standardized value for calcium	
	saturation is shown as 2x the upper control limit. The actual	
	value is 2.02x the upper threshold limit	224
Figure 4.28.	Composite soil quality index for eight-teen soil quality	
	indicators in the middle of the 12 th fairway (CH-12F)	225
Figure 4.29.	Composite soil quality index for eight-teen soil quality indicators	
	near the tee-box of the 12 th fairway (CH-12T)	226
Figure 4.30.	Composite soil quality index for eight-teen soil quality indicators	
	on the 13 th fairway (CH-13)	227
Figure 4.31.	Composite soil quality index for eight-teen soil quality indicators	
	on the 14 th fairway (CH-14)	228
Figure 4.32.	Composite soil quality index for eight-teen soil quality indicators	
	on the 15 th fairway (CH-15)	229
Figure 4.33.	Composite soil quality index for eight-teen soil quality indicators	
	on the 18 th fairway (CH-18). The standardized value for calcium	
	saturation is shown as 2x the upper control limit. The actual	
	value is 2.97x the upper threshold limit	230
Figure 4.34.	Composite soil quality index for eight-teen soil quality indicators	
	on the 10 th fairway (CH-10) measured in October 1999	232
Figure 4.35.	Composite soil quality index for eighteen soil quality indicators on	
	the 10 th fairway (CH-10) measured in May 2000. The standardized	
	values for calcium saturation and microbial biomass nitrogen ratio	
	are shown as 2x the upper control limit. The actual values are	
	3.97x and 2.58x respectively	233
Figure 4.36.	Composite soil quality index for eight-teen soil quality indicators	
	on the 10 th fairway (CH-10) measured in October 2000	234

Figure 4.37. Composite soil quality index for eight-teen soil quality indicators	
on the 10 th fairway (CH-10) measured in May 2001	235
Figure 4.38. Composite soil quality index for eight-teen soil quality indicators	
on the 10 th fairway (CH-10) measured in October 2001. The	
standardized value for calcium saturation is shown as 2x the upper	
control limit. The actual value is 2.03x the upper control limit	236

LIST OF TABLES

Table 1.1.	Proposed basic soil biological, chemical, and physical indicators	
	to measure soil quality	7
Table 1.2.	List of soil characteristics that can be estimated from basic input	
	variables using pedotransfer function or simple models	8
Table 1.3.	Soil physical, chemical, and biological indicators for assessing soil	
	quality and their relationship to soil organic matter	9
Table 1.4.	Changes in soil properties due to organic compost application	27
Table 1.5.	Soil Physical properties as affected by various waste applications	28
Table 1.6.	Effect of amendment CEC on the amount of amendment required to	
	increase the CEC of a typical sand used for turfgrass root zones by	
	1, 2, 3, and 4 cmol kg ⁻¹	30
Table 1.7.	Assumed N and P mineralization rates and cumulative availability	
	in composted cattle manure	31
Table 1.8.	Microflora populations for soil applied with organic amendments	32
Table 1.9.	Evolution of the total mineral nitrogen content (mg N kg ⁻¹ dry soil)	
	in soil amended with organic wastes	32
Table 1.10.	Minimal data set of soil quality indicators proposed by Doran and	
	Parkin (1996) with suggested additional indicators for application	
	of agricultural, municipal or industrial by-products	36
Table 2.1.	Selected soil biological, chemical, and physical indicators to	
	measure soil quality on turf soil	55
Table 3.1.	Chemical analysis of swine and dairy compost	67
Table 3.2.	Physical, Chemical, and Biological soil quality indicators measured	
	and the referred method	68
Table 3.3.	Ideal upper and lower control limits for soil quality indicators on	
	pyrennial rye grass tee boxes and creeping bentgrass high-sand	
	greens	70
Table 3.4.	K fertilizer application on green and tee box areas	92
Table 3.5.	Nitrogen fertilizer application on green and tee box areas	102

Table 3.6.	Nitrogen fertilizer application on green and tee box areas	112
Table 4.1.	Physical, Chemical, and Biological soil quality indicators measured	
	on the fairway soils and the referred method	165
Table 4.2.	Physical, chemical, and biological soil quality indicators measured	
	and the referred method	167
Table 4.3.	Extractable cations for soils sampled before construction at Colbert	
	Hills Golf Course	170
Table 4.4.	Chemical data for soils sampled before construction of Colbert	
	Hills Golf Course	170
Table 4.5.	Levels of C and N in the soil organic matter, microbial biomass,	
	and mineralizeable fractions for the native prairie soils at the	
	Colbert Hills Golf Course	171
Table 4.6.	Relationship between potential mineralizable C (PMC), N (PMN),	
	microbial biomass C (MBC) and N (MBN), stable organic C (SOC)	
	and N (SON), and total C (TC), and N (TN) on the native soils at	
	Colbert Hills Golf Course	171
Table 4.7.	Chemical data for undisturbed soils at Colbert Hills Golf Course	172
Table 4.8.	Physical and chemical data for undisturbed soils at Colbert Hills	
	Golf Course	172
Table 4.9.	Levels of C and N in the soil organic matter, microbial biomass,	
	and mineralizeable fractions for the undisturbed soils at the Colbert	
	Hills Golf Course	173
Table 4.10.	Relationship between potential mineralizable C (PMC), N (PMN),	
	microbial biomass C (MBC) and N (MBN), stable organic C (SOC)	
	and N (SON), and total C (TC), and N (TN) on the undisturbed	
	soils at Colbert Hills Golf Course	173
Table 4.11.	Levels of C and N in the soil organic matter, microbial biomass,	
	and mineralizeable fractions on the fairway soils at Colbert Hills	
	Golf Course	222

ACKNOWLEDGMENTS

I am indebted to my major professor Dr. Steve J. Thien for his support, encouragement, guidance, and patience throughout my academic career at Kansas State University. Thank you to Bion Technologies Inc. and Kansas State University for funding and support that allowed me to continue my education and studies in soil science.

I am extremely thankful to my graduate supervisory committee members: Dr. Kang Xia and Dr. Charles Rice for serving on my committee and for guidance and assistance through my studies.

Thank you to David Gourlay, Paul Davids and the staff at Colbert Hills Golf Course for their cooperation, support, and patience throughout my research. Special thanks goes to the Department of Agronomy for providing an environment in which to work, learn, and have fun.

Millions of thanks goes to the Kansas State Soil Testing Lab for all their help and enthusiasm. Special thanks goes to Gary Griffth and Sherrie Fitzgerald for being so friendly and willing to answer questions and for handling my ever growing number of soil samples. Thank you to the Microbial Ecology Lab, especially Maysoon Mihka, for all their help with the biological soil studies.

I am very thankful for the help of my research assistants, especially Angela Lickteig for her help over the last two years on this project. I am also extremely grateful to all my friends and fellow graduate students for their help, advice, and friendship

Most importantly, the utmost thanks and gratitude goes to my family, especially my parents Dennis and Mary Pillar. Thank you from the bottom of my heart for your love, support, and guidance.

xxiii

Dedicated to

My grandfather

Richard A. Williams

with love, respect, and admiration