GROWTH AND PHYSIOLOGICAL RESPONSES OF TURFGRASSES TO DEFICIT IRRIGATION

BY J. FU
GROWTH AND PHYSIOLOGICAL RESPONSES OF TURFGRASSES TO DEFICIT IRRIGATION

by

JINMIN FU

B.S., Heilongjiang August First Land Reclamation University, P. R. China, 1983
M.S., Shenyang Agricultural University, P. R. China, 1986

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Horticulture, Forestry, and Recreational Resources
College of Agriculture
KANSAS STATE UNIVERSITY
Manhattan, Kansas
2003

Approved by

Major Professor
Jack D. Fry, Ph. D
Drought stress reduces the aesthetic and functional value of turfgrass. I conducted several studies to determine the effects of water deficits on turfgrass growth and physiological processes.

Surface soil (0-20 cm) drying in the greenhouse did not influence turf quality, leaf relative water content, leaf water potential, canopy photosynthesis, or the activity of catalase and peroxidase in Kentucky bluegrass or tall fescue. Leaf growth rate and canopy and root respiration were reduced for both species during surface drying. Surface-dried plants had higher root: shoot ratios, total nonstructural carbohydrate levels in shoots and surface roots, and superoxide dismutase activity. However, full soil drying (40 cm deep) had greater detrimental effects on the above parameters compared to surface drying.

Irrigation levels required to maintain season-long acceptable turf quality in the field were 60% ET for tall fescue and bermuda, 80% ET for zoysia, and 100% ET for Kentucky bluegrass. Irrigation at 20 and 40% ET resulted in a significant reduction in leaf relative water content and increase in leaf electrolyte leakage in Kentucky bluegrass, tall fescue, bermuda and zoysiagrass. Tall fescue and zoysia irrigated at 20% and 40% ET had significantly lower canopy net photosynthesis, whole-plant respiration, canopy vertical growth rate, tiller density, and underlying soil water content than turf receiving 100% ET.

Field-grown tall fescue irrigated at 20% ET had more roots at a 13 to 18 cm depth than turf irrigated at 60% or 100% ET. Irrigation at 60% ET increased root surface area at 22 to 32 cm in 2002.
Zoysiagrass and tall fescue receiving 60% and 20% ET in a growth chamber exhibited increased sucrose content and activity of sucrose phosphate synthase and sucrose synthase, and decreased acid invertase activity. The root: shoot ratio of total nonstructural carbohydrates was higher at 60% than 100% ET for tall fescue and zoysia.

In summary, I determined the minimum water requirements for four turfgrasses, and quantified some of the growth and physiological processes that occur in turfgrasses subjected to irrigation deficits. This information should be useful to turf managers and researchers interested in reducing water inputs in turf systems.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>xi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td></td>
</tr>
<tr>
<td>GROWTH AND PHYSIOLOGICAL RESPONSES OF TALL FESCUE TO SURFACE SOIL</td>
<td>1</td>
</tr>
<tr>
<td>DRYING</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>6</td>
</tr>
<tr>
<td>Results</td>
<td>10</td>
</tr>
<tr>
<td>Discussion</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td></td>
</tr>
<tr>
<td>PHOTOSYNTHESIS, RESPIRATION, AND CARBON ALLOCATION OF TWO COOL - SEASON</td>
<td>26</td>
</tr>
<tr>
<td>PERENNIAL GRASSES IN RESPONSE TO SURFACE SOIL DRYING</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>27</td>
</tr>
<tr>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>31</td>
</tr>
</tbody>
</table>
CHAPTER III
INVOLVEMENT OF ANTIOXIDANTS AND LIPID PEROXIDATION IN THE
ADAPTATION OF TWO COOL-SEASON GRASSES TO LOCALIZED DROUGHT
STRESS ................................................................. 58

Abstract ................................................................. 59
Introduction ............................................................. 61
Materials and Methods ............................................... 64
Results ................................................................. 69
Discussion .............................................................. 71
References .............................................................. 75

CHAPTER IV
MINIMUM WATER REQUIREMENTS AND STRESS INDICATORS OF FOUR
TURFGRASSES SUBJECTED TO DEFICIT IRRIGATION ......................... 87

Abstract ................................................................. 88
Introduction ............................................................. 90
Materials and Methods ............................................... 92
Results ................................................................. 96
Discussion .............................................................. 100
References .............................................................. 103
CHAPTER V
CARBON METABOLISM AND WATER USE EFFICIENCY OF ZOYSIAGRASS
AND TALL FESCUE DURING DEFICIT IRRIGATION

Abstract ................................................................. 116
Introduction ........................................................... 118
Materials and Methods ............................................ 120
Results ................................................................. 124
Discussion ............................................................ 126
References ............................................................. 130

CHAPTER VI
TALL FESCUE ROOT GROWTH DYNAMICS IN RESPONSE TO DEFICIT
IRRIGATION .......................................................... 139

Abstract ................................................................. 140
Introduction ........................................................... 142
Materials and Methods ............................................ 144
Results ................................................................. 148
Discussion ............................................................ 150
References ............................................................. 153

CHAPTER VII
SUCROSE METABOLISM AND TOTAL NONSTRUCTURAL CARBOHYDRATES
IN ZOYSIAGRASS AND TALL FESCUE IN RESPONSE TO DEFICIT
IRRIGATION .......................................................... 164
LIST OF FIGURES

CHAPTER I

Fig. 1. Turf quality of tall fescue in response to soil drying ......................................................... 19
Fig. 2. Leaf growth rate of tall fescue in response to soil drying .................................................. 20
Fig. 3. Diurnal changes in canopy net photosynthetic rate (Pn) of tall fescue in response to soil drying at 17 DOT. ............................................................ 21
Fig. 4. Diurnal changes in canopy dark respiration rate (R_{canopy}) of tall fescue in response to soil drying at 17 DOT. ..................................................... 22
Fig. 5. Diurnal changes in root respiration rate (R_{root}) of tall fescue in the surface 20-cm soil in response to soil drying at 18 DOT. .............................................. 23
Fig. 6. Shoot dry weight and weight of roots in the top 20 cm and lower 20 cm of soil and shoot dry weight of tall fescue at 42 d of soil drying ........................................ 24
Fig. 7. Root to shoot ratio in dry weight for tall fescue at 42 d of soil drying. The letters on the columns are for treatment comparison ................................................. 25

CHAPTER II

Fig. 1 Schematic of split-tube technique, depicting experiment set-up, three soil moisture treatments, and root-respiration measurement system ................................................. 49
Fig. 2 Leaf water potential ($\Psi_{\text{leaf}}$) of tall fescue and Kentucky bluegrass in response to drought stress ........................................................................................................... 50
Fig. 3 Canopy net photosynthetic rate (Pn) of tall fescue and Kentucky bluegrass in response to drought stress ......................................................................................... 51
Fig. 4. Canopy respiration rate (Pn) of tall fescue and Kentucky bluegrass in response to drought stress. .......................................................... 52

Fig. 5. Respiration rate of roots in the upper 20-cm (R_{top}) and lower 20-cm soil (R_{bottom}) of Kentucky bluegrass in response to drought stress. .......................................................... 53

Fig. 6. Respiration rate of roots in the upper 20-cm (R_{top}) and lower 20-cm soil (R_{bottom}) of tall fescue in response to drought stress. .......................................................... 54

Fig. 7. Proportion of roots in dry weight in each soil layer in response to soil drying for tall fescue and Kentucky bluegrass. .......................................................... 55

Fig. 8. Allocation of newly photosynthesized $^{14}$C carbon to shoots and roots in the upper 20 cm of soil and the lower 20 cm of soil as affected by drought stress for tall fescue and Kentucky bluegrass. .......................................................... 56

Fig. 9. Total nonstructural carbohydrate in shoots, roots in the upper 20 cm of soil and the lower 20 cm of soil as affected by drought stress for tall fescue and Kentucky bluegrass. .......................................................... 57

CHAPTER III

Fig. 1. Leaf relative water contents of Kentucky bluegrass and tall fescue in response to drought stress. .......................................................... 82

Fig. 2. Superoxide dismutase (SOD) activities of Kentucky bluegrass and tall fescue in response to drought stress. .......................................................... 83

Fig. 3. Peroxidase (POD) activities of (A) Kentucky bluegrass and (B) tall fescue in response to drought stress. .......................................................... 84
Fig. 4. Catalase (CAT) activities of (A) Kentucky bluegrass and (B) tall fescue in response to drought stress. ................................................................. 85

Fig. 5. Malonyldidehyde (MDA) of (A) Kentucky bluegrass and (B) tall fescue in response to drought stress. ................................................................. 86

CHAPTER IV

Fig. 1. Visual quality of four species in response to deficit irrigation in 2001. .......... 105

Fig. 2 Visual quality of four species in response to deficit irrigation in 2002. ........ 106

Fig. 3. The normalized difference vegetation index of four species in response to deficit irrigation in 2001. ................................................................. 107

Fig. 4. The normalized difference vegetation index of four species in response to deficit irrigation in 2002. ................................................................. 108

Fig. 5. The IR/R ratio of four species in response to deficit irrigation in 2001. ....... 109

Fig. 6. The IR/R ratio of four species in response to deficit irrigation in 2002 .......... 110

Fig. 7. Leaf relative water content of four species in response to deficit irrigation in 2001. ................................................................. 111

Fig. 8. Leaf relative water content of four species in response to deficit irrigation in 2002. ................................................................. 112

Fig. 9. Electrolyte leakage of four species in response to deficit irrigation in 2001... 113

Fig. 10. Electrolyte leakage of four species in response to deficit irrigation in 2002... 114

CHAPTER V

Fig. 1. Canopy net photosynthetic rate of tall fescue and zoysia in response to deficit irrigation. ................................................................. 133
Fig. 2. Whole plant respiration rate of tall fescue and zoysia in response to deficit irrigation. ................................................................. 134
Fig. 3. Water use efficiency of tall fescue and zoysia in response to deficit irrigation. ................................................................. 135
Fig. 4. Canopy growth rate of tall fescue and zoysia in response to deficit irrigation. ................................................................. 136
Fig. 5. Plant density of tall fescue and zoysia in response to deficit irrigation. ..... 137
Fig. 6. Soil water content of tall fescue and zoysia in response to deficit irrigation. ... 138

CHAPTER VI

Fig. 1. Root number of tall fescue in response to deficit irrigation. ...................... 156
Fig. 2. Root length of tall fescue in response to deficit irrigation. ...................... 157
Fig. 3. Root surface area of tall fescue in response to deficit irrigation. ............... 158
Fig. 4. Root diameter of tall fescue in response to deficit irrigation. .................... 159
Fig. 5. Vertical distribution of tall fescue root number in response to deficit irrigation. ................................................................. 160
Fig. 6. Vertical distribution of tall fescue root length in response to deficit irrigation. ................................................................. 161
Fig. 7. Vertical distribution of tall fescue root surface area in response to deficit irrigation. ................................................................. 162
Fig. 8. Vertical distribution of tall fescue root diameter in response to deficit irrigation. ................................................................. 163
CHAPTER VII

Fig. 1. Sucrose content of zoysiagrass and tall fescue in response to deficit irrigation ......................................................... 183

Fig. 2. SPS activity of zoysiagrass and tall fescue in response to deficit irrigation. ................................................................. 184

Fig. 3. SS activity of zoysiagrass and tall fescue in responses to deficit irrigation ............................................................... 185

Fig. 4. Acid invertase activity of zoysiagrass and tall fescue in response to deficit irrigation .................................................... 186

Fig. 5. TNC of zoysiagrass and tall fescue in response to deficit irrigation ................................................................. 187

Fig. 6. The ratio of root to shoot in TNC of zoysiagrass and tall fescue in response to deficit irrigation. ........................................ 188

Appendix I Daily maximum and minimum air temperature from June to September in 2001 and 2002 .................................................. 189
LIST OF TABLES

CHAPTER I
Table 1. Leaf relative water content (RWC) in response to drought stress. .................. 18

CHAPTER II
Table 1. Effects of soil drying on root dry weight and specific respiration rate on 0-20
and 20-40 cm soil layers. ................................................................. 48

CHAPTER III
Table 1. Shoot growth after 30 days of treatment as affected by surface and full drying for
Kentucky bluegrass and tall fescue. .................................................. 80
Table 2. Leaf Chl a and Chl b content as affected by surface and full drying for Kentucky
bluegrass and tall fescue. ................................................................. 81
LIST OF APPENDIX

Appendix I. Daily maximum and minimum air temperature from June to September in 2001 and 2002. ................................................................. 189
ACKNOWLEDGEMENTS

First, I am especially grateful to my major advisor, Dr. Jack Fry, for supporting my research and studies at Kansas State University, for his patience, guidance and enthusiasm, and for his excellent instruction and friendly understanding. Thanks are also extended to Turf Producers International for their partial support of this project.

I would sincerely like to thank Dr. Bingru Huang, Dr. Mary Beth Kirkham, Dr. Steve Keeley, and Dr. Dale Bremer, for providing guidance, valuable suggestions and expertise during my studies.

I would like to thank Mr. Alan Zuk for maintaining my research plots at the Rocky Ford Turfgrass Research Farm; Mr. Ward Upham for advice on data collection and computer operations; and Dr. C.B. Rajashekar for facility assistance.

Mr. Derek Settle, Mr. Yuwen Zhang, Mr. Kemin Su, and Ms. Qi Zhang shared their knowledge with me. I appreciate their kind assistance. I am also grateful to all faculty and fellow graduate students in the Department of Horticulture, Forestry and Recreation Resources for their friendship and assistance during my studies.

Last but not the least, I appreciate very much the support and encouragement from my parents, wife, Xiurong Shi, and son, Ray Fu during my studies. I would never have accomplished this without them.