Chapter 2

AN EVALUATION AND COMPARISON OF NATURALLY AND ARTIFICIALLY ENHANCED ATHLETIC FIELD SAND TEXTURED ROOT ZONES

ABSTRACT

Many athletic fields are constructed with high sand content root zones. Sand root zones maintain macroporosity once compacted, but can develop problems due to their instability. Many inclusions have been developed to increase the strength, to limit deformation, and to increase the wear resistance of natural playing surfaces. Inclusions were compared to straight sand and sandsoil mixes under simulated traffic in this three year study. The objectives of this study were; 1) to compare the playing surface characteristics of these enhanced root zones under simulated traffic, 2) to monitor the changes in infiltration rates after each season of traffic, and 3) to evaluate the soil physical properties of each root zone and the inclusion effects on root zone strength. Sand-soil mixes containing greater than 9% silt+clay increased soil bearing capacity more consistently than artificial inclusions, but also had the greatest decrease in infiltration rates over the two traffic seasons. The sand-soil mix containing 15% silt+clay had the poorest wear tolerance, while artificial inclusions had minimal effects on wear tolerance during both traffic seasons.

INTRODUCTION

An athletic field should provide a safe, consistent playing surface that will maintain adequate traction, surface hardness, and turfgrass cover regardless of weather conditions. Athletic competitions ensue despite weather conditions, with the exception of lightning. Therefore, athletic fields must have the ability to rid the playing surface of water rapidly through surface drainage or infiltration and percolation.

Surface drainage and constituents of the root zone primarily well-graded sand water movement. The predominant root zone constituent used for athletic field construction is sand because its single-grained structure does not deteriorate with the advent of compactive forces, thus maintaining macroporosity and adequate drainage (Bingaman and Konke 1970). However, sand can cause problems due to its instability.

The greatest disadvantage of using sand to construct athletic field root zones is its poor stability. Stabilizing sand and retaining the macroporosity necessary for rapid water movement has proven to be very challenging. Options to stabilize sand-based athletic fields include: increasing particle-size distribution through sand/soil mixing, adding randomly oriented inclusions, placing specifically oriented inclusions at the playing surface and using reinforced sod to bypass stability concerns.

Sand-soil mixes have been investigated to improve the surface stability of athletic field root zones (Adams 1976, Waddington et al. 1974, Whitmyer and Blake 1989, Henderson 2000). Adding silt and clay to sand increases the

stability of sand, but small additions of silt and clay to sand can reduce hydraulic conductivity very quickly (Adams 1976, Henderson 2000). The minimum infiltration rate and hydraulic conductivity value that is considered acceptable for playing surfaces vary throughout the literature. Waddington et al. 1974 recommended a minimum infiltration rate of 2.5 cm hr⁻¹ for golf course putting greens, while Adams (1976) indicated a general agreement that athletic field hydraulic conductivity values should be between 1.5 - 7.5 cm hr⁻¹. Research conducted on sand-soil mixes indicates that silt+clay should not exceed 10% of the mix by weight to retain sufficient hydraulic conductivity values (Goss 1967, Adams 1976, Taylor and Blake 1979, Blake et al. 1981 and Henderson 2000). Research also indicates the importance of low water content of sand-soil mixes at compaction to maintain higher hydraulic conductivity values (Swartz and Kardos 1963, Akram and Kemper 1979, Henderson 2000).

Other athletic field stabilization methods include adding synthetic fibers into the sand root zone randomly, placing oriented synthetic fibers directly at the playing surface and using reinforced sod. Randomly oriented inclusions are mixed off-site with sand, specifically oriented inclusions are installed directly at the playing surface after turfgrass establishment, and reinforced sod is produced by establishing turfgrass into a thinly woven artificial turf.

Inclusions strengthen sands by spanning potential failure planes. Effective inclusions will span failure planes, have sufficient friction at the sand-inclusion interface to resist pullout and have a tensile strength greater than the shearing force (Gray and Ohashi 1983). Adding inclusions to sand can increase ultimate

shear strength and limit the amount of vertical deformation (Gray and Ohashi 1983, McGown et al. 1978). Inclusions have also shown to improve the load bearing capacity and trafficability of sand (Webster 1979, Beard and Sifer 1993). A few field studies have been conducted to determine the potential benefits artificially enhanced sand root zones offer athletic fields (Adams and Gibbs 1989, Beard and Sifers 1993, Canaway 1994, McNitt and Landschoot 2001, McNitt and Landschoot 2003). Randomly oriented inclusions have shown to increase infiltration rates, reduce divot length and depth (Beard and Sifers 1993, Canaway 1994, McNitt and Landschoot 1998). However, randomly oriented inclusions can be difficult to work with during construction, restrict cultural practices on established turf, and can increase surface hardness (McNitt and Landschoot 1998, McNitt and Landschoot 2003). Specifically oriented inclusions have shown to increase wear tolerance and surface stabilization once turfgrass cover was diminished over the non stabilized well-graded sand (Adams and Gibbs 1989). McNitt and Landschoot (1998) investigated a reinforced sod product, Sportgrass[™], which reduced divot length and improved traction, but increased surface hardness.

Inorganic amendments such as porous ceramic clays and clinoptilolite zeolite products have also shown potential to improve the strength properties of sand indirectly. Sand root zones are highly dependent on roots for stability (Adams and Jones 1979, Adams et al. 1985, Waldron 1977). Inorganic amendments have been shown to increase root development (Ferguson et al. 1986).

Therefore any material added to sand to encourage root development would also help stabilize the playing surface.

Although comparative studies exist on athletic field stabilization systems, they are not fully inclusive of all the latest products currently available on the market. There is limited data on the randomly oriented inclusion, Ventway[™], specifically oriented inclusions Grassmaster, and another reinforced sod, Motzgrass[™]. The artificial inclusions have also not been compared to sand-soil mixes and inorganic amendments in the same study. The objectives of this three-year study were as follows: 1) To compare the playing surface characteristics (traction, surface hardness, divoting resistance, and turfgrass cover) of these enhanced athletic field root zones under simulated traffic. 2) To monitor changes in infiltration rates after each season of simulated traffic. 3) To evaluate the soil physical properties of each field system and the inclusion/amendment effects on the strength of the root zone.

MATERIALS & METHODS

Materials Tested

The following materials were tested during this three-year field study. These root zone enhancements can be divided into 4 main categories; 1) Natural amendments, 2) Randomly-oriented artificial inclusions, 3) Specifically-oriented artificial inclusions, and 4) Reinforced sods. A brief description of each root zone material (Table 2) and artificial/natural enhancement are given below.

Sands and Natural amendments

- 1. Well-graded sand Represents the material that is currently recommended to construct high sand content athletic field root zones.
- 2. Poorly-graded sand Commonly known as TDS 2150.
- 3. Sand-Soil 1 The well-graded sand and a loamy sand were mixed on a volume basis to yield a mix containing 7% silt+clay.
- 4. Sand-Soil 2 The well-graded sand and a loamy sand were mixed on a volume basis to yield a mix containing 9% silt+clay.
- 5. Sand-Soil 3 The well-graded sand and a loamy sand were mixed on a volume basis to yield a mix containing 15% silt+clay.
- Bermudagrass Common bermudagrass 'Cynodon dactylon [L.] var. dactylon' was sprigged into a sand/soil mix containing 9% silt+clay. The Bermudagrass was overseeded with perennial ryegrass (Varieties: SR 4220, SR 4500, and Manhattan III) prior to the second traffic season on 20 August 2002 only.
- 7. Profile manufactured from illite clay and amorphous silica to form a stable porous ceramic particle that was mixed with the well-graded sand sand on a volume basis (75% sand, 20% Profile, 5% Canadian sphagnum peat).
- 8. Zeopro manufactured from clinoptilolite, a natural form of zeolite, and synthetic apatite to form granules that was mixed with the well-graded sand sand on a volume basis (80% sand, 10% Zeopro, 10% Canadian sphagnum peat).

Randomly-Oriented Inclusions

- 9. Turfgrids fibrillated polypropylene fibers were mixed with the well-graded sand sand off-site as an inclusion on a weight basis (4 kg/m³).
- 10. Ventway cylindrically shaped rubber particles were mixed with the wellgraded sand sand off-site as an inclusion on a volume basis (80% sand, 20% Ventway).
- 11. StrathAyr Reflex mesh elements, 10 cm x 5 cm, polypropylene fibers were mixed off-site with a StrathAyr specified root zone (Table 2) at a rate of 6 kg/m³. The mesh element/sand mixture was then applied in a 10 cm layer on top of the specified root zone using the PavAyr machine.

Specifically-oriented Inclusion

12. Grassmaster - polypropylene fibers were sewn vertically into an established turfgrass stand, root zone was comprised of the well-graded sand. The fibers are inserted on 2 cm centers and to a depth of 20 cm.

Reinforced Sods

- 13. Hummer Turftiles root zone reinforced with shredded nylon carpet fiber to a 5.1 cm depth, which forms a 2.1m x 2.1m turfgrass tile. This product was installed as an established sod on top of the well-graded sand.
- 14. Motzgrass (TS-II) polypropylene fibers are sewn into a backing comprised of biodegradable fibers and plastic mesh. The woven artificial fibers are then backfilled with sand and seeded. Product was installed as established sod on a Motz Group specified root zone (Table 2).
- 15. Sportgrass polypropylene fibers sewn into a woven, synthetic backing. The woven artificial fibers are then backfilled with sand and seeded. Product was installed as established sod on top of the well-graded sand.

Construction and Maintenance

This three-year study began construction in March 2000 at the Hancock

Turfgrass Research Center located on the Michigan State University campus,

East Lansing, Michigan. Topsoil was excavated from the 45.7 m (150 ft) by 14.6

m (48 ft) plot area and 10.2 cm (4 in.) perforated drain tile was installed on 4.5 m

(15 ft) centers. Gravel was spread over the drain tile and subsoil to an average

depth of 10.2 cm (4in.) (Table 3). The experiment contained a single factor with

15 levels (treatments) arranged in a randomized complete block design with

three replications. A series of walls were constructed from 1.3 cm (0.5 in.)

					Percent	Percent Retained	- - - -			
						ass (mm) —				
	- W	л С	VCoS	cs	MS FS	FS	VFS	Sit	Clav	Silt+Clav
Treatment	%	20	10	<u>5</u> 0	0 25	01	0.05	0 002	<0.002	<0.05
Well-graded sand ⁵	0.21	1.4	13.7	26.0	42.5	14.1	0.4	1.0	60	19
Poorly graded sand	0.08	0.0	0.0	2.4	64.0	32.9	0.1	0.5	0.0	05
Sand-Soil1	0.45	1.5	13.0	22.4	38.5	15.9	1.7	9.6 E	31	7 0
Sand-Soil2	0.57	1.5	12.2	21.6	36.6	16.5	2.3	5.7	3.6	63
Sand-Soil3	0.91	1.1	10.2	18.9	33.5	17.5	3.7	10.6	4.4	15.0
Profile [#]	0.62	1.0	11.2	24.8	44.8	14.1	0.8	1.6	1.8	3.4
Zeopro	0.55	0.5	9.6	25.0	43.4	17.8	0.8	2.0	6.0	2.9
StrathAyr	0.77	0.3	1.8	17.6	53.7	23.3	12	1.1	1.0	2.1
Motzgrass	1.09	0.0	0.4	43.8	38.7	13.6	1.5	0.9	1.1	2.0
† Indicates the percent by weil	nt by weight	of soil parti	icles in each	size class	The size of	asses accord	ght of soil particles in each size class The size classes according to the United States Department of	nited States [Denartment	

Table 2. Percent retained of root zone materials in which constituents were mixed on a volume basis June 2000

Agriculture (USDA) are as follows: fine gravel (FG), very coarse sand (VCoS), coarse sand (CS), medium sand (MS), fine sand (FS), very fine weight of solid particles in each size class. The size classes according to the United States Department of

sand (VFS), silt and clay.

‡ Percent organic matter was determined by loss on ignition (Hummel 1993)

§ Used as the base root zone material for all treatments except StrathAyr and Motzgrass.

I Well-graded sand was mixed on a volume basis with asandy loam soil to produce desired sand-soil mixes.

Profile is a porous ceramic product mixed with the well-graded sand on a volume basis (75% sand, 20% Profile, 5% Canadian Sphagnum peat) 11 ZeoPro is a manufactured from the naturally occurring mineral. clinoptilolite zeolite, mixed with the well-graded sand on a volume basis (80% sand, 10% Zeopro, 10% Canadian Sphagnum peat) #

Table 3. Percen	retained of gravel.	June 2000.
-----------------	---------------------	------------

			F	Percent Reta	ined [†]		
				Size (mm	ı) <u> </u>	· · · · · · · · · · · · · · · · · · ·	
Gravel	>9.50	4.75	2.00	1.00	0.05	0.002	<0.002
Birds eye [‡]	0.0	1.1	36.3	35.6	23.1	2.0	1.8
StrathAyr [§]	0.0	13.3	74.1	10.9	0.7	1.0	0.0

† Indicates the percent by weight of soil particles in each size class.
‡ Birds eye gravel was placed under all treatments except StrathAyr.

§ Gravel that was installed under all StrathAyr treatments.

oriented strand board to keep root zones separated during installation of treatments. Each plot measured 3.1 m (10 ft) by 4.9 m (16 ft). Treatments were installed from 29 June to 26 July. Root zones were vibratory compacted in two layers and then leveled to a total depth of 25.4 cm (10 in.) (Table 2). Hummer, Motzgrass, and Sportgrass were sodded as their own product with separate Poa pratensis varieties. The remaining treatments were sodded with a blend of washed Poa pratensis (Varieties: Eclipse, Regent, Classic and 1757) obtained from The Manderley Corporation, Nepean, Ontario. The Bermudagrass treatment was sprigged 7 July with Cynodon dactylon. This Bermudagrass was originally investigated by Professor W.J Beal in the 1870's and was further studied by Dr. James Beard during his tenure at Michigan State University. This Bermudagrass has adapted to the cold of Michigan and survives the winter months. Plots were mowed three times per week at 3.2 cm (1.25 in.) using a Toro triplex reel mower and were irrigated with 2.5 cm (1 in.) per week or as needed to replace evapotranspiration. All treatments received the same amount of fertilizer (Table 4). On 10 May 2002, after the first traffic season (Fall 2001), all treatments were aerified in two directions using a Toro fairway aerifier, 1.9 cm hollow core tines, 5 cm spacing to a depth of 7.6 cm. On 16 May 2002, prior to the second traffic season, the sod from the daily trafficked portion of treatments was stripped. This portion of treatments was resodded on 22 May with washed Poa pratensis (Varieties: Midnight, Blacksburg, and Unique) purchased from Huggett Sod Farm Inc., Marlette, Michigan. This was done to investigate the effects of the root zone

				g N m ⁻² application ⁻¹	
Year	Date	Fertilizer	<u>N</u>	P ₂ 0 ₅	K ₂ 0
2000	17 July	13-25-12 [†]	4.9	9.8	4.7
	31 July	26-0-26 [‡]	4.9	0.0	4.9
	25 August	26-0-26	4.9	0.0	4.9
	5 October	13-25-12	2.4	4.6	2.2
	5 October	46-0-0 [§]	2.4	0.0	0.0
	28 November	13-25-12	2.4	4.6	2.2
	28 November	46-0-0	2.4	0.0	0.0
	Total g N m ⁻² /yr		24.4	19.1	18.9
2001	21 May	46-0-0	2.4	0.0	0.0
	29 May	0-46-0 [¶]	0.0	4.9	0.0
	4 June	46-0-0	2.4	0.0	0.0
	18 June	46-0-0	2.4	0.0	0.0
	18 June	18-3-18 [#]	2.4	0.4	2.4
	4 July	18-3-18	2.4	0.4	2.4
	17 July	18-3-18	2.4	0.4	2.4
	13 August	18-3-18	2.4	0.4	2.4
	6 September	18-3-18	2.4	0.4	2.4
	24 September	46-0-0	2.4	0.0	0.0
	17 October	18-3-18	2.4	0.4	2.4
	26 November	18-3-18	4.9	0.8	4.9
	Total g N m ⁻² /yr		29.3	8.1	19.5
2002	26 April	13-25-12	2.5	4.9	2.3
	15 May	18-3-18	2.4	0.4	2.3
	15 May	0-46-0	0.0	3.7	0.0
	7 June	18-3-18	2.4	0.4	2.4
	7 June	46-0-0	2.4	0.0	0.0
	20 June	18-3-18	2.4	0.4	2.4
	10 July	18-3-18	2.4	0.4	2.4
	10 July	0-46-0	0.0	3.9	0.0
	12 August	18-3-18	2.4	0.4	2.4
	6 September	18-3-18	2.4	0.4	2.4
	6 September	0-46-0	0.0	3.7	0.0
	4 October	18-3-18	2.4	0.4	2.4
	4 October	0-46-0	0.0	4.9	0.0
	1 November	18-3-18	2.4	0.4	2.4
	Total g N m ⁻² /yr		24.5	24.3	21.8

Table 4. Annual fertilizer schedule for all treatments 2000, 2001, and 2002.

t Lebanon Country Club 13-25-12
 t Northern Star Mineral 26-0-26

§ Urea 46-0-0
¶ Triple Superphoshate 0-46-0
Lebanon Country Club 18-3-18

inclusions/amendments on wear tolerance of sod that was established in the spring and trafficked in the fall.

Traffic Applications

Traffic was applied as a strip application at two levels; daily and weekly. A portion of each plot was left untrafficked for the duration of the study. Each traffic level was applied as a strip treatment to separate portions of each plot using the Cady Traffic Simulator (CTS) (Calhoun et al. 2002). No traffic was applied to the plots in fall 2000, due to concerns that the time discrepancy between treatment installations would result in unfair comparisons. Each traffic event application with the CTS included a forward pass and reverse pass. Weekly traffic was applied across 2.3 m of the plot by making 3 consecutive passes side by side in 2001 and 2002. Daily traffic was applied across 0.7 m of each plot by making a single pass with the CTS in 2001 and 1.5 m by making two passes side by side in 2002. In 2001, from 27 August to 1 October daily traffic was applied 5 times per week and was then reduced to 4 times per week until traffic ended on 28 November (60 total traffic events). Weekly traffic was applied once per week, beginning 11 September and continued until 28 November (13 total traffic events). In 2002, daily traffic was applied 5 times per week from 29 August to 21 October and was then reduced to 3 times per week until traffic ended on 22 November (52 total traffic events). Weekly traffic was applied twice per week from 2 September to 21 October and was then reduced to once per week until traffic ended on 22 November (19 total traffic events).

Treatment Evaluations

Treatments were evaluated in two major categories; root zone properties and playing surface characteristics. The root zone properties included: particlesize analysis, bearing capacity, infiltration, saturated hydraulic conductivity, and root mass by depth. Playing surface characteristics included: turfgrass cover, surface hardness, resistance to divoting, and traction.

Root Zone Properties

Particle-Size Analysis

A particle-size analysis was performed on each root zone material to determine the percent sand, silt and clay (Day 1965). Approximately 100 g of air dried (105°C) root zone mix was combined with 100 ml of dispersing agent (5% sodium hexametaphosphate solution) in a 300 ml fleaker. A subsample was taken and oven dried (105°C) to determine gravimetric water content. The mass of solids was then calculated. The fleaker was then placed on a reciprocating shaker for 16 hours. Once the shaking was complete the contents of the fleaker was emptied onto a number 270 sieve placed inside a large funnel. The silt and clay was collected into a 1000 ml Bouyoucos cylinder. The sand fraction was rinsed with distilled water to wash any remaining silt and clay through the sieve and into the cylinder. The washed sand fraction was rinsed into a tared beaker and placed in an oven at 105° C until dry. When dry, the sand was weighed and poured into a numbers

used were 10, 18, 35, 60, 140, and 270. Each sand fraction retained on each sieve was weighed to the nearest 0.1g.

Percent clay content was determined using the hydrometer method (Day 1965). The silt and clay collected in the Bouyoucos cylinder was stirred for 30 seconds using vertical strokes with a plunger. A single hydrometer reading was taken 8 hours after stirring was complete to determine clay content in g L^{-1} , which was then converted to percent by weight.

Bearing Capacity

Soil bearing capacity of these established root zones were measured according to a modified version of the standard test method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils (ASTM-D 1883-94), using a mobile CBR device. The CBR devise was clamped to the bucket of a front end loader. The CBR devise included a low-geared jack (ELE International Soil Test Products Division, Lake Bluff IL, Model No. CN-410AY), load cell that reads force in pounds, a piston (5 cm dia.), and a displacement dial gauge. An apparatus was also constructed to allow downward pressure to be applied to the bucket of the front end loader so the jack would not raise the bucket of the front end loader instead of forcing the piston into the ground. The jack was used to force the piston into the ground at a constant rate to a depth of 2.54 cm. The load cell indicated the amount of force the surface was exerting on the piston. The force measured by the load cell was then divided by the area of the load piston to

obtain the pressure exerted on the surface. The pressure exerted on the piston by the surface when the piston reached a depth of 2.54 cm was then recorded.

Infiltration

Infiltration rates were measured using a modified version of the method described by Bertrand (1965). This procedure specifies the use of a double-ring infiltrometer, which includes two concentrically placed rings that are pounded into the soil surface and an apparatus that maintains a constant head throughout the duration of the test. Due to the nature of the materials being tested, two different types of rings and two different methods of placing the rings in to the root zone had to be utilized. Infiltration rings could be placed into non-artificially amended treatments using the traditional method of carefully tamping the rings into the root zone. These rings measured 12.5 cm and 22.7 cm in diameter and 14.0 cm in height and were placed into the ground to a depth of 9.0 cm. However, for artificially amended plots it was necessary to modify rings with a cutting edge so they could be drilled into the root zone. This method was adopted for two reasons; 1) to get the rings into the root zone and 2) to minimize surface disruption. These rings measured 11.4 cm and 21.4 cm in diameter and 14.0 cm in height and were placed into the ground to a depth of 9.0 cm. Once the rings were placed into the root zone, both the inner and outer rings were filled with water and refilled if necessary for 30 minutes prior to initiating infiltration tests. Once infiltration tests were initiated, infiltration rates were recorded for the inner most ring only.

Saturated Hydraulic Conductivity

Three 7.62 cm x 7.62 cm cores were extracted from each plot using a modified double-cylinder, hammer driven core sampler for the determination of hydraulic conductivity (Blake 1965). The core sampler was modified by filing saw teeth into the leading edge and a part was machined to connect the sampler to a drill so the sampler could be used to cut through all artificially and non-artificially amended treatments. The core was then trimmed so that the volume of the core was equal to that of the sample. A double layer of cheesecloth was placed on the bottom of the core and secured with a rubber band.

Hydraulic conductivity was measured using the constant-head method (Klute 1965). The cores were placed in a tray filled with water to a depth just below the top of the samples for 24 hrs. The cores were then fitted with 7.62 cm extension collars and secured with electrical tape. The cores were then transferred to a rack and a siphon hose was placed on the top of the cores to maintain a constant head of water. Once the water level on top of the sample became stabilized the leachate was collected in a graduated cylinder. The volume of water that passed through the sample in a certain amount of time was measured. The amount of time each sample ran was variable due to the differences in percolation rates.

Root Mass by Depth

Root mass by depth was measured in the weekly trafficked portion of plots. A soil probe with an I.D. of 3.2 cm was modified by filing saw teeth into the

leading edge. The modified probe was inserted into the root zone to a depth of 22.9 cm using a drill motor. The soil core was then sectioned into three depths: 1) 0-7.6 cm, 2) 7.6-15.2 cm, and 3) 15.2-22.9 cm. Three subsamples were taken from each plot and the common depths of the three subsamples were combined. These root samples were then washed to remove all the root zone material in accordance to a similar method described by (Hummel 1993). Roots and soil were placed into a 300 ml fleaker with 100 ml of dispersing agent (5% sodium hexametaphosphate). The fleakers were then placed onto a reciprocating shaker for 16 hours. The fleakers were then placed onto a 0.05 mm sieve under running water where the roots could be separated from soil particles. Root samples were collected and then dried at 60°C for 72 hours and then weighed.

Playing Surface Characteristics

Turfgrass Cover

Turfgrass cover was quantified using digital image analysis (Richardson et al. 2001). Digital images were taken of plots using a Nikon, cool pix model E995 (Nikon Corporation, Melville, NY). The images were saved in jpeg format with an image size of 1280 by 960 pixels. The camera was set to the following parameters; a shutter speed of 1/400 s, and an aperture of F -3.0.

Digital images were analyzed individually using Sigma Scan Pro (v. 5.0, SPSS, Inc., Chicago, IL). Sigma Scan's measuring tools counted the number of green pixels (hue range from 47 to 107 and a saturation range of 0 to 100)

contained in an image and divided that number by the total number of pixels in that image to calculate the percent turfgrass cover in that image.

Surface Hardness

The surface hardness of the daily trafficked, the weekly trafficked, and the untrafficked plots were quantified using the Clegg Impact Tester with a 2.25 kg hammer (Lafayette Instrument Co., Lafayette, IN). The hammer was dropped three times in random locations within each plot area from a height of 0.46 m (Rogers and Waddington 1990). The three peak deceleration (G_{max}) values were recorded for each plot.

Resistance to Divoting

Resistance to devoting was measured using the Turf Shear Tester (TST) (Braden Clegg PTY LTD, Model No. CCB1A). This apparatus was used with the 50 mm wide shearing tip which can be set at multiple depths of 10 mm, 20mm, 30 mm, or 40 mm. Measurements were taken at 20, 30, and 40 mm depths at various points during this study. The apparatus digital display reads in units of kg-force which can then be converted into Newtons or Newton-meters.

Traction

Traction was quantified by measuring the shear resistance of each playing surface. Shear resistance was measured using the Eijkelkamp Shearvane

(Rogers et al. 1988). Three measurements were taken at random locations within each plot area and recorded in N-m.

RESULT & DISCUSSION

Results are grouped and presented by data type. For each data type, data collected from the daily trafficked portion of plots are discussed first, followed by the weekly trafficked data. Years are discussed sequentially.

Turfgrass Cover

2001 Daily Traffic

Turfgrass cover data of the daily trafficked portion of treatments for 2001 are presented in Table 5. Data collection for the daily trafficked portion of the plots began on October 1st. Prior to this date visual differences between treatments could not be ascertained. Both the sand-soil mix containing 15% silt+clay and Bermudagrass consistently performed poorly throughout October and November. The sand-soil mix containing 15% silt+clay had significantly lower turfgrass cover than the well-graded sand 6 out of 8 days data was taken. Grassmaster had significantly higher turfgrass cover than the well-graded sand at the end of November.

2002 Daily Traffic

The daily traffic data for 2002 are shown in Table 6. These data need to be interpreted with caution. Prior to the 2002 traffic season, the daily trafficked

				Percent Turfgrass Cover	grass Cover			
Treatment	1-Oct	15-Oct	22-Oct	29-Oct	7-Nov	14-Nov	21-Nov	28-Nov
Well-graded sand ¹	68.3 ab [§]	70.0 a	59.3 a	26.7 ab	10.0 a-d	13 6 a-d	12.3 bcd	2.7 cde
Poorly graded sand	79.0 a	74.7 a	56.3 ab	38.3 a	110a-d	19.0 abc	177b	5 0 hc
7% Silt+Clay	58.7 a-d	56.7 a-e	47.0 a-d	25.7 ab	10.3 a-d	13.5 a-d	12.0 bcd	30 h-e
9% Silt+Clay	58.0 a-d	65.0 abc	46.7 a-d	25.7 ab	12.0 ab	11.0 a-e	11.3 cde	3 7 bcd
15% Silt+Clay	35.3 cd	27.0 fg	27.0 d		9.7 bcd	4.7 e	6.0 ef	2.0 de
ZeoPro	66.7 abc	70.0 a	38.3 bcd	27.3 ab	10.0 a-d	8.7 b-e	10.7 cde	2 3 cde
Profile	38.3 bcd	38.0 b-f	42.0 a-d	14.7 bc	10.0 a-d	6.8 de	8.7 cde	2 0 de
Ventway	54.3 a-d	28.3 efg	46.3 a-d	20.7 bc	11.3 abc	8.1 cde	11.0 cde	2.3 cde
Turfgrids	59.3 a-d	36.7 c-f	43.3 a-d	19.0 bc	8.7 cd	6.4 de	8.7 cde	2.3 cde
Grassmaster	57.7 a-d	33.7 def	47.7 abc	20.7 bc	11.7 abc	21.2 ab	277a	147 a
SportGrass	44.0 bcd	39.3 b-f	34.0 cd	15.3 bc	10.7 a-d	10.3 b-e	11.3 cde	2 7 cde
MotzGrass	57.0 a-d	59.7 a-d	54.7 ab	24.7 ab	13.0 a	19.1 abc	14 0 hc	5.7 h
Hummer Turftiles	37.0 bcd	38.0 b-f	32.7 cd	15.0 bc	11.3 abc	18.2 abc	10.7 cde	4.3 hrd
StrathAyr	34.0 d	65.3 ab	52.3 abc	26.3 ab	8.7 cd	25.1 a	7.7 def	2.3 cde
Bermudagrass	1.0 e	0.0 g	0.7 e		8.0 d	0.6 f	236	0.3 6
Significance *** *** ***	* * *	:	:	:	SU) •) •
*, **, *** Significant at th	e 0.10, 0.05, 0.	.01 level of pro	bability respe	ctively				

Table 5. Percent turfgrass cover for the daily trafficked portion of treatments in 2001

Turfgrass cover was quantified using digital image analysis (Richardson et al. 2001)

t Used as the base root zone material for all treatments except StrathAyr and Motzgrass.

determined by Fisher's protected least significant difference. Data collected on separate dates can not be compared due to light § Means within a column not followed by the same letter are significantly different at the indicated level of significance as intensity discrepancies when digital images were taken.

				Percen	Percent Turfgrass Cover	Cover			
Treatment	29-Aug	12-Sep	18-Sep	24-Sep	3-Oct	11-Oct	18-Oct	31-Oct	10-Nov
Well-graded sand [‡]	99.6 ab [§]	62.3 a-d	46.3 a	56.7 a	45.7 ab	39.3 a	8.7 b	21.7 abc	8.6 b-e
Poorly graded sand	93.8 bc	65.0 a	43.7 a	54.0 abc	49.3 a	39.7 a	7.0 bc	23.0 ab	13.6 abc
7% Silt+Clay	93.3 bc	57.3 b-f	34.7 ab	47.3 b-e	41.0 a-d	33.0 a-d	8.3 bc	16.0 b-f	11.2 a-d
9% Silt+Clay	95.2 abc	57.7 a-f	43.0 a	41.3 efg	40.0 a-d	32.0 bcd	5.2 bcd	16.5 b-e	10.5 a-d
15% Silt+Clay	96.1 abc	60.0 a-e	33.3 ab	34.3 g	30.0 de	19.0 ef	1.6 d	9.7 d-a	4.2 e
ZeoPro	96.3 abc	60.3 a-e	36.0 ab	47.0 cde	38.0 a-d	35.7 ab	3.8 bcd	17.3 a-d	6.2 de
Profile	99.6 ab	64.3 ab	46.0 a	52.7 a-d	49.3 a	33.7 abc	6.9 bc	14.7 c-f	11.6 a-d
Ventway	99.4 ab	55.7 c-f	28.7 b	47.3 b-e	43.7 abc	36.0 ab	7.0 bc	20.7 abc	8.5 h-e
Turfgrids	96.1 abc	65.0 a	47.0 a	56.3 ab	43.7 abc	38.7 ab	21.6 a	24.7 a	10.6 a-d
Grassmaster	99.7 ab	52.3 f	37.3 ab	36.3 fg	33.3 cde	26.0 de	5.2 bcd	22.3 abc	196 a
SportGrass	100.0 a	52.0 f	27.0 b	32.7 g	25.0 e	18.3 f	3.4 bcd	9.0 efa	7.3 cde
MotzGrass	100.0 a	55.0 def	36.0 ab	40.3 efg	33.7 cde	18.0 f	4.0 bcd	8.5 fa	14.7 ah
Hummer Turftiles	99.6 ab	53.7 ef	26.7 b	37.0 fg	35.7 b-e	17.3 f	2.8 cd	11.5 d-a	7.3 cde
StrathAyr	100.0 a	63.0 abc	36.7 ab	44.7 def	37.7 a-d	28.0 cd	4.0 bcd	12.0 def	8.3 h-e
Bermudagrass	88.0 c	23.7 g	24.0 b	14.0 h	11.3 f	4.7 a	1.3 d	4.0 d	0.3 f
Significance	ns	***	**	***	***) ***	***	D ***	***
* ** *** Significant at the 0.10 0.05		0.01 level of prohability respectively	rohahility ree	nactivaly					

Table 6. Percent turfgrass cover for the daily trafficked portion of treatments in 2002.

Significant at the 0.10, 0.05, 0.01 level of probability respectively.

Turfgrass cover was quantified using digital image analysis (Richardson et al. 2001).

t Used as the base root zone material for all treatments except StrathAyr and Motzgrass.

§ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference. Data collected on separate dates can not be compared due to light intensity discrepancies when digital images were taken. portion of all the plots except, Grassmaster, Sportgrass, Motzgrass, Bermudagrass and Hummer Turftiles were stripped and resodded with washed Kentucky bluegrass. This was done to investigate the effects of the root zone amendments on wear tolerance of sod that was established in the spring and trafficked in the fall.

The poor performance of the sand-soil mix containing 15% silt+clay and Bermudagrass were seen again in 2002 throughout the traffic period. The sandsoil mix containing 15% silt+clay had significantly lower percent turfgrass cover than the well-graded sand through most of October. The Bermudagrass was overseeded with perennial ryegrass on 20 August, but showed significantly less turfgrass cover than the well-graded sand on all dates data was collected. Sportgrass and Hummer Turftiles had significantly less turfgrass cover than the well-graded sand through September and October. Motzgrass and StrathAyr showed significantly less turfgrass cover than the well-graded sand through October. These data are supported by plant counts of the daily trafficked plots in 2002 (Table 7). The sand-soil mix containing 15% silt+clay had significantly lower plant counts than the well-graded sand throughout October. Hummer Turftiles had significantly lower plant counts in September and Bermudagrass had fewer plant counts through October and November.

2001 Weekly Traffic

Turfgrass cover data for the weekly trafficked portion of treatments in 2001 and 2002 are shown in Table 8. Bermudagrass was the only treatment that had

					plants 100 cm ²¹	0 cm 🥍				
			Daily					Weekly		
Treatment	28-Aug	25-Sep	7-Oct	28-Oct	18-Nov	23-Sep	25-Sep	9-Oct	30-Oct	20-Nov
Well-graded sand ^t	218	99 abc [§]	78 b-f	34 a-d	35 bcd	168	153	132 a	R4 ah	100 -
Poorly graded sand	216	81 b-e	91 a-e	43 abc	42 bc	192	163	115 ah	67 abr	
7% Silt+Clay	206	103 abc	95 a-d	34 a-d	20 cde	189	163	105 abr		
9% Sitt+Clay	239	132 a	84 a-f	15 c-f	23 b-e	195	167	124 a	n-p /t	00 ab
15% Silt+Clay	223	38 e	53 e-h	4 ef	20 cde	204	115	87 PC		90 80 67 26
ZeoPro	214	67 cde	128 a	39 ahc	38 hcd	101	16.0	00 UC		107 ab
Profile	232	100 abc	88 9-6	33 2-0	27 h.e	100	001	30 dUC	00 40	103 80
Ventwav	210	115 ah	100 abc	40 0F	21 0-0 10 0F	102	001	B 201	b1 abc	0 0 C
			102 400	42 40	48 aD	012	161	125 a	85 a	94 ab
iungnas	214	101 abc	71 c-f	61 a	72 a	211	150	128 a	86 a	67 ah
Grassmaster	208	75 b-e	61 d-g	24 b-f	3 е С	194	146	118 ah	62 ahr	00 sh
SportGrass	178	58 cde	31 ah	5 def	15 cde	149	110	76.04	33 54	34 aU
MotzGrass	224	37 e	63 4-0	10 dof						
Hummer Turffiloo	000				D -	707	190	IUI abc	41 DCG	85 ab
	739	48 de	48 tgh	9 def	13 de	187	133	81 bcd	68 abc	72 ab
StrathAyr	175	91 a-d	118 ab	48 ab	25 b-e	181	146	103 abc	56 ahc	72 ah
Bermudagrass	257	61 cde	24 h	0 f	۹ د	177	123	46 d		20 4
Significance	su	***	***) **		2		- - -	د • •
**************************************	the 0.10, 0.0	and 0.01 leve	11 level of prohability respectivity	renectiviev		2	2			
				· I cohecuivey ·						

Table 7. Plant counts of daily trafficked portion of treatments in 2002.

† Plant counts were had counted taking three subsamples per treatment with a soil probe (diameter=3.2 cm), and converted to plants 100 cm⁻².

‡ Used as the base root zone material for all treatments except StrathAyr and Motzgrass.
§ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significance.

						Percent	Percent Turfgrass Cover [†]	/er [†]					
		20	01						2002				}
Treatment	7-Nov	14-Nov	21-Nov	28-Nov	29-Aug	12-Sep	18-Sep	24-Sep	3-Oct	11-Oct	18-Oct	31-Oct	10-Nov
Well-graded sand [‡]	25.3 abc [§]	68.3 ab	55.0 de	25.0 bcd	99.3 ab	79.3 bcd	99.9 ab	92.3 ah	75.0 ahc	55.3 a.d	74 7 ah	44 0 404	80.040
Poorly graded sand	26.7 ab	77.0 ab	72.3 abc	42.7 a	90.7 bc	93,3 ab	de 9.66	950 a	79.7 ah	63.7 a	27.7 a	53.3.5	12 0 hod
7% Silt+Clay	27.7 ab	75.0 ab	58.0 b-e	28.7 a-d	96.7 abc	89.3 abc	94.5 hc	89.3 ahc	77 7 ahc	51.7 hrd	15.3 hr	43 0 hrd	12 0 bod
9% Silt+Clay	24.3 abc	80.7 a	63.0 a-e	30.3 a-d	99.6 ab	87.0 abc	99.0 abc	89.0 abc	73 0 a-d	50.7 cd	15.3 hr	43.7 hcd	13.3 h
15% Silt+Clay	28.3 a	72.3 ab	57.3 cde	29.0 a-d	100.0 a	97.7 a	97.1 abc	84.3 cd	64.0 de	413 e	50.04	30.0 0	8.0 cde
ZeoPro	23.3 abc	82.0 a	71.3 a-d	37.0 abc	99.6 ab	82.7 abc	100.0 a	95.3 a	810 ab	60.0 ah	28.3.9	48.7 ah	10.7 hcd
Profile	27.3 ab	77.7 ab	60.3 b-e	29.3 a-d	99.2 ab	79.3 bcd	99.4 ab	90.7 abc	77 0 abc	54.7 hcd	15.3 hr	410 d	11 0 hcd
Ventway	27.3 ab	72.7 ab	56.0 cde	25.3 bcd	83.8 c	81.0 bcd	97.3 abc	88.7 abc	69.3 cde	52.7 hcd	21 0 ab	42 0 cd	73 da
Turfgrids	15.3 bc	75.7 ab	59.7 b-e	27.0 a-d	99.9 a	86.7 abc	98.7 ahc	91.3 ahc	71.3 hrd	52 0 hcd	24 0 ab		50 of
Grassmaster	28.0 a	73.3 ab	59.3 b-e	26.0 a-d	99.9 a	95.0 ah	98 0 ahc	BR 7 ahr	68 7 rda	53 7 hcd	10.0 ab	43.7 604	0,00
SportGrass	21.7 abc	61.7 b	48.0 e	16.7 de	98.7 ab	75.3 cd	90.6	810 d	603 A	48.7 do	70.040	2000 - COC	9.0 D-E
MotzGrass	29.0 a	71.7 ab	74.3 ab	39.3 ab	97.0 abc	87.0 ahc	97.7 ahr	4e 7 60		40.0 ab	16 0 ho	30.0 E	90 C. /
Hummer Turftiles	32.3 a	81.3 a	79.0 a	410 ab	666	88.3 ahr	QR 0 aho	00 3 abc	0.20 00 2 0 h	00.0 au			21.0 a
StrathAyr	24.3 abc	69.0 ab	51.7 e	20.3 cd	99.6 ab	82 0 ahr	97.3 ahc	87.0 hod	00.00 du	57.0 hod	4 E 7 ho		12.7 DC
Bermudagrass	14.0 c	13.0 c	7.7 f	1.3 e	e 6 66	65.0 d	74.4.4	47.7 6	1 - 2 - C - C - C - C - C - C - C - C - C	72.0 Ucu	20.4		13.0 DC
Significance	ns	***	:		SU SU				1			1 0.7	
* ** *** Significant at the 0.10_0.05_0.04 level of probability respectively	he 0 10 0 05 0	01 level of pro	hability record	-tively	21								
			vadeal filling	clively.									
Turfarass covar wa	s ausnified usin	and intervention	o analysia (Diabordean	10 10 000	1000								

Table 8. Percent turfgrass cover for the weekly trafficked portion of treatments in 2001 and 2002.

† Turfgrass cover was quantified using digital image analysis (Richardson et al. 2001) ‡ Used as the base root zone material for all treatments except StrathAyr and Mobgrass § Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference. Data collected on separate dates can not be compared due to light intensity discrepancies when digital images were taken.

consistently lower turfgrass cover than the well-graded sand. The poorly graded sand had significantly higher percent turfgrass cover than the well-graded sand in late November. Motzgrass showed higher percent turfgrass cover than the wellgraded sand on 21 November, but these treatments were not significantly different on 28 November.

2002 Weekly Traffic

Weekly turfgrass cover data for 2002 are shown in Table 8. The sand-soil mix containing 15% silt+clay, Bermudagrass, and Sportgrass had significantly lower turfgrass cover than the well-graded sand on 18 October and 31 October. Lower plant counts were also recorded for 15% silt+clay, Sportgrass and Bermudagrass when compared to the well-graded sand in October (Table 7). Hummer Turftiles showed significantly higher turfgrass cover than the wellgraded sand on 31 October, but was not significantly different from the wellgraded sand on 10 November. The sand-soil mix containing 9% silt+clay and Motzgrass had significantly higher turfgrass cover than the wellgraded sand on 10 November. The sand-soil mix containing 9% silt+clay and Motzgrass had significantly higher turfgrass cover than the wellgraded sand on 10 November. The sand-soil mix containing 9% silt+clay and Motzgrass had significantly higher turfgrass cover than the well-graded sand on 10 November.

Surface Hardness

2000-2002 Daily Traffic

The results for surface hardness of the daily trafficked portion of the plots for 2000, 2001, 2002 are presented in Table 9. The range of values measured on athletic fields has varied throughout the literature. Surface hardness measured

				Gmar	. x			
	2000		2001			2002)2	
Treatment	21-Sep	24-Sep	15-Oct	21-Dec	28-Aug	16-Sep	28-Oct	18 Nov
Well-graded sand ¹	65 bc		55 gh	130 gh	70 cd	37 -	72 cde	42 42 4
Poorly graded sand	57 d		52 h	150 efg	62 e	39 hi	64 c	52 gh
7% Silt+Clay	66 bc	77 b	77 b	169 def	75 abc	59 cde	93 b	86 bc
9% Silt+Clay	65 bc		78 b	196 cd	77 ab	66 bc	98 h	93 b
15% Silt+Clay	61 cd		75 bc	247 b	80 ab	71 ab	95 b	113 a
ZeoPro	60 cd		63 f	136 fgh	66 de	S4 ef	84 bc	64 efg
Profile	62 cd		62 fg	105 h	65 de	51 efg	74 cde	66 d-g
Ventway	61 cd		62 fg	131 fgh	69 cd	43 ghi	69 de	64 efg
Turfgrids	64 bc		68 c-f	124 gh	70 cd	51 ef	78 cde	62 fg
Grassmaster	65 bc		54 gh	136 fgh	66 de	47 fgh	73 cde	73 c-f
SportGrass	82 a		е 06	222 bc	80 a	74 ab	123 a	120 a
MotzGrass	60 cd		72 b-e	175 de	66 de	57 de	83 bcd	85 bc
Hummer Turftiles	60 cd		65 def	148 efg	66 de	55 def	76 cde	80 h-e
StrathAyr	60 cd		64 ef	193 cd	61 e	63 cd	85 bc	82 bcd
Bermudagrass	9 p		73 bcd	309 a	73 bc	75 a	119 a	118 a
Significance	:	:	:	:	•	:	•	:
· · · · Significant at the	he 0 10 0 05 0	0.05 0.01 level of probability respectively	Dability respec	tively				

Table 9. Surface hardness values for the daily trafficked portion of treatments in 2000, 2001 and 2002

Significant at the 0.10, 0.05, 0.01 level of probability respectively .

Surface hardness was measured using the Clegg Impact Soil Tester, peak deceleration (Gmax)

t No traffic was applied in 2000.

§ Used as the base root zone material for all treatments except StrathAyr and Motzgrass.
¶ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

on 24 Pennsylvania athletic fields using a 2.25 kg hammer had a range of 33-167 G_{max} (Rogers et al. 1988), but fields that measure in the 50-90 G_{max} range are typically considered safe. In 2000, the only treatment that had a G_{max} value significantly higher than the well-graded sand was Sportgrass. In 2001, Sportgrass and Bermudagrass were the only treatment that had a significantly higher G_{max} than the well-graded sand. The exception was 21 December when the root zones were frozen when these data were collected. All treatments exceeded 100 G_{max} . In 2002 Sportgrass again showed high clegg readings throughout the traffic season. Sand-soil mixes containing 7%, 9%, 15%, Motzgrass, and StathAyr showed high clegg readings from the end of October and into November.

2000-2002 Weekly Traffic

Results for surface hardness for the weekly trafficked portion of treatments for 2000, 2001, and 2002 are presented in Table 10. Sportgrass and 15% silt+clay were the only treatments with G_{max} values exceeding 80 in 2000 and 2001. The exception was 21 December where the soil was frozen at the time of data collection. In 2002, sand-soil mixes containing 7% and 9% silt+clay measured significantly higher G_{max} values than the well-graded sand in November. Sportgrass and Bermudagrass both exceeded 90 G_{max} in November.

2001and 2002	
000	>
С С	1
of treatments i	
ortion o	· · · · ·
ă p	
trafficke	
veeklv	
he	
<u>o</u>	
values 1	
hardness	
Surface	
Table 10.	

				Gmax ¹	ixt			
	2000^{\ddagger}		2001			20	2002	
Treatment	21-Sep	24-Sep	15-Oct	21-Dec	28-Aug	9-Oct	30-Oct	20-Nov
Well-graded sand [§]	65.1 bc [¶]	54.2 gh	46.7 fg	73.0 efg	67.0 ef	58.4 ef	73.1 cde	64.7 ah
Poorly graded sand	57.3 d	52.9 h	44.1 g	60.0 g	63.3 fg	56.6 f	66.8 de	63.5 h
7% Silt+Clay	65.7 bc	62.2 de	64.1 cd	78.6 ef	72.4 bcd	72.4 a-d	79.6 bcd	80.7 cd
9% Silt+Clay	65.0 bc	65.6 cd	68.3 c	84.1 de	77.1 a	74.0 abc	89.0 ab	84.5 bc
15% Silt+Clay	61.2 cd	72.0 b	84.8 a	116.1 c	76.6 ab	70.3 bcd	70.3 cde	75.9 c-f
ZeoPro	59.9 cd	55.8 fgh	53.3 ef	65.9 fg	70.4 cde	68.3 b-f	77.3 b-e	73.8 c-d
Profile	61.7 cd	64.2 cde	58.2 de	76.9 efg	66.0 ef	65.4 b-f	72.0 cde	67.8 e-h
Ventway	61.2 cd	61.6 def	57.3 de	77.4 efg	68.6 de	69.4 b-e	78.8 bcd	72.2 d-h
Turfgrids	64.4 bc	63.1 cde	52.9 ef	82.7 ef	74.2 abc	63.3 c-f	82.3 bc	77.7 cde
Grassmaster	64.8 bc	54.2 gh	44.7 g	79.9 ef	66.3 ef	60.9 def	71.9 cde	69.0 e-h
SportGrass	81.9 a	81.6 a	75.6 b	142.6 b	72.9 a-d	77.2 ab	81.8 bc	93.6 ab
MotzGrass	59.8 cd	62.8 cde	55.9 e	83.3 ef	63.1 fg	65.4 b-f	77.0 b-e	74.5 c-a
Hummer Turftiles	60.4 cd	59.2 efg	56.3 e	84.6 de	63.7 fg	66.4 b-f	65.7 de	76.7 c-f
StrathAyr	60.3 cd	64.0 cde	63.7 cd	101.4 cd	61.4 g	61.2 def	64.2 e	67.4 fah
Bermudagrass	68.9 b	68.4 bc	69.3 bc	262.3 a	72.0 cd	82.4 a	102.4 a	96.8 a
Significance	***	***	***	***	***	***	***	***
*,**,*** Significant at the 0.10, (ie 0.10, 0.05, 0	0.05, 0.01 level of probability respectively	bability respe	ctively.				

† Surface hardness was measured using the Clegg Impact Soil Tester, peak deceleration (Gmax).

t No traffic was applied in 2000.
S Used as the base root zone material for all treatments except StrathAyr and Motzgrass.
Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

Divoting Resistance

2001 and 2002 Daily Traffic

Shear Clegg measurements of the daily trafficked portion of each plot are reported in Table 11. In 2001, Grassmaster, Sportgrass, and Motzgrass provided a significantly higher resistance to divoting than the well-graded sand in November and December. StrathAyr and 9% silt+clay exceeded the well-graded sand significantly in December. In 2002, Grassmaster, Sportgrass, Bermudagrass, and Motzgrass exceeded the well-graded sand significantly in nearly all dates data were collected. The randomly oriented inclusions had a limited effect on divoting resistance, but on 7 October StrathAyr and Ventway exhibited significantly higher divoting resistance than the well-graded sand. Hummer had higher resistance to divoting on 25 September and 7 October.

2001 and 2002 Weekly Traffic

Shear Clegg values for weekly trafficked portions of treatments are shown in Table 12. In 2001, Grassmaster and Sportgrass were the only treatments that exhibited a higher divoting resistance than the well-graded sand. In 2002, Grassmaster, Sportgrass, and Motzgrass had significantly higher resistance to divoting than the well-graded sand throughout the traffic season. Randomly oriented inclusions did not have an effect on divoting resistance in 2001 and 2002. Table 11. Divoting resistance values for the daily trafficked portion of treatments in 2001 and 2002.

					Z	N-M [†]				
		2(2001				50	2002		
		20	20 mm [‡]		20 mm	30 mm		401	40 mm	
Treatment	1-Sep	24-Sep	9-Nov	21-Dec	28-Aug	16-Sep	25-Sep	7-Oct	28-Oct	18-Nov
Well-graded sand [§]	49.8 bc [¶]	58.5 bc	68.2 d	48.9 d	48.0 ab	80.9 c-f	81.3 cd	60.9 e	41.0 d	42.2 cde
Poorly graded sand	39.0 cd	61.8 bc	81.4 c	59.0 d	50.6 ab	93.8 b-e	93.9 c	74.7 de	64.7 cd	58.6 cde
7% Silt+Clay	42.5 bcd	63.6 abc	45.3 ef	32.8 h	49.7 ab	74.4 def	77.9 cd	72.8 de	37.9 d	52.7 cde
9% Silt+Clay	40.5 cd	63.6 abc	52.8 e	51.7 e	46.2 ab	65.5 f	76.5 cd	73.0 de	37.7 d	26.6 e
15% Silt+Clay	42.1 cd	49.7 c	38.1 f	46.5 f	53.5 ab	71.9 ef	93.5 cd	103.7 dc	61.5 cd	61.5 cde
ZeoPro	38.7 cd	62.3 bc	53.9 e	30.1 j	52.4 ab	81.5 c-f	75.9 cd	71.2 de	44.0 d	30.2 de
Profile	42.5 bcd	62.1 bc	40.1 f	31.5	45.3 b	70.9 ef	74.2 d	60.9 e	43.2 d	47.3 cde
Ventway	39.6 cd	51.9 с	50.9 e	33.7 g	41.4 b	97.9 bcd	84.6 cd	86.8 dc	48.9 d	76.5 cd
Turfgrids	40.3 cd	63.6 abc	65.2 d	40.5 g	52.6 ab	89.9 b-e	74.9 cd	70.4 de	62.7 cd	36.9 de
Grassmaster	48.0 bc	81.2 abc	98.2 b	84.8 d	62.1 a	102.9 abc	176.9 a	140.0 b	119.1 ab	89.3 bc
SportGrass	34.5 d	18.0 d	150.6 a	115.1 b	47.8 ab	130.2 a	186.8 a	187.2 a	131.3 a	186.4 a
MotzGrass	35.4 d	58.1 bc	130.7 a	148.4 a	42.1 b	115.9 ab	187.0 a	149.3 b	131.0 a	130.6 b
Hummer Turftiles	35.0 d	46.0 c	48.9 e	53.1 d	47.3 ab	86.9 c-f	118.9 b	104.3 c	73.6 cd	74.7 cde
StrathAyr	53.7 b	72.6 abc	50.8 e	85.6 c	46.5 ab	65.1 f	79.1 cd	82.4 d	44.0 d	60.0 cde
Bermudagrass	65.6 a	24.6 d	21.3 g	14.1 K	43.6 b	117.3 ab	128.4 b	128.6 b	88.4 bc	71.0 cde
Significance	***	***	***	***	บร	***	***	***	***) ***
*,**,*** Significant at the 0.10, 0.05, 0.01 lev	he 0.10, 0.05	5, 0.01 level of	el of probability respectively	espectively.						

† Divoting resistance was measured using the Turf Shear Tester (TST) in Newton-Meters (N-M).

Indicates depth of penetration of shearing tip into playing surface.
 Used as the base root zone material for all treatments except StrathAyr and Motzgrass.
 Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

8	ļ
Ś	
ס	ł
an	
Ξ	I
2001 ר	ļ
	ļ
ŝ	ļ
, T	Ì
Ĕ	Į
ät	I
Ę,	ĺ
ď	ł
o no	ļ
ŧ	ł
a	l
B	
ij	
tra	
2	
ě	
Ne N	
é	
두	
ğ	
ŝ	
Ľ	
Za Za	
8	
Š	
sist	
ିଛି	
5	
Ĕ	
ğ	
٦	
able 12. Div	
-	
ple	
a	

					Ż	N-M [†]				
		2001					2002			
		20 mm^{\ddagger}		20 mm	30 mm			40 mm		
Treatment	24-Sep	9-Nov	21-Dec	28-Aug	18-Sep	28-Aug	25-Sen	9-Oct	30-Oct	20-NOV
Well-graded sand [§]	53.5 a-d ¹	79.9 bc	94.2 bcd	44.2 h	102 5 hcd	137 7 cd	122 2 dof	1050 0401	110.00	2 - F O C F F
Poorly graded sand	42.9 hod	77 3 hc	76 4 A	50 4 oh	145 0 F			120.0 CUE		113.6 der
207 UTHIN 702				02.4 dU	0 0.01	134.3 CO	138.1 det	119.1 de	108.7 c	115.0 cde
	40.U a-D	04.3 D	110./ ab	50.9 ab	107.7 bc	133.9 cd	121.7 ef	106.1 de	78.5 de	90.7 efa
	51.5 a-d	83.0 b	90.3 bcd	53.0 ab	93.1 cd	137.5 cd	132.3 def	109.5 de	96.6 cde	100.6 d-a
15% Silt+Clay	64.1 a	67.4 bc	102.6 a-d	51.5 ab	99.2 cd	136.7 cd	126.0 ef	115.4 de	94 9 cde	88 0 fu
ZeoPro	40.5 bcd	89.2 ab	79.0 cd	53.5 ab	95.4 cd	127.6 cd	117.9 ef	102.0 -	03 0 rda	106.7 4.0
Profile	48.7 a-d	81.2 b	103.2 a-d	48.4 ab	93.4 cd	119.3 d	104.3 f	103.3 0	76 Q A	86.4 a
Ventway	53.9 abc	75.5 bc	102.4 a-d	51.3 ab	91.3 d	133.1 cd	120.5 ef	122 G CHA	00 1 cdo	00:4 g
Turfgrids	48.9 a-d	84.3 b	106.5 abc	49.8 ab	96.3 cd	142 0 cd	140 6 def	120.2 cdc		140.0 C-01
Grassmaster	57.0 ab	79.0 bc	1261a	50.2 ah	1317 a	105.0 h				
SnortGrass	27 D H	1107 0	1766 -				100.4 DC	191.0 0	104.5 aD	Z01.4 a
		- 10.7 a	120.0 3	46./ ab	133.8 a	231.3 a	297.8 a	236.1 a	172.8 a	185.0 a
	38.1 CO	/0.0 bc	93.8 bcd	47.3 ab	131.5 a	148.1 c	209.6 b	205.5 b	172.8 a	148.5 b
Hummer I urfules	40.9 bcd	68.2 bc	81.9 cd	50.2 ab	89.6 d	142.4 cd	146.3 cde	130.4 cd	103.5 cd	106 9 d-n
StrathAyr	63.8 a	82.8 b	113.4 ab	50.8 ab	90.7 d	144.4 c	133.3 def	129.6 cd	106 G r	103 5 4-0
Bermudagrass	60.1 a	57.2 c	25.3 e	55.3 a	102.5 bcd	175.1 b	170.2 hcd	146.3 C	145.7 h	120 8 50
Significance	**	**	***	SU	***	***	***	***	***	201 DC1
*, **, *** Significant at the 0.10, 0.05, 0.01 level of	he 0.10, 0.05,	0.01 level of p	probability respectively	1.						
+ Divoting resistance management										
	: was measure		ut Shear Tester (TST) in Newton-Meters (NLM)	ST) in Newton	-Meters (N.M)					

uvouing resistance was measured using the Turf Shear Tester (TST) in Newton-Meters (N-M).
 Indicates depth of penetration of shearing tip into playing surface.
 Used as the base root zone material for all treatments except StrathAyr and Motzgrass.
 Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

Traction

2000 No Traffic

Initial shear values (traction) are reported in Table 13. High shear values can be associated with higher surface traction. In 2000, Bermudagrass was the only treatment that showed considerably less surface shear resistance than the well-graded sand.

2002 Daily

Shear resistance values for the daily trafficked portion of treatments are reported in Table 13. Motzgrass, Hummer Turftiles, and Bermudagrass were the only treatments that showed significantly less shear resistance than the wellgraded sand in August and September. Bermudagrass and 15% silt+clay showed significantly less shear resistance than the well-graded sand in October.

2002 Weekly

Shear resistance values for the weekly trafficked portion of treatments are reported in Table 13. Motzgrass, Hummer Turftiles, and Bermudagrass also showed significantly less shear resistance than the well-graded sand in the weekly trafficked portion of treatments. These treatments and 15% silt+clay had significantly less shear resistance than the well-graded sand throughout the traffic season. The sand-soil mix containing 7% silt+clay and Profile showed significantly less shear resistance than the well-graded sand through October and November.

						_W-M					
	2000 [‡]						2002				
	No Traffic			Daily					Weekly		
Treatment	1	28-Aug	16-Sep	7-Oct	28-Oct	18-Nov	28-Aug	18-Sep	9-Oct	30-Oct	20-Nov
Well-graded sand [§]	28.2 b [¶]	33.3 a	22.3 abc	21.1 a-d	14.2 a	14.0 abc	30.2 ab	29.2 ab	27.2 ah	267 a	261 a
Poorly graded sand		32.4 ab	28.3 a	20.7 a-d	16.9 a	14.4 abc	30.7 a	28.0 abc	25.8 bc	26.0 ah	26.3 a
7% Silt+Clay		29.8 abc	22.7 abc	23.1 a	16.0 a	14.7 abc	31.3 a	27.6 abc	21.1 def	21.1 b-e	17 7 fn
9% Silt+Clay		30.9 ab	21.7 a-d	21.8 a-d	13.3 a	12.3 abc	28.7 abc	28.7 ab	24.0 cd	21.6 a-e	24.8 ah
15% Silt+Clay		28.9 a-d	19.7 b-e	13.3 e	12.0 a	10.2 c	25.3 de	24.3 cde	19.0 fa	18.9 de	20.5 0-0
ZeoPro	30.2 a	32.2 ab	26.1 ab	22.9 ab	15.8 a	12.9 abc	29.1 abc	28.8 ab	26.1 bc	22.9 a-d	258 a
Profile	29.8 ab	30.4 ab	21.2 bcd	22.9 ab	12.9 a	11.3 bc	29.8 ab	26.0 bcd	22.2 de	21.1 b-e	19.0 d-a
Ventway	30.7 a	30.7 ab	22.9 abc	22.2 abc	17.8 a	16.4 ab	27.6 bcd	29.3 ab	25.7 bc	24.1 abc	21 2 h-f
Turfgrids	29.8 ab	32.0 ab	21.2 bcd	17.1 b-e	12.2 a	13.6 abc	30.7 a	28.7 ab	25,8 bc	24.7 abc	24 4 ahc
Grassmaster	30.2 a	30.9 ab	22.6 abc	22.0 abc	16.2 a	16.0 ab	31.1 a	31.3 a	29.3 a	24.0 a-d	24 1 ahc
SportGrass	30.4 a	28.2 bcd	17.6 cde	18.9 a-e	15.3 a	17.3 a	26.9 cd	26.0 bcd	22.0 def	21.9 a-e	22.4 a-d
MotzGrass	29.8 ab	24.4 d	15.5 e	16.7 cde	15.3 a	14.2 abc	23.6 ef	23.1 de	19.8 ef	19.6 cde	18.2 fo
Hummer Turftiles	29.3 ab	25.3 cd	16.7 de	15.9 de	12.4 a	11.3 bc	25.3 de	23.3 de	19.6 ef	19.6 cde	18.6 efa
StrathAyr	30.7 a	32.2 ab	24.6 ab	21.0 a-d	17.1 a	14.7 abc	30.2 ab	26.1 bcd	24.0 cd	20.0 cde	22 1 a-e
Bermudagrass	15.1 c	16.9 e	14.9 e	13.1 e	12.0 a	12.9 abc	21.6 f	22.0 e	16.0 a	17.1 e	17 2 G
Significance	***	***	***	***	SU	ns	***	***	***	us	D 1 **
*, **, *** Significant at the 0.10, 0.05, 0.01 level of proba	the 0.10, 0.05, (0.01 level of pro	obability respectively	ctively.							
t Shear resistance (traction) was measured using	traction) was m	easured using t	the Eijelbamn Chen		Vano in Nouten Maters // //						

Table 13. Shearvane values (Traction) for the daily and weekly trafficked portions of treatments for 2000 and 2002.

† Shear resistance (traction) was measured using the Eijelkamp Shear vane in Newton-Meters (N-M). ‡ No traffic was applied in 2000. § Used as the base root zone material for all treatments except StrathAyr and Motzgrass. ¶ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

Bearing Capacity

2001 Weekly

The bearing capacity values at 2.54 cm of displacement for 2001 are reported in Table 14. The reinforced sods (Sportgrass, Motzgrass and Hummer Turftiles) showed the highest bearing capacity values. The sand-soil mix containing 9% silt+clay and Ventway each showed significantly higher bearing capacity than the well-graded sand.

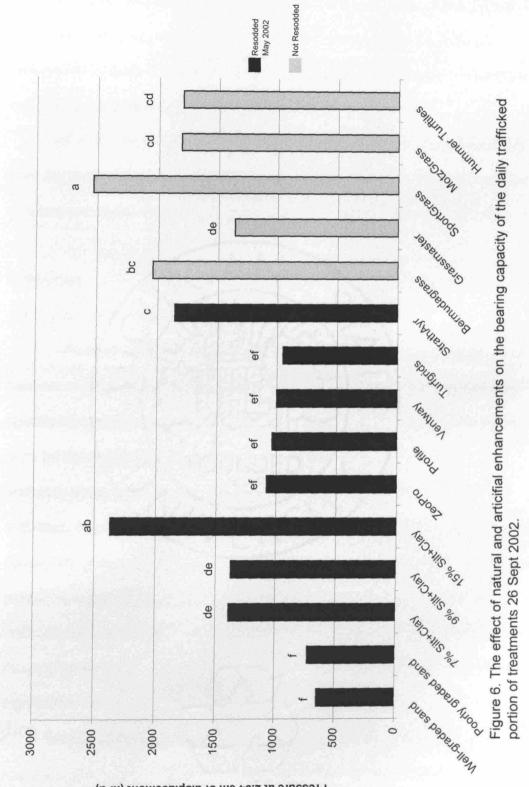
2002 Weekly

The bearing capacity values at 2.54 cm of displacement for 2002 are reported in Table 14. The reinforced sod materials (Sportgrass, Motzgrass and Hummer Turftiles) again showed significantly higher bearing capacity than the well-graded sand. Silt+clay showed a positive correlation to soil bearing capacity. As silt+clay content of the sand-soil mix increased, bearing capacity increased. However, only 15% silt+clay was significantly higher than the well-graded sand. The Bermudagrass treatment also had significantly higher bearing capacity than the well-graded sand. None of the randomly-oriented or specifically-oriented inclusions were significantly different from the well-graded sand.

2002 Daily

The bearing capacity of the daily trafficked portion of treatments were only measured in September 2002 to assess the playing surface strength as turfgrass cover began to diminish (Figure 6) (Turfgrass cover, daily 2002 are presented in

	kPa	†
	2001	2002
Treatment	1-Sep	7-Sep
Well-graded sand‡	1227 ef [§]	1256 fg
Poorly graded sand	1151 f	1111 g
7% Silt+Clay	1361 def	1376 d-g
9% Silt+Clay	1590 bcd	1429 c-g
15% Silt+Clay	1387 def	1762 bc
ZeoPro	1289 ef	1297 fg
Profile	1497 b-e	1367 efg
Ventway	1618 bcd	1451 c-g
Turfgrids	1478 b-e	1485 c-f
Grassmaster	1420 c-f	1557 b-f
SportGrass	1934 a	2299 a
MotzGrass	1701 ab	1726 bcd
Hummer Turftiles	1690 abc	1717 b-e
StrathAyr	1461 b-e	1605 b-f
Bermudagrass	1231 ef	1859 b
Significance	***	***


Table 14. The effect of natural and artificial root zone enhancements on bearing capacity at 2.54 cm of displacement in weekly trafficked portion of treatments for 2001 and 2002.

*,**,*** Significant at the 0.10, 0.05, 0.01 level of probability respectively.

† Bearing capacity was measured using a modified California Bearing Ratio apparatus. Indicates pressure in kilopascals to displace the turf/soil to a depth of 2.54 cm.

‡ Used as the base root zone material for all treatments except StrathAyr and Motzgrass.

§ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

Pressure at 2.54 cm of displacement (kPa)

Table 6). These data need to be interpreted with caution because the following treatments were not resodded in Spring 2002: Grassmaster, Sportgrass, Motzgrass, Hummer Turftiles, and Bermudagrass. Therefore these treatments can not be compared fairly to other treatments.

All three sand-soil mixes exhibited significantly higher bearing capacity than the well-graded sand. StrathAyr was the only randomly oriented inclusion that showed significantly higher bearing capacity than the well-graded sand.

Infiltration

2000, 2001, 2002 Weekly

Infiltration data was only collected on the weekly trafficked portion of treatments. The nature of the artificial materials in the randomly oriented, the specifically oriented, and the reinforced sod treatments required that modified rings be driven into the soil surface using a different method than the non-artificially amended treatments. Due to the different methods of inserting the infiltration rings into the ground (Driven vs. Pounded) the data can not be directly compared. Driving the modified infiltration rings into the antificially amended plots produced higher variances than pounding the standard rings into the non-artificially amended plots. The higher variances could have been associated with creating preferential voids using the driven method, thereby producing unusually high infiltration rates.

Infiltration rates for the non-artificially amended treatments (pounded rings) are presented in Table 15. In 2000, silt+clay had the largest effect on

. <u> </u>		cm/hr [‡]	
Treatment	1-Oct-00	1-Nov-01	Dec-02
Well-graded sand§	157.6 a [¶] A [#]	107.6 a B	17.0 C
Poorly graded sand	137.7 b A	92.9 ab B	14.9 C
7% Silt+Clay	111.7 c A	27.4 d B	8.1 C
9% Silt+Clay	69.6 d A	16.9 de B	1.9 B
15% Silt+Clay	3.5 f A	0.8 f A	0.4 A
ZeoPro	153.9 a A	85.3 bc B	13.9 C
Profile	152.1 ab A	84.7 c B	7.0 C
Bermudagrass	44.9 e A	12.6 e B	2.6 C
Significance	***	***	ns

Table 15. Infiltration rates for treatments measured using pounded rings[†] for 2000, 2001, and 2002.

*,**,*** Significant at the 0.10, 0.05, 0.01 level of probability respectively.

† Rings were pounded into the ground using a hand tamp.

‡ Infiltration rates were measured using a double-ring infiltrometer.

§ Used as the base root zone material for all treatments except StrathAyr and Motzgrass.

¶ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

Means accross columns not followed by the same letter are significantly different at the 0.05 probability level as determined by Fisher's protected least significant difference..

infiltration rates. Percent silt+clay was negatively correlated with infiltration rates. As percent silt+clay increased, infiltration decreased. Sand-soil mixes containing 7%, 9%, 15%, and Bermudagrass had significantly lower infiltration than the wellgraded sand. In 2001, after the first traffic season, the infiltration rates significantly reduced for all treatments compared to the first year (No traffic) except 15% silt+clay. Percent silt+clay again had the largest effect on infiltration, deceasing as silt+clay increased. In 2002, after the second season of traffic, infiltration again reduced significantly over all treatments except for sand-soil mixes containing 9% silt+clay and 15% silt+clay. However, there was no amendment affect after the second traffic season.

Infiltration rates for the artificially amended treatments (driven rings) are presented in Table 16. Infiltration rates using the driven method showed some treatments with extremely high infiltration rates. The nature of the material of each respective inclusion may have created preferential voids while the rings were driven into the playing surface. In 2000, Sportgrass and StrathAyr were the only treatments that were significantly lower than all other artificially amended treatments. In 2001, no significant differences were measured between treatments. In 2002, data for the artificially amended plots could not be collected after the second traffic season due to weather interference.

However, in spring 2003, three undisturbed soil cores were extracted from the weekly trafficked portion of all treatments in an effort to assess differences in hydraulic conductivity. All cores were extracted using the same method, but variances for the artificially amended plots were higher. Hydraulic conductivity

	cm/hr	+
Treatment	1-Oct-00	28-Nov-01
Ventway	210.7 a [§] A [¶]	120.8 B
Turfgrids	277.4 a A	150.4 B
StrathAyr	139.1 b A	55.0 B
Grassmaster	211.3 a A	129.7 B
SportGrass	103.8 b A	87.6 A
MotzGrass	217.2 a A	111.6 B
Hummer Turftiles	241.7 a A	81.3 B
Significance	***	ns

Table 16. Infiltration rates for treatments measured using driven rings† for 2000 and 2001.

*,**,*** Significant at the 0.10, 0.05, 0.01 level of probability respectively.

† Rings were driven into the ground using an apparatus powered by a drill motor.

 \ddagger Infiltration rates were measured using a double-ring infiltrometer.

§ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

¶ Means accross columns not followed by the same letter are significantly different at the 0.05 probability level as determined by Fisher's protected least significant difference..


values for all treatments are shown in Figure 7. Percent silt+clay had the largest effect on hydraulic conductivity. All three sand-soil mixes had significantly lower hydraulic conductivity than the well-graded sand. TDS 2150, Zeopro, Profile, and Bermudagrass had significantly lower hydraulic conductivity than the well-graded sand. Artificially amended plots, Sportgrass and StrathAyr exhibited significantly less hydraulic conductivity than the well-graded sand.

Root Mass by Depth

Root mass by depth data was only collected in November 2001 during the first traffic season (Table 17). Data could not be recorded for all treatments because artificial materials could not be separated from roots sufficiently to obtain accurate data. No significant differences were shown by amendments at depth 1 (0-7.6 cm) or depth 2 (7.6-15.2 cm). However, there was a significant amendment effect at depth 3 (15.2-22.9 cm). TDS 2150, and Grassmaster had significantly less root mass at depth 3 (15.2-22.9 cm) than the well-graded sand. TDS 2150, Zeopro, Profile, Sportgrass, and Bermudagrass were the only treatments to show no significant difference in root mass between depths.

Summary

This study evaluated and compared 15 athletic field systems under two traffic regimes; daily and weekly. Considering all the parameters measured, the well-graded sand performed well compared to all other treatments, and even maintained one of the highest infiltration rates over all three years. However,

Hydraulic Conductivity (cm/hr)

		Root mass (g) [†]	
Treatment	0 - 7.6 cm	7.6 - 15.2 cm	15.2 - 22.9 cm
Well-graded sand ‡	0.428 A	0.175 B	0.076 bc [§] B [¶]
Poorly graded sand	0.265 A	0.170 A	0.204 a A
7% Silt+Clay	0.654 A	0.363 B	0.063 bc C
9% Silt+Clay	0.565 A	0.106 B	0.058 bc B
15% Silt+Clay	0.421 A	0.117 B	0.052 bc B
ZeoPro	0.317 A	0.088 A	0.112 bc A
Profile	0.302 A	0.125 A	0.072 bc A
Ventway [#]	-	-	-
Turfgrids [#]	-	-	-
Grassmaster	0.357 A	0.085 B	0.026 c B
SportGrass	0.261 A	0.100 A	0.101 bc A
MotzGrass	0.444 A	0.132 B	0.053 bc B
Hummer Turftiles [#]	-	-	-
StrathAyr [#]	-	-	-
Bermudagrass	0.210 A	0.105 A	0.122 ab A
Significance	ns	<u>ns</u>	***

Table 17. Root mass for the weekly trafficked portion of treatments in November 2001.

*,**,*** Significant at the 0.10, 0.05, 0.01 level of probability respectively.

† Root mass samples were extracted using a modified soil probe (diameter=3.2 cm). The cutting edge of the soil probe was filed to cut the artificial amendments. Soil probe was inserted into the soil using a drill motor. Three samples were collected from each treament and common depths were combined for analysis.

‡ Used as the base root zone material for all treatments except StrathAyr and Motzgrass.

§ Means within a column not followed by the same letter are significantly different at the indicated level of significance as determined by Fisher's protected least significant difference.

¶ Means accross columns not followed by the same letter are significantly different at the 0.05 probability level as determined by Fisher's protected least significant difference.

Root samples could not be separated from artifical amendments, without significant loss of root material.

some naturally and artificially amended treatments proved advantageous in a few parameters measured, but in some instances had unfavorable consequences such as increasing surface hardness or decreasing traction.

Silt+Clay had the largest detrimental effect on infiltration. In terms of infiltration, the sand-soil mix containing 15% silt+clay proved to be the only unacceptable root zone for a high quality athletic field. This mix was well below the suggested minimum of 1.5-2.5 cm hr⁻¹ (Waddington et al 1974, Adams 1976) after the first season of traffic. The sand-soil mix containing 9% silt+clay was near the suggested minimums, but maintained an infiltration rate of 1.9 cm hr⁻¹ after two seasons of traffic with minimal root zone management over a three year period. Adding any enhancement materials to a sand with the purpose of increasing infiltration rates should be done with minimal expectation of positive results. The high variance associated with the artificially amended treatments indicates that the nature of the artificial amendments were possibly creating preferential voids when samples were taken from the field thus showing unusually high infiltration rates (Figure 7).

The reinforce sod products (Sport grass, Motzgrass, and Hummer Turftiles) had the highest bearing capacity over both years on the weekly trafficked portion of treatments. This strength is primarily due to their reinforcements materials located directly at the playing surface. The sand-soil mix containing 9% silt+clay and Ventway had significantly higher bearing capacity in 2001. However, the strength increase of these materials was not significantly different in 2002. The strength increase provided by each

amendment may not be apparent in 2002 due to a further increase in root development (Waldron 1977). The most important bearing capacity data was recorded from the daily trafficked portion of treatments after turfgrass cover had reduced. The bearing capacity of a treatment after turfgrass cover has been reduced is very important in predicting how a particular athletic field system will perform. This parameter is essential in a practice field situation where a significant reduction in turfgrass cover is imminent. All three sand-soil mixes and StrathAyr showed significantly higher bearing capacity over the well-graded sand on the daily trafficked portion of treatments.

The reinforced sod products had excellent bearing capacity in both the weekly and daily trafficked portions of treatments. However, the location of the reinforcement materials could have caused these products to show the most consistent reduction in shear resistance (Traction) in both daily and weekly trafficked plots. Reinforced sod products seem to develop problems as they mature. Generally, unamended root zones struggle the first year they are installed because the time from establishment to traffic is typically short, but as they mature they become more wear resistant. Reinforced sod materials seem to provide a benefit early (1st year) because they are installed as established so¹ that is very strong. However, they seem to cause problems as they continue to mature. This was exhibited during the second season of daily traffic, where most of the treatments were resodded. Many of the reinforced sod materials retained less turfgrass cover than the newly sodded treatments in September and October (Table 6). The artificial materials in these products seem to act as a barrier to the

sand/soil surface and the developing thatch layer. The thatch layer develops from an imbalance between accumulation and decomposition of organic surface debris (Hurto and Turgeon 1978). Once a thin layer of thatch develops and does not decompose, new crowns can develop from emerging rhizomes within the thatch layer. Over time, the thatch layer becomes the primary growing medium. This results in a week union between the thatch layer and the underlying root zone material, allowing turf to displace easily.

Grassmaster, Sportgrass, and Motzgrass exhibited the highest, most consistent divoting resistance over both daily and weekly trafficked plots in 2001 and 2002. Bermudagrass also exhibited higher resistance to divoting in the daily trafficked plots during the second traffic season.

The only treatment that showed a consistent increase in surface hardness was Sportgrass. This increase in surface hardness has been well documented by other researchers (McNitt and Landschoot 2001, McNitt and Landschoot 2003). The sand-soil mixes exhibited higher surface hardness values towards the end of the second traffic season on daily trafficked portions of treatments in late October and into November. Motzgrass and StrathAyr also showed higher G_{max} values under the same traffic regime.

An athletic field manager considering installing a new athletic field has many factors to contemplate in evaluating different athletic field systems such as; geographic location of the field, intensity of intended traffic, and cost. The main concern should be how the new system could potentially affect the long term management of the field such as; mowing, cultivation, irrigation, pest control, and

fertility. Any artificial material added to a root zone has the potential to make cultivation more challenging. (ie limited tine penetration, bringing artificial material to the surface and damaging the material that was initially installed to enhance the root zone). Selection of an athletic field system should also be driven by the ability of the system to maintain playing surface quality once turfgrass cover is reduced. Sand-soil mixes containing 7%, 9% silt+clay and StrathAyr showed the greatest potential for enhancing playing surface characteristics once turfgrass cover has diminished. Under the daily traffic regime, Grassmaster was the only enhanced root zone that showed promise in retaining more turfgrass, TDS 2150, and 9% silt+clay were the only treatments that showed significantly higher turfgrass cover than the well-graded sand in November.